Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.464
Filtrar
1.
Environ Geochem Health ; 46(6): 210, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822873

RESUMO

The presence of heavy metals in soil has gained considerable attention due to their potential risks to ecosystems and human health. In this study, a thorough soil investigation was performed in the hilly region of central Hainan, which was formerly regarded as an area with the highest ecological environmental quality. A total of 7094 soil samples were systematically collected with high density over a large area. Simultaneously, a detailed investigation was conducted on the surrounding environment of each sampling point, including environmental factors such as soil, land use and crop types. The soil samples were analysed for heavy metals, pH, organic matter, and other parameters. The soil heavy metal pollution level, ecological risk and health risk were evaluated using the geo-accumulation index and the potential ecological risk index. The findings showed that the average contents of the heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in the soil were 1.68, 0.042, 24.2, 6.49, 0.0319, 7.06, 29.6 and 49.8 mg·kg-1 respectively. Except for Hg, the mean values of the other heavy metals were either lower than or similar to the background values of Hainan. Also, only a few localised areas showed contamination by heavy metals. The primary sources of heavy metals, identified by a positive matrix factorisation model, could be categorised into four types: natural sources related to the soil formation process from acidic intrusive rocks (such as granite); natural sources primarily influenced by atmospheric deposition; anthropogenic sources associated with agricultural activities; and natural sources related to the soil formation process from middle-mafic intrusive rocks and black shales. The correlation analysis and variance analysis findings suggested that the content of heavy metals in the soil was primarily associated with the parent rock. The study area generally had low heavy metal levels and was not significantly polluted. However, agricultural activities still affected the enrichment of heavy metals. Therefore, it is imperative to remain vigilant about the ecological risks linked to soil heavy metals while continuing land development and expanding agricultural activities in the future. These findings indicate that conducting high-density soil surveys can enhance our understanding of regional soil heavy metals and enable reliable recommendations for agricultural planning. Whether in areas with low pollution risk or potential pollution risk, it is recommended that high-density soil surveys be conducted provide scientific guidance for further agricultural development.


Assuntos
Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , China , Poluentes do Solo/análise , Medição de Risco , Solo/química , Humanos
2.
Environ Monit Assess ; 196(7): 593, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829441

RESUMO

Coal power activities could cause regional fluctuations of trace elements, but the distribution information of these trace elements in arid and semi-arid areas is insufficient. In this study, the soil trace elements (As, B, Be, Cd, Co, Cr, Cu, Fe, Ga, Ge, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, and Zn) of Ningdong Coal Power Production Base in China were monitored. Results showed that the concentrations of B, Tl, Mn, Pb, Cr, K, Cu, and Co exceeded background values. The maximum risk index reached 265.66, while the trace elements posed a cancer risk to children. Combining correlation analyses (CA), principal component analysis (PCA), and positive matrix factorization (PMF) techniques, it indicated that trace elements were mainly coming from coal combustion (34.15%), livestock farming (17.44%), traffic emissions (12.42%), and natural factors (35.99%). This study reveals the sources and potential ecological risks of soil trace elements in the Ningdong Coal and Power Production Base. It provides a scientific basis for developing targeted environmental management measures and reducing human health risks.


Assuntos
Carvão Mineral , Monitoramento Ambiental , Poluentes do Solo , Solo , Oligoelementos , China , Oligoelementos/análise , Poluentes do Solo/análise , Solo/química , Centrais Elétricas , Humanos
3.
J Environ Sci (China) ; 145: 205-215, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844320

RESUMO

Thermal treatment can effectively decontaminate soils but alter their properties. Previous research mainly focused on volatile organic compounds and metals, i.e. Hg, neglecting non-volatile metal(loid)s. This study aimed to investigate Cd and As transformation during aerobic and anaerobic calcination. The results showed that both aerobic and anaerobic calcination increased soil pH by reducing soil organic matter (SOM) content, which also influenced the cation exchange capacity (CEC) and the leaching behavior of Cd and As in the soil. The total concentrations of Cd and As in the calcined soils varied depending on the calcination temperature and atmosphere. When the aerobic calcination temperature exceeded 700 °C, Cd volatilized as CdCl2, while anaerobic calcination at relatively low temperatures (600 °C) involved reductive reactions, resulting in the formation of metallic Cd with a lower boiling point. Similarly, As volatilized at 800 °C aerobically and 600 °C anaerobically. The formation of As-based minerals, particularly Ca3(AsO4)2, hindered its gasification, whereas anaerobic calcination promoted volatilization efficiency through the generation of C-As(III) based gaseous components with lower boiling points. Contrasting trends were observed in the TCLP-extractable Cd and As contents of the calcined soils. Over 70% of TCLP-extractable Cd contents were suppressed after thermal treatment, attributed to the elevated pH and reduced CEC of the soil, as well as volatilization. However, TCLP-extractable As contents increased with elevated temperatures, likely due to the desorption of AsO43- and re-adsorption of gaseous As2O3 during cooling. These findings have implications for assessing the environmental impact of thermal treatment and provide insights for remediation strategies concerning Cd and As-contaminated soils.


Assuntos
Arsênio , Cádmio , Poluentes do Solo , Solo , Cádmio/química , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Arsênio/análise , Arsênio/química , Solo/química , Recuperação e Remediação Ambiental/métodos , Temperatura Alta
4.
J Environ Sci (China) ; 145: 88-96, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844326

RESUMO

Conventionally, soil cadmium (Cd) measurements in the laboratory are expensive and time-consuming, involving complex processes of sample preparation and chemical analysis. This study aimed to identify the feasibility of using sensor data of visible near-infrared reflectance (Vis-NIR) spectroscopy and portable X-ray fluorescence spectrometry (PXRF) to estimate regional soil Cd concentration in a time- and cost-saving manner. The sensor data of Vis-NIR and PXRF, and Cd concentrations of 128 surface soils from Yunnan Province, China, were measured. Outer-product analysis (OPA) was used for synthesizing the sensor data and Granger-Ramanathan averaging (GRA) was applied to fuse the model results. Artificial neural network (ANN) models were built using Vis-NIR data, PXRF data, and OPA data, respectively. Results showed that: (1) ANN model based on PXRF data performed better than that based on Vis-NIR data for soil Cd estimation; (2) Fusion methods of both OPA and GRA had higher predictive power (R2) = 0.89, ratios of performance to interquartile range (RPIQ) = 4.14, and lower root mean squared error (RMSE) = 0.06, in ANN model based on OPA fusion; R2 = 0.88, RMSE = 0.06, and RPIQ = 3.53 in GRA model) than those based on either Vis-NIR data or PXRF data. In conclusion, there exists a great potential for the combination of OPA fusion and ANN to estimate soil Cd concentration rapidly and accurately.


Assuntos
Cádmio , Monitoramento Ambiental , Poluentes do Solo , Solo , Espectroscopia de Luz Próxima ao Infravermelho , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , China , Monitoramento Ambiental/métodos , Espectrometria por Raios X/métodos , Redes Neurais de Computação , Estudos de Viabilidade
5.
Ecol Lett ; 27(6): e14442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844373

RESUMO

Highly diverse and abundant organisms coexist in soils. However, the contribution of biotic interactions between soil organisms to microbial community assembly remains to be explored. Here, we assess the extent to which soil fauna can shape microbial community assembly using an exclusion experiment in a grassland field to sort soil biota based on body size. After 1 year, the exclusion of larger fauna favoured phagotrophic protists, with increases up to 32% in their proportion compared to the no-mesh treatment. In contrast, members of the bacterial community and to a lesser extent of the fungal community were negatively impacted. Shifts in bacterial but not in fungal communities were best explained by the response of the protistan community to exclusion. Our findings provide empirical evidence of top-down control on the soil microbial communities and underline the importance of integrating higher trophic levels for a better understanding of the soil microbiome assembly.


Assuntos
Bactérias , Fungos , Pradaria , Microbiota , Microbiologia do Solo , Fungos/fisiologia , Animais , Eucariotos/fisiologia , Solo/química , Tamanho Corporal
6.
Glob Chang Biol ; 30(6): e17368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847421

RESUMO

Nitrogen oxides (NOx) play an important role for atmospheric chemistry and radiative forcing. However, NOx emissions from the vast northern circumpolar permafrost regions have not been studied in situ due to limitations of measurement techniques. Our goals were to validate the offline analytical technique, and based on this, to widely quantify in situ NOx emissions from peatlands in the southern Eurasian permafrost region. To this end, we conducted a comparison of online and offline flux measurements in 2018 and 2019 using the synthetic air flushing, steady-state opaque chamber method. With differences in annual average and cumulative fluxes less than 0.1 µg N m-2 h-1 and 0.01 kg N ha-1 year-1, the online and offline fluxes were in good agreement, demonstrating the feasibility of conducting offline measurements in remote regions without power supply. The flux measurements over 2 years showed obvious NOx emissions of 0.05-0.14 and 0.13-0.30 kg N ha-1 year-1 in the hollow and hummock microtopography of permafrost peatlands, respectively. The rapid expansion of alder (Alnus sibirica) in the peatlands induced by permafrost degradation significantly increased soil mineral N contents and NOx emissions depending on the age of alder (0.64-1.74 and 1.44-2.20 kg N ha-1 year-1 from the alder forests with tree ages of 1-10 years and 11-20 years, respectively). Alder expansion also intensively altered the thermal state of permafrost including the sharp increases of soil temperatures during the non-growing season from October to April and active layer thickness. This study provides the first in situ evidences of NOx emissions from the northern circumpolar permafrost regions and uncovers the well-documented expansion of alders can substantially stimulate NOx emissions and thus, significantly affect air quality, radiative forcing, and ecosystem productivity in the pristine regions.


Assuntos
Óxidos de Nitrogênio , Pergelissolo , Solo , Solo/química , Óxidos de Nitrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
7.
J Environ Manage ; 362: 121228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823304

RESUMO

The advent of air nanobubbles (ANBs) has opened up a wide range of commercial applications spanning industries including wastewater treatment, food processing, biomedical engineering, and agriculture. The implementation of electric field-based air nanobubbles (EF-ANBs) irrigation presents a promising approach to enhance agricultural crop efficiency, concurrently promoting environmentally sustainable practices through reducing fertilizer usage. This study investigated the impact of EF-ANBs on the germination and overall growth of agricultural crops in soil. Results indicate a substantial enhancement in both germination rates and plant growth upon the application of EF-ANBs. Notably, the introduction of ANBs led to a significant enhancement in the germination rate of lettuce and basil, increasing from approximately 20% to 96% and from 16% to 53%, respectively over two days. Moreover, the presence of EF-ANBs facilitates superior hypocotyl elongation, exhibiting a 2.8- and a 1.6-fold increase in the elongation of lettuce and basil, respectively, over a six-day observation period. The enriched oxygen levels within the air nanobubbles expedite aerobic respiration, amplifying electron leakage from the electron transport chain (ETC) and resulting in heightened reactive oxygen species (ROS) production, playing a pivotal role in stimulating growth signaling. Furthermore, the application of EF-ANBs in irrigation surpasses the impact of traditional fertilizers, demonstrating a robust catalytic effect on the shoot, stem, and root length, as well as the leaf count of lettuce plants. Considering these parameters, a single fertilizer treatment (at various concentrations) during EF-ANBs administration, demonstrates superior plant growth compared to regular water combined with fertilizer. The findings underscore the synergistic interaction between aerobic respiration and the generation of ROS in promoting plant growth, particularly in the context of reduced fertilizer levels facilitated by the presence of EF-ANBs. This promising correlation holds significant potential in establishing more sustainability for ever-increasing environmentally conscious agriculture.


Assuntos
Irrigação Agrícola , Produtos Agrícolas , Fertilizantes , Produtos Agrícolas/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Lactuca/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Solo/química , Agricultura/métodos , Ar
8.
J Environ Manage ; 362: 121322, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824893

RESUMO

Biochar, with its dual roles of soil remediation and carbon sequestration, is gradually demonstrating great potential for sustainability in agricultural and ecological aspects. In this study, a porous biochar derived from walnut shell wastes was prepared via a facile pyrolysis coupling with in-situ alkali etching method. An incubation study was conducted to investigate its performance in stabilizing copper (Cu) and lead (Pb) co-contaminated soils under different utilization types. The biochar effectively decreased the bioavailable Cu (8.5-91.68%) and Pb (5.03-88.54%), while increasing the pH, CEC, and SOM contents in both soils. Additionally, the results of sequential extraction confirmed that biochar promoted the transformation of the labile fraction of Cu and Pb to stable fractions. The mechanisms of Cu and Pb stabilization were found to be greatly dependent on the soil types. For tea plantation yellow soil, the main approach for stabilization was the complexation of heavy metals with abundant organic functional groups and deprotonation structure. Surface electrostatic adsorption and cation exchange contributed to the immobilization of Cu and Pb in vegetable-cultivated purple soil. This research provides valuable information for the stabilization of Cu and Pb co-contaminated soils for different utilization types using environmentally-friendly biochar.


Assuntos
Carvão Vegetal , Cobre , Recuperação e Remediação Ambiental , Juglans , Chumbo , Poluentes do Solo , Solo , Cobre/química , Juglans/química , Carvão Vegetal/química , Chumbo/química , Poluentes do Solo/química , Solo/química , Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Adsorção
9.
J Environ Manage ; 362: 121312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824888

RESUMO

Ectomycorrhizal (EcM) fungi play an important role in nutrient cycling and community ecological dynamics and are widely acknowledged as important components of forest ecosystems. However, little information is available regarding EcM fungal community structure or the possible relationship between EcM fungi, soil properties, and forestry activities in Pinus massoniana forests. In this study, we evaluated soil properties, extracellular enzyme activities, and fungal diversity and community composition in root and soil samples from pure Pinus massoniana natural forests, pure P. massoniana plantations, and P. massoniana and Liquidambar gracilipes mixed forests. The mixed forest showed the highest EcM fungal diversity in both root and bulk soil samples. Community composition and co-occurrence network structures differed significantly between forest types. Variation in the EcM fungal community was significantly correlated with the activities of ß-glucuronidase and ß-1,4-N-acetylglucosaminidase, whereas non-EcM fungal community characteristics were significantly correlated with ß-1,4-glucosidase and ß-glucuronidase activities. Furthermore, stochastic processes predominantly drove the assembly of both EcM and non-EcM fungal communities, while deterministic processes exerted greater influence on soil fungal communities in mixed forests compared to pure forests. Our findings may inform a deeper understanding of how the assembly processes and environmental roles of subterranean fungal communities differ between mixed and pure plantations and may provide insights for how to promote forest sustainability in subtropical areas.


Assuntos
Florestas , Micorrizas , Pinus , Microbiologia do Solo , Pinus/microbiologia , Solo/química , Biodiversidade , Fungos , Ecossistema
10.
J Environ Manage ; 362: 121313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824887

RESUMO

As global climate change progresses, soil will experience prolonged periods of both drought and heavy rainfall, leading to a more frequent drought-re-wetting process that may impact the ecosystem's carbon (C) cycle. However, understanding the extent to which different water conditions and wet-dry cycles alter the process of soil organic carbon (SOC) mineralization remains limited. Therefore, our study focused on the dammed land unique to the Loess Plateau, silted by check dams constructed for erosion control. We implemented three water gradients-drought (30% WHC), water stress (100% WHC), and wet-dry cycling (30-100%)-indoors to observe the SOC mineralization process five times. We identified a transient excitation effect of the wet-dry cycles on SOC mineralization. Soil mineralization decreased gradually with the alternation of wet-dry cycles. The wet-dry cycles not only significantly impacted the contents of SOC and TN but also stimulated the activities of enzymes related to C and N cycles. As the cycle frequency increased, the utilization of C sources by soil microorganisms gradually decreased, and the dominance of carbohydrates, amines, and acids evolved into a single acid, esters, or alcohols. Phosphatase and Chloroflexi were the main factors influencing SOC mineralization under drought stress, while TN and Ascomycota were the primary factors under water stress. SOC and Gemmatimonadetes were the main limiting factors for SOC mineralization under the wet-dry cycles. Additionally, we quantified the direct and interactive contributions of each factor to SOC mineralization. The direct contributions of drought stress, water stress, and the wet-dry cycles to SOC mineralization were 0.961, 0.736, and 0.942, respectively. This study contributes to a more comprehensive understanding of the mechanisms underlying SOC mineralization in the Loess Plateau under changing conditions.


Assuntos
Carbono , Solo , Solo/química , Secas , Ecossistema , Mudança Climática , Ciclo do Carbono , Água
11.
J Environ Manage ; 362: 121293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833923

RESUMO

Soil acidification induced by reactive nitrogen (N) inputs is a major environmental issue in grasslands, as it lowers the acid neutralizing capacity (ANC). The specific impacts of different N compound forms on ANC remain unclear. Grassland management practices like mowing and grazing can remove a considerable amount of soil N and other nutrients, potentially mitigating soil acidification by removing N from the ecosystem or aggravating it by removing base cations. However, empirical evidence regarding the joint effects of adding different forms of N compounds and mowing on ANC changes in different-sized soil aggregates is still lacking. This study aimed to address this knowledge gap by examining the effects of three N compounds (urea, ammonium nitrate, and ammonium sulfate) combined with mowing (mown vs. unmown) on soil ANC in different soil aggregate sizes (>2000 µm, 250-2000 µm, and <250 µm) through a 6-year field experiment in Inner Mongolia grasslands. We found that the average decline in soil ANC caused by ammonium sulfate (AS) addition (-78.9%) was much greater than that by urea (-25.0%) and ammonium nitrate (AN) (-52.1%) as compared to control. This decline was attributed to increased proton (H+) release from nitrification and the leaching of exchangeable Ca2+ and Mg2+. Mowing aggravated the adverse effects of urea and AN on ANC, primarily due to the reduction in soil organic matter (SOM) contents and the removal of exchangeable Ca2+, K+, and Na + via plant biomass harvest. This pattern was consistent across all aggregate fractions. The lack of variation in soil ANC among different soil aggregate fractions is likely due to the contrasting trend in the distribution of exchangeable Ca2+ and Mg2+. Specifically, the concentration of exchangeable Ca2+ increased with increasing aggregate size, while the opposite was true for that of exchangeable Mg2+. These findings underscore the importance of considering the forms of N compounds when assessing the declines of ANC induced by N inputs, which also calls for an urgent need to reduce N emissions to ensure the sustainable development of the meadow ecosystems.


Assuntos
Pradaria , Nitrogênio , Solo , Solo/química , Nitrogênio/análise , Nitratos/análise , Ecossistema
12.
Water Environ Res ; 96(6): e11054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828755

RESUMO

The land application of sewage sludge from wastewater treatment plants has been recognized as a major source of microplastic contamination in soil. Nevertheless, the fate and behavior of microplastics in soil remain uncertain, particularly their distribution and transport, which are poorly understood. This study does a bibliometric analysis and visualization of relevant research publications using the CiteSpace software. It explores the limited research available on the topic, highlighting the potential for it to emerge as a research hotspot in the future. Chinese researchers and institutions are paying great attention to this field and are promoting close academic cooperation among international organizations. Current research hot topics mainly involve microplastic pollution caused by the land application of sewage sludge, as well as the detection, environmental fate, and removal of microplastics in soil. The presence of microplastics in sludge, typically ranging from tens of thousands to hundreds of thousands of particles (p)/kg, inevitably leads to their introduction into soil upon land application. In China, the estimated annual accumulation of microplastics in the soil due to sludge use is approximately 1.7 × 1013 p. In European countries, the accumulation ranges from 8.6 to 71 × 1013 p. Sludge application has significantly elevated soil microplastic concentrations, with higher application rates and frequencies resulting in up to several-fold increases. The primary forms of microplastics found in soils treated with sludge are fragments and fibers, primarily in white color. These microplastics consist primarily of components such as polyamide, polyethylene, and polypropylene. The vertical transport behavior of microplastics is influenced by factors such as tillage, wind, rainfall, bioturbation, microplastic characteristics (e.g., fraction, particle size, and shape), and soil physicochemical properties (e.g., organic matter, porosity, electrical conductivity, and pH). Research indicates that microplastics can penetrate up to 90 cm into the soil profile and persist for decades. Microplastics in sewage sludge-amended soils pose potential long-term threats to soil ecosystems and even human health. Future research should focus on expanding the theoretical understanding of microplastic behavior in these soils, enabling the development of comprehensive risk assessments and informed decision-making for sludge management practices. PRACTITIONER POINTS: Microplastics in sewage sludge range from tens to hundreds of thousands per kilogram. Sludge land application contributes significantly to soil microplastic pollution. The main forms of microplastics in sludge-amended soils are fragments and fibers. Microplastics are mainly composed of polyamide, polyethylene, and polypropylene. Microplastics can penetrate up to 90 cm into the soil profile and persist for decades.


Assuntos
Microplásticos , Esgotos , Poluentes do Solo , Solo , Esgotos/química , Microplásticos/análise , Poluentes do Solo/análise , Solo/química , Bibliometria , Monitoramento Ambiental
13.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822559

RESUMO

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Assuntos
Secas , Ecossistema , Ciclo do Nitrogênio , Isótopos de Nitrogênio , Solo , Solo/química , Isótopos de Nitrogênio/análise , China , Nitrogênio/análise , Nitrogênio/metabolismo , Clima Desértico
14.
Water Sci Technol ; 89(10): 2685-2702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822608

RESUMO

This paper evaluates the performance and potential of a full-scale hybrid multi-soil-layering (MSL) system for the treatment of domestic wastewater for landscape irrigation reuse. The system integrates a solar septic tank and sequential vertical flow MSL and horizontal flow MSL components with alternating layers of gravel and soil-based material. It operates at a hydraulic loading rate of 250 L/m2/day. Results show significant removal of pollutants and pathogens, including total suspended solids (TSS) (97%), chemical oxygen demand (COD) (88.57%), total phosphorus (TP) (79.93%), and total nitrogen (TN) (88.49%), along with significant reductions in fecal bacteria indicators (4.21 log for fecal coliforms and 3.90 log for fecal streptococci) and the pathogen Staphylococcus sp. (2.43 log). The principal component analysis confirms the effectiveness of the system in reducing the concentrations of NH4, COD, TP, PO4, fecal coliforms, fecal streptococci, and fecal staphylococci, thus supporting the reliability of the study. This work highlights the promising potential of the hybrid MSL technology for the treatment of domestic wastewater, especially in arid regions such as North Africa and the Middle East, to support efforts to protect the environment and facilitate the reuse of wastewater for landscape irrigation and agriculture.


Assuntos
Águas Residuárias , Marrocos , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Solo/química , Fósforo/análise , Purificação da Água/métodos , Nitrogênio/análise , Cidades , Poluentes Químicos da Água
15.
Glob Chang Biol ; 30(6): e17354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822629

RESUMO

Wildfires directly emit 2.1 Pg carbon (C) to the atmosphere annually. The net effect of wildfires on the C cycle, however, involves many interacting source and sink processes beyond these emissions from combustion. Among those, the role of post-fire enhanced soil organic carbon (SOC) erosion as a C sink mechanism remains essentially unquantified. Wildfires can greatly enhance soil erosion due to the loss of protective vegetation cover and changes to soil structure and wettability. Post-fire SOC erosion acts as a C sink when off-site burial and stabilization of C eroded after a fire, together with the on-site recovery of SOC content, exceed the C losses during its post-fire transport. Here we synthesize published data on post-fire SOC erosion and evaluate its overall potential to act as longer-term C sink. To explore its quantitative importance, we also model its magnitude at continental scale using the 2017 wildfire season in Europe. Our estimations show that the C sink ability of SOC water erosion during the first post-fire year could account for around 13% of the C emissions produced by wildland fires. This indicates that post-fire SOC erosion is a quantitatively important process in the overall C balance of fires and highlights the need for more field data to further validate this initial assessment.


Assuntos
Ciclo do Carbono , Incêndios Florestais , Erosão do Solo , Carbono/análise , Europa (Continente) , Solo/química , Sequestro de Carbono , Incêndios , Modelos Teóricos
16.
Glob Chang Biol ; 30(6): e17349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822665

RESUMO

Priming of soil organic matter (SOM) decomposition by microorganisms is a key phenomenon of global carbon (C) cycling. Soil pH is a main factor defining priming effects (PEs) because it (i) controls microbial community composition and activities, including enzyme activities, (ii) defines SOM stabilization and destabilization mechanisms, and (iii) regulates intensities of many biogeochemical processes. In this critical review, we focus on prerequisites and mechanisms of PE depending on pH and assess the global change consequences for PE. The highest PEs were common in soils with pH between 5.5 and 7.5, whereas low molecular weight organic compounds triggered PE mainly in slightly acidic soils. Positive PEs up to 20 times of SOM decomposition before C input were common at pH around 6.5. Negative PEs were common at soil pH below 4.5 or above 7 reflecting a suboptimal environment for microorganisms and specific SOM stabilization mechanisms at low and high pH. Short-term soil acidification (in rhizosphere, after fertilizer application) affects PE by: mineral-SOM complexation, SOM oxidation by iron reduction, enzymatic depolymerization, and pH-dependent changes in nutrient availability. Biological processes of microbial metabolism shift over the short-term, whereas long-term microbial community adaptations to slow acidification are common. The nitrogen fertilization induced soil acidification and land use intensification strongly decrease pH and thus boost the PE. Concluding, soil pH is one of the strongest but up to now disregarded factors of PE, defining SOM decomposition through short-term metabolic adaptation of microbial groups and long-term shift of microbial communities.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Concentração de Íons de Hidrogênio , Ciclo do Carbono , Carbono/análise , Carbono/metabolismo
17.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822535

RESUMO

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Assuntos
Micorrizas , Nitrogênio , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Nitrogênio/metabolismo , Solo/química , Plantas/metabolismo , Plantas/microbiologia , Ecossistema
18.
BMC Plant Biol ; 24(1): 487, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824521

RESUMO

Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.


Assuntos
Carvão Vegetal , Clorofila , Germinação , Potássio , Estresse Salino , Sódio , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/fisiologia , Germinação/efeitos dos fármacos , Carvão Vegetal/farmacologia , Clorofila/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Solo/química , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Paquistão , Salinidade
19.
PeerJ ; 12: e17424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827279

RESUMO

Background: Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods: In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results: Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the ß-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.


Assuntos
Biodegradação Ambiental , Fenóis , Microbiologia do Solo , Poluentes do Solo , Fenóis/farmacologia , Microbiota/efeitos dos fármacos , Solo/química , Ecossistema , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação
20.
PeerJ ; 12: e17475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827300

RESUMO

Fertilization plays a crucial role in ensuring global food security and ecological balance. This study investigated the impact of substituting innovative biological manure for chemical fertilization on rice (Oryza sativa L) productivity and soil biochemical properties based on a three-year experiment. Our results suggested rice yield and straw weight were increased under manure addition treatment. Specifically, 70% of total nitrogen (N) fertilizer substituted by biological manure derived from straw, animal waste and microbiome, led to a substantial 13.6% increase in rice yield and a remarkable 34.2% boost in straw weight. In comparison to the conventional local farmer practice of applying 165 kg N ha-1, adopting 70% of total N plus biological manure demonstrated superior outcomes, particularly in enhancing yield components and spike morphology. Fertilization treatments led to elevated levels of soil microbial biomass carbon and N. However, a nuanced comparison with local practices indicated that applying biological manure alongside urea resulted in a slight reduction in N content in vegetative and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in N recovery efficiency (NRE), respectively. Prudent N management through the judicious application of partial biological manure fertilizer in rice systems could be imperative for sustaining productivity and soil fertility in southern China.


Assuntos
Fertilizantes , Esterco , Nitrogênio , Oryza , Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Esterco/análise , Fertilizantes/análise , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Solo/química , China , Agricultura/métodos , Microbiologia do Solo , Biomassa , Animais , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...