Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 810
Filtrar
1.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39082789

RESUMO

Skeletal muscles of the head and trunk originate in distinct lineages with divergent regulatory programmes converging on activation of myogenic determination factors. Branchiomeric head and neck muscles share a common origin with cardiac progenitor cells in cardiopharyngeal mesoderm (CPM). The retinoic acid (RA) signalling pathway is required during a defined early time window for normal deployment of cells from posterior CPM to the heart. Here, we show that blocking RA signalling in the early mouse embryo also results in selective loss of the trapezius neck muscle, without affecting other skeletal muscles. RA signalling is required for robust expression of myogenic determination factors in posterior CPM and subsequent expansion of the trapezius primordium. Lineage-specific activation of a dominant-negative RA receptor reveals that trapezius development is not regulated by direct RA signalling to myogenic progenitor cells in CPM, or through neural crest cells, but indirectly through the somitic lineage, closely apposed with posterior CPM in the early embryo. These findings suggest that trapezius development is dependent on precise spatiotemporal interactions between cranial and somitic mesoderm at the head/trunk interface.


Assuntos
Cabeça , Mesoderma , Desenvolvimento Muscular , Músculos do Pescoço , Transdução de Sinais , Tretinoína , Animais , Tretinoína/metabolismo , Camundongos , Músculos do Pescoço/embriologia , Mesoderma/metabolismo , Mesoderma/embriologia , Cabeça/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Somitos/metabolismo , Somitos/embriologia , Receptores do Ácido Retinoico/metabolismo
2.
Cell Stem Cell ; 31(8): 1113-1126.e6, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981471

RESUMO

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated biochemical and biomechanical events. However, none of the current somitogenesis models controls biochemical gradients or biomechanical signals in the culture, limiting their applicability to untangle complex biochemical-biomechanical interactions that drive somitogenesis. Herein, we develop a human somitogenesis model by confining hPSC-derived presomitic mesoderm (PSM) tissues in microfabricated trenches. Exogenous microfluidic morphogen gradients imposed on the PSM tissues cause axial patterning and trigger spontaneous rostral-to-caudal somite formation. A mechanical theory is developed to explain the size dependency between somites and the PSM. The microfluidic somitogenesis model is further exploited to reveal regulatory roles of cellular and tissue biomechanics in somite formation. This study presents a useful microengineered, hPSC-based model for understanding the biochemical and biomechanical events that guide somite formation.


Assuntos
Microfluídica , Modelos Biológicos , Células-Tronco Pluripotentes , Somitos , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Somitos/citologia , Somitos/metabolismo , Microfluídica/métodos , Desenvolvimento Embrionário , Mesoderma/citologia , Diferenciação Celular
3.
Cells Dev ; 179: 203933, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908828

RESUMO

Using a transgenic zebrafish line harboring a heat-inducible dominant-interference pou5f3 gene (en-pou5f3), we reported that this PouV gene is involved in isthmus development at the midbrain-hindbrain boundary (MHB), which patterns the midbrain and cerebellum. Importantly, the functions of pou5f3 reportedly differ before and after the end of gastrulation. In the present study, we examined in detail the effects of en-pou5f3 induction on isthmus development during embryogenesis. When en-pou5f3 was induced around the end of gastrulation (bud stage), the isthmus was abrogated or deformed by the end of somitogenesis (24 hours post-fertilization). At this stage, the expression of MHB markers -- such as pax2a, fgf8a, wnt1, and gbx2 -- was absent in embryos lacking the isthmus structure, whereas it was present, although severely distorted, in embryos with a deformed isthmus. We further found that, after en-pou5f3 induction at late gastrulation, pax2a, fgf8a, and wnt1 were immediately and irreversibly downregulated, whereas the expression of en2a and gbx2 was reduced only weakly and slowly. Induction of en-pou5f3 at early somite stages also immediately downregulated MHB genes, particularly pax2a, but their expression was restored later. Overall, the data suggested that pou5f3 directly upregulates at least pax2a and possibly fgf8a and wnt1, which function in parallel in establishing the MHB, and that the role of pou5f3 dynamically changes around the end of gastrulation. We next examined the transcriptional regulation of pax2a using both in vitro and in vivo reporter analyses; the results showed that two upstream 1.0-kb regions with sequences conserved among vertebrates specifically drove transcription at the MHB. These reporter analyses confirmed that development of the isthmic organizer is regulated by PouV through direct regulation of pax2/pax2a in vertebrate embryos.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição PAX2 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Fator de Transcrição PAX2/metabolismo , Fator de Transcrição PAX2/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Gastrulação/genética , Animais Geneticamente Modificados , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Embrião não Mamífero/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Desenvolvimento Embrionário/genética , Mesencéfalo/metabolismo , Mesencéfalo/embriologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Somitos/metabolismo , Somitos/embriologia , Fatores de Crescimento de Fibroblastos
4.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891790

RESUMO

Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.


Assuntos
Proteínas Hedgehog , Costelas , Coluna Vertebral , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Costelas/metabolismo , Costelas/embriologia , Coluna Vertebral/metabolismo , Coluna Vertebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Mesoderma/embriologia , Codorniz , Somitos/metabolismo , Somitos/embriologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Transporte
5.
Biochem Soc Trans ; 52(3): 987-995, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38716859

RESUMO

Reproducible tissue morphology is a fundamental feature of embryonic development. To ensure such robustness during tissue morphogenesis, inherent noise in biological processes must be buffered. While redundant genes, parallel signaling pathways and intricate network topologies are known to reduce noise, over the last few years, mechanical properties of tissues have been shown to play a vital role. Here, taking the example of somite shape changes, I will discuss how tissues are highly plastic in their ability to change shapes leading to increased precision and reproducibility.


Assuntos
Desenvolvimento Embrionário , Morfogênese , Animais , Desenvolvimento Embrionário/genética , Humanos , Somitos/embriologia , Somitos/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento
6.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727565

RESUMO

Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Somitos , Animais , Desenvolvimento Embrionário/genética , Humanos , Somitos/metabolismo , Somitos/embriologia , Desenvolvimento Muscular/genética , Neurogênese/genética , Neurogênese/fisiologia , Pâncreas/embriologia , Pâncreas/metabolismo , Diferenciação Celular/genética
7.
Curr Top Dev Biol ; 159: 372-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729682

RESUMO

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Somitos , Animais , Padronização Corporal/genética , Somitos/embriologia , Somitos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Mesoderma/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Transdução de Sinais , Relógios Biológicos/genética
8.
Dev Cell ; 59(14): 1860-1875.e5, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38697108

RESUMO

In bony fishes, patterning of the vertebral column, or spine, is guided by a metameric blueprint established in the notochord sheath. Notochord segmentation begins days after somitogenesis concludes and can occur in its absence. However, somite patterning defects lead to imprecise notochord segmentation, suggesting that these processes are linked. Here, we identify that interactions between the notochord and the axial musculature ensure precise spatiotemporal segmentation of the zebrafish spine. We demonstrate that myoseptum-notochord linkages drive notochord segment initiation by locally deforming the notochord extracellular matrix and recruiting focal adhesion machinery at these contact points. Irregular somite patterning alters this mechanical signaling, causing non-sequential and dysmorphic notochord segmentation, leading to altered spine development. Using a model that captures myoseptum-notochord interactions, we find that a fixed spatial interval is critical for driving sequential segment initiation. Thus, mechanical coupling of axial tissues facilitates spatiotemporal spine patterning.


Assuntos
Padronização Corporal , Notocorda , Somitos , Coluna Vertebral , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Notocorda/embriologia , Notocorda/metabolismo , Somitos/embriologia , Somitos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Coluna Vertebral/embriologia , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Matriz Extracelular/metabolismo , Embrião não Mamífero/metabolismo
9.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38752392

RESUMO

The patterning of somites is coordinated by presomitic mesoderm cells through synchronised oscillations of Notch signalling, creating sequential waves of gene expression that propagate from the posterior to the anterior end of the tissue. In a new study, Klepstad and Marcon propose a new theoretical framework that recapitulates the dynamics of mouse somitogenesis observed in vivo and in vitro. To learn more about the story behind the paper, we caught up with first author Julie Klepstad and corresponding author Luciano Marcon, Principal Investigator at the Andalusian Center for Developmental Biology.


Assuntos
Biologia do Desenvolvimento , Animais , Biologia do Desenvolvimento/história , Camundongos , Somitos/embriologia , Somitos/metabolismo , História do Século XXI , Humanos , Padronização Corporal/genética , História do Século XX , Receptores Notch/metabolismo , Receptores Notch/genética
10.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742434

RESUMO

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Assuntos
Receptores Notch , Somitos , Animais , Camundongos , Somitos/embriologia , Somitos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Padronização Corporal/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Relógios Biológicos/fisiologia
11.
Nat Commun ; 15(1): 4550, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811547

RESUMO

The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Cabeça , Anfioxos , Mesoderma , Vertebrados , Animais , Mesoderma/citologia , Mesoderma/embriologia , Anfioxos/embriologia , Anfioxos/genética , Cabeça/embriologia , Vertebrados/embriologia , Vertebrados/genética , Somitos/embriologia , Somitos/citologia , Somitos/metabolismo , Evolução Biológica , Transcriptoma
12.
Dev Cell ; 59(12): 1489-1505.e14, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579718

RESUMO

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Desenvolvimento Embrionário , Somitos/citologia , Somitos/metabolismo
13.
Nat Rev Mol Cell Biol ; 25(7): 517-533, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38418851

RESUMO

Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.


Assuntos
Padronização Corporal , Somitos , Somitos/embriologia , Somitos/metabolismo , Animais , Humanos , Padronização Corporal/genética , Vertebrados/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Embrionário/genética , Mesoderma/metabolismo , Mesoderma/embriologia , Transdução de Sinais , Morfogênese
14.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345319

RESUMO

The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular , Cromatina/metabolismo , Expressão Gênica , Mesoderma/metabolismo , Somitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
15.
J Exp Zool B Mol Dev Evol ; 342(4): 350-367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155515

RESUMO

In anurans, the vertebral column diverges widely from that of other tetrapods; yet the molecular mechanisms underlying its morphogenesis remain largely unexplored. In this study, we investigate the role of the homeologous uncx.L and uncx.S genes in the vertebral column morphogenesis of the allotetraploid frog Xenopus laevis. We initiated our study by cloning the uncx orthologous genes in the anuran Xenopus and determining their spatial expression patterns using in situ hybridization. Additionally, we employed gain-of-function and loss-of-function approaches through dexamethasone-inducible uncx constructs and antisense morpholino oligonucleotides, respectively. Comparative analysis of the messenger RNA sequences of homeologous uncx genes revealed that the uncx.L variant lacks the eh1-like repressor domain. Our spatial expression analysis indicated that in the presomitic mesoderm and somites, the transcripts of uncx.L and uncx.S are located in overlapping domains. Alterations in the function of uncx genes significantly impact the development and differentiation of the sclerotome and myotome, resulting in axial skeleton malformations. Our findings suggest a scenario where the homeologous genes uncx.L and uncx.S exhibit antagonistic functions during somitogenesis. Specifically, uncx.S appears to be crucial for sclerotome development and differentiation, while uncx.L primarily influences myotome development. Postallotetraploidization, the uncx.L gene in X. laevis evolved to lose its eh1-like repressor domain, transforming into a "native dominant negative" variant that potentially competes with uncx.S for the same target genes. Finally, the histological analysis revealed that uncx.S expression is necessary for the correct formation of pedicles and neural arch of the vertebrae, and uncx.L is required for trunk muscle development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Proteínas de Xenopus , Xenopus laevis , Animais , Evolução Biológica , Somitos/metabolismo , Coluna Vertebral/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
16.
Nat Commun ; 14(1): 6497, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838784

RESUMO

Mutations of several genes cause incomplete penetrance and variable expressivity of phenotypes, which are usually attributed to modifier genes or gene-environment interactions. Here, we show stochastic gene expression underlies the variability of somite segmentation defects in embryos mutant for segmentation clock genes her1 or her7. Phenotypic strength is further augmented by low temperature and hypoxia. By performing live imaging of the segmentation clock reporters, we further show that groups of cells with higher oscillation amplitudes successfully form somites while those with lower amplitudes fail to do so. In unfavorable environments, the number of cycles with high amplitude oscillations and the number of successful segmentations proportionally decrease. These results suggest that individual oscillation cycles stochastically fail to pass a threshold amplitude, resulting in segmentation defects in mutants. Our quantitative methodology is adaptable to investigate variable phenotypes of mutant genes in different tissues.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Somitos/metabolismo , Fenótipo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Padronização Corporal/genética
17.
DNA Cell Biol ; 42(10): 580-584, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37462914

RESUMO

Fibroblast growth factor (FGF) signaling is conserved from cnidaria to mammals (Ornitz and Itoh, 2022) and it regulates several critical processes such as differentiation, proliferation, apoptosis, cell migration, and embryonic development. One pivotal process FGF signaling controls is the division of vertebrate paraxial mesoderm into repeated segmented units called somites (i.e., somitogenesis). Somite segmentation occurs periodically and sequentially in a head-to-tail manner, and lays down the plan for compartmentalized development of the vertebrate body axis (Gomez et al., 2008). These somites later give rise to vertebrae, tendons, and skeletal muscle. Somite segments form sequentially from the anterior end of the presomitic mesoderm (PSM). The periodicity of somite segmentation is conferred by the segmentation clock, comprising oscillatory expression of Hairy and enhancer-of-split (Her/Hes) genes in the PSM. The positional information for somite boundaries is instructed by the double phosphorylated extracellular signal-regulated kinase (ppERK) gradient, which is the relevant readout of FGF signaling during somitogenesis (Sawada et al., 2001; Delfini et al., 2005; Simsek and Ozbudak, 2018; Simsek et al., 2023). In this review, we summarize the crosstalk between the segmentation clock and FGF/ppERK gradient and discuss how that leads to periodic somite boundary formation. We also draw attention to outstanding questions regarding the interconnected roles of the segmentation clock and ppERK gradient, and close with suggested future directions of study.


Assuntos
Fatores de Crescimento de Fibroblastos , Somitos , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Somitos/metabolismo , Mesoderma , Transdução de Sinais/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Mamíferos/metabolismo
18.
Cell Stem Cell ; 30(7): 907-908, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37419101

RESUMO

In this issue, Lazaro et al.1 use iPSC-derived presomitic mesoderm cells to analyze the oscillatory expression of somitic clock genes. Comparison of a wide range of species, including mouse, rabbit, cattle, rhinoceros, human, and marmoset, demonstrates an excellent correlation between biochemical reaction speed and the tempo of the clock.


Assuntos
Relógios Biológicos , Mesoderma , Animais , Humanos , Camundongos , Bovinos , Coelhos , Mesoderma/metabolismo , Somitos/metabolismo , Vertebrados/genética , Regulação da Expressão Gênica no Desenvolvimento
19.
PLoS Genet ; 19(6): e1010781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37267426

RESUMO

Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.


Assuntos
Proteínas de Homeodomínio , Somitos , Camundongos , Animais , Proteínas de Homeodomínio/metabolismo , Diferenciação Celular/genética , Somitos/metabolismo , Desenvolvimento Muscular/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo
20.
Dev Dyn ; 252(9): 1162-1179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222488

RESUMO

BACKGROUND: Betaglycan, also known as the TGFß type III receptor (Tgfbr3), is a co-receptor that modulates TGFß family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS: To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS: tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.


Assuntos
Somitos , Peixe-Zebra , Animais , Camundongos , Somitos/metabolismo , Proteoglicanas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Desenvolvimento Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA