Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.145
Filtrar
1.
Hum Genomics ; 18(1): 46, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730490

RESUMO

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


Assuntos
Variações do Número de Cópias de DNA , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/diagnóstico , Índia , Variações do Número de Cópias de DNA/genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Feminino , Masculino , Sondas Moleculares/genética
2.
Plant Genome ; 16(1): e20270, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36411593

RESUMO

Increasing rate of genetic gain for key agronomic traits through genomic selection requires the development of new molecular methods to run genome-wide single-nucleotide polymorphisms (SNPs). The main limitation of current methods is the cost is too high to screen breeding populations. Molecular inversion probes (MIPs) are a targeted genotyping-by-sequencing (GBS) method that could be used for soybean [Glycine max (L.) Merr.] that is both cost-effective, high-throughput, and provides high data quality to screen breeder's germplasm for genomic selection. A 1K MIP SNP set was developed for soybean with uniformly distributed markers across the genome. The SNPs were selected to maximize the number of informative markers in germplasm being tested in soybean breeding programs located in the northern-central and middle-southern regions of the United States. The 1K SNP MIP set was tested on diverse germplasm and a recombinant inbred line (RIL) population. Targeted sequencing with MIPs obtained an 85% enrichment for the targeted SNPs. The MIP genotyping accuracy was 93% overall, whereas homozygous call accuracy was 98% with <10% missing data. The accuracy of MIPs combined with its low per-sample cost makes it a powerful tool to enable genomic selection within soybean breeding programs.


Assuntos
Genoma de Planta , Genômica , Técnicas de Genotipagem , Glycine max , Técnicas de Sonda Molecular , Sondas Moleculares , Seleção Genética , Glycine max/genética , Técnicas de Genotipagem/economia , Técnicas de Genotipagem/métodos , Sondas Moleculares/genética , Técnicas de Sonda Molecular/economia , Heterozigoto , Fluxo de Trabalho , Análise de Dados , Polimorfismo de Nucleotídeo Único/genética , Melhoramento Vegetal , Alinhamento de Sequência , Genótipo , Reprodutibilidade dos Testes , Estados Unidos
4.
Methods Mol Biol ; 2327: 119-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34410643

RESUMO

Outbreak analysis and transmission surveillance of viruses can be performed via whole-genome sequencing after viral isolation. Such techniques have recently been applied to characterize and monitor SARS-CoV-2 , the etiological agent of the COVID-19 pandemic. However, the isolation and culture of SARS-CoV-2 is time consuming and requires biosafety level 3 containment, which is not ideal for many resource-constrained settings. An alternate method, bait capture allows target enrichment and sequencing of the entire SARS-CoV-2 genome eliminating the need for viral culture. This method uses a set of hybridization probes known as "baits" that span the genome and provide sensitive, accurate, and minimal off-target hybridization. Baits can be designed to detect any known virus or bacteria in a wide variety of specimen types, including oral secretions. The bait capture method presented herein allows the whole genome of SARS-CoV-2 in saliva to be sequenced without the need to culture and provides an outline of bait design and bioinformatic analysis to guide a bioinformatician.


Assuntos
Genoma Viral , SARS-CoV-2/genética , Saliva/virologia , Sequenciamento Completo do Genoma/métodos , Biologia Computacional , DNA Complementar/genética , Humanos , Sondas Moleculares/genética , Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , Estreptavidina , Sequenciamento Completo do Genoma/instrumentação
5.
Sci Rep ; 11(1): 6140, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731748

RESUMO

Enzymes are the cornerstone of modern biotechnology. Achromopeptidase (ACP) is a well-known enzyme that hydrolyzes a number of proteins, notably proteins on the surface of Gram-positive bacteria. It is therefore used for sample preparation in nucleic acid tests. However, ACP inhibits DNA amplification which makes its integration difficult. Heat is commonly used to inactivate ACP, but it can be challenging to integrate heating into point-of-care devices. Here, we use recombinase polymerase amplification (RPA) together with ACP, and show that when ACP is immobilized on nitrocellulose paper, it retains its enzymatic function and can easily and rapidly be activated using agitation. The nitrocellulose-bound ACP does, however, not leak into the solution, preventing the need for deactivation through heat or by other means. Nitrocellulose-bound ACP thus opens new possibilities for paper-based Point-of-Care (POC) devices.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Testes Imediatos , Infecções Estafilocócicas , Staphylococcus epidermidis/isolamento & purificação , Humanos , Sondas Moleculares/genética , Serina Endopeptidases/química , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia
6.
ACS Synth Biol ; 10(2): 379-390, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33534552

RESUMO

Generating and characterizing immunoreagents to enable studies of novel emerging viruses is an area where ensembles of synthetic genes, recombinant antibody pipelines, and modular antibody-reporter fusion proteins can respond rapidly. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread through the global population causing widespread morbidity, mortality, and socioeconomic chaos. Using SARS-CoV-2 as our model and starting with a gBlocks encoded nucleocapsid (N) gene, we purified recombinant protein from E. coli, to serve as bait for selecting semisynthetic nanobodies from our Nomad single-pot library. Clones were isolated in days and first fused to Gaussia luciferase to determine EC50 in the tens of nM range, and second fused to the ascorbate peroxidase derivative APEX2 for sensitive detection of SARS-CoV-2 infected cells. To generate inherently fluorescent immunoreagents, we introduce novel periplasmic sdAb fusions made with mNeonGreen and mScarlet-I, which were produced at milligram amounts. The fluorescent fusion proteins enabled concise visualization of SARS-CoV-2 N in the cytoplasm but not in the nucleus 24 h post infection, akin to the distribution of SARS-CoV N, thereby validating these useful imaging tools. SdAb reactivity appeared specific to SARS-CoV-2 with very much weaker binding to SARS-CoV, and no noticeable cross-reactivity to a panel of overexpressed human codon optimized N proteins from other CoV. High periplasmic expression levels and in silico immortalization of the nanobody constructs guarantees a cost-effective and reliable source of SARS-CoV-2 immunoreagents. Our proof-of-principle study should be applicable to known and newly emerging CoV to broaden the tools available for their analysis and help safeguard human health in a more proactive than reactive manner.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Sondas Moleculares/genética , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Anticorpos Antivirais/genética , Especificidade de Anticorpos/genética , COVID-19/imunologia , Doenças Transmissíveis Emergentes/virologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Escherichia coli/genética , Imunofluorescência , Genes Sintéticos , Genes Virais , Células HEK293 , Humanos , Sondas Moleculares/imunologia , Pandemias/prevenção & controle , Biblioteca de Peptídeos , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , SARS-CoV-2/patogenicidade , Anticorpos de Domínio Único/genética , Biologia Sintética
7.
J Immunol Methods ; 492: 113001, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621564

RESUMO

Complement C1q is a multifunctional protein able to sense pathogens and immune molecules such as immunoglobulins and pentraxins, and to trigger the classical complement pathway through activation of its two associated proteases, C1r and C1s. C1q is a multimeric protein composed of three homologous yet distinct polypeptide chains A, B, and C, each composed of an N-terminal collagen-like sequence and a C-terminal globular gC1q module, that assemble into six heterotrimeric (A-B-C) subunits. This hexameric structure exhibits the characteristic shape of a bouquet of flowers, comprising six collagen-like triple helices, each terminating in a trimeric C-terminal globular head. We have produced previously functional recombinant full-length C1q in stably transfected HEK 293-F cells, with a FLAG tag inserted at the C-terminal end of C1qC chain. We report here the generation of additional recombinant C1q proteins, with a FLAG tag fused to the C-terminus of C1qA or C1qB chains, or to the N-terminus of the C1qC chain. Two other variants harboring a Myc or a 6-His tag at the C-terminal end of C1qC were also produced. We show that all C1q variants, except for the His-tagged protein, can be produced at comparable yields and are able to bind with similar affinities to either IgM, a ligand of the globular regions, or to the C1r2-C1s2 tetramer, and to trigger IgM-mediated serum complement activation. These new recombinant C1q variants provide additional tools to investigate the multiple functions of C1q.


Assuntos
Complemento C1q/isolamento & purificação , Sondas Moleculares/genética , Sequência de Aminoácidos , Ativação do Complemento , Complemento C1q/genética , Complemento C1q/metabolismo , Células HEK293 , Humanos , Imunoensaio/métodos , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transfecção
8.
Nat Chem Biol ; 17(5): 531-539, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33526893

RESUMO

Splitting bioactive proteins into conditionally reconstituting fragments is a powerful strategy for building tools to study and control biological systems. However, split proteins often exhibit a high propensity to reconstitute, even without the conditional trigger, limiting their utility. Current approaches for tuning reconstitution propensity are laborious, context-specific or often ineffective. Here, we report a computational design strategy grounded in fundamental protein biophysics to guide experimental evaluation of a sparse set of mutants to identify an optimal functional window. We hypothesized that testing a limited set of mutants would direct subsequent mutagenesis efforts by predicting desirable mutant combinations from a vast mutational landscape. This strategy varies the degree of interfacial destabilization while preserving stability and catalytic activity. We validate our method by solving two distinct split protein design challenges, generating both design and mechanistic insights. This new technology will streamline the generation and use of split protein systems for diverse applications.


Assuntos
Sondas Moleculares/química , Engenharia de Proteínas/métodos , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Genes Reporter , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Sondas Moleculares/genética , Sondas Moleculares/metabolismo , Mutação , Multimerização Proteica , Proteólise , Sirolimo/metabolismo , Sirolimo/farmacologia , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
9.
Nat Commun ; 12(1): 717, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514717

RESUMO

The Neisseria meningitidis protein FrpC contains a self-processing module (SPM) undergoing autoproteolysis via an aspartic anhydride. Herein, we establish NeissLock, using a binding protein genetically fused to SPM. Upon calcium triggering of SPM, the anhydride at the C-terminus of the binding protein allows nucleophilic attack by its target protein, ligating the complex. We establish a computational tool to search the Protein Data Bank, assessing proximity of amines to C-termini. We optimize NeissLock using the Ornithine Decarboxylase/Antizyme complex. Various sites on the target (α-amine or ε-amines) react with the anhydride, but reaction is blocked if the partner does not dock. Ligation is efficient at pH 7.0, with half-time less than 2 min. We arm Transforming Growth Factor-α with SPM, enabling specific covalent coupling to Epidermal Growth Factor Receptor at the cell-surface. NeissLock harnesses distinctive protein chemistry for high-yield covalent targeting of endogenous proteins, advancing the possibilities for molecular engineering.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Sondas Moleculares/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem/métodos , Anidridos/metabolismo , Animais , Imagem Molecular/métodos , Sondas Moleculares/química , Sondas Moleculares/genética , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
10.
J Appl Microbiol ; 130(2): 493-503, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32738017

RESUMO

AIMS: Diagnosis of Staphylococcus aureus is important in various diseases from hospital-acquired infections to foodborne diseases. This work reports two new luminescent affiprobes for specific detection of S. aureus. METHODS AND RESULTS: To develop advanced luminescent affiprobes, enhanced green fluorescent protein (EGFP) was flanked by single and double repeats of ZpA963 affibody using molecular biology studies. The recombinant proteins including fluorescent monomeric affibody (fA1 ) and fluorescent dimeric affibody (fA2 ) were expressed in the bacterial expression system, purified and used to identify the S. aureus. Fluorescence microscope and flow cytometry results demonstrated that the treated samples with fA1 and fA2 had relatively high fluorescent mean intensities in comparison to the untreated S. aureus cells. Moreover, it was revealed that 'fA2 ' affiprobe had lower dissociation constant value (about 25-fold) and was more effective for detection of S. aureus than the 'fA1 ' affiprobe. In addition, the binding of the affiprobes for some other pathogenic bacteria i.e. Escherichia coli, Bacillus cereus, Enterococcus faecalis and Staphylococcus saprophyticus was examined. Expectedly, no cross-reaction was observed for binding the constructed affiprobes to these bacteria, eliminating possibilities for false positive results. CONCLUSIONS: The results show that 'fA1 ' affiprobe and 'fA2 ' affiprobe are two new efficient luminescent affiprobes for detecting S. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY: We developed a new approach for detection of Staphylococcus aureus in a simple one-step process and in low concentrations of probes. In the best of our knowledge, this is the first study to direct detection of bacterial cells by affiprobes and may be used to develop new diagnostic kits.


Assuntos
Técnicas Bacteriológicas/métodos , Citometria de Fluxo/métodos , Sondas Moleculares/metabolismo , Staphylococcus aureus/isolamento & purificação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas de Fluorescência Verde/metabolismo , Humanos , Luminescência , Sondas Moleculares/genética , Sondas Moleculares/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/citologia , Staphylococcus aureus/metabolismo
11.
Front Immunol ; 11: 583013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324401

RESUMO

The killer-cell immunoglobulin-like receptor (KIR) proteins evolve to fight viruses and mediate the body's reaction to pregnancy. These roles provide selection pressure for variation at both the structural/haplotype and base/allele levels. At the same time, the genes have evolved relatively recently by tandem duplication and therefore exhibit very high sequence similarity over thousands of bases. These variation-homology patterns make it impossible to interpret KIR haplotypes from abundant short-read genome sequencing data at population scale using existing methods. Here, we developed an efficient computational approach for in silico KIR probe interpretation (KPI) to accurately interpret individual's KIR genes and haplotype-pairs from KIR sequencing reads. We designed synthetic 25-base sequence probes by analyzing previously reported haplotype sequences, and we developed a bioinformatics pipeline to interpret the probes in the context of 16 KIR genes and 16 haplotype structures. We demonstrated its accuracy on a synthetic data set as well as a real whole genome sequences from 748 individuals from The Genome of the Netherlands (GoNL). The GoNL predictions were compared with predictions from SNP-based predictions. Our results show 100% accuracy rate for the synthetic tests and a 99.6% family-consistency rate in the GoNL tests. Agreement with the SNP-based calls on KIR genes ranges from 72%-100% with a mean of 92%; most differences occur in genes KIR2DS2, KIR2DL2, KIR2DS3, and KIR2DL5 where KPI predicts presence and the SNP-based interpretation predicts absence. Overall, the evidence suggests that KPI's accuracy is 97% or greater for both KIR gene and haplotype-pair predictions, and the presence/absence genotyping leads to ambiguous haplotype-pair predictions with 16 reference KIR haplotype structures. KPI is free, open, and easily executable as a Nextflow workflow supported by a Docker environment at https://github.com/droeatumn/kpi.


Assuntos
Genótipo , Células Matadoras Naturais/fisiologia , Sondas Moleculares/genética , Algoritmos , Alelos , Mapeamento Cromossômico , Evolução Molecular , Haplótipos , Humanos , Países Baixos , Receptores KIR/genética , Sequenciamento Completo do Genoma
12.
STAR Protoc ; 1(3): 100217, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377110

RESUMO

Photoconversion enables real-time labeling of protein sub-populations inside living cells, which can then be tracked with submicrometer resolution. Here, we detail the protocol of comparing protein dynamics inside membraneless organelles in live HEK293T cells using a CRISPR-Cas9 PABPC1-Dendra2 marker of stress granules. Measuring internal dynamics of membraneless organelles provides insight into their functional state, physical properties, and composition. Photoconversion has the advantage over other imaging techniques in that it is less phototoxic and allows for dual color tracking of proteins. For complete details on the use and execution of this protocol, please refer to Amen and Kaganovich (2020).


Assuntos
Técnicas de Sonda Molecular/instrumentação , Imagem Óptica/métodos , Grânulos de Estresse/metabolismo , Benzotiazóis/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/fisiologia , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Sondas Moleculares/genética , Organelas/metabolismo , Proteínas/metabolismo , Grânulos de Estresse/fisiologia
13.
PLoS One ; 15(9): e0238467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877464

RESUMO

Resolving the genetic architecture of painful neuropathy will lead to better disease management strategies. We aimed to develop a reliable method to re-sequence multiple genes in a large cohort of painful neuropathy patients at low cost. In this study, we compared sensitivity, specificity, targeting efficiency, performance and cost effectiveness of Molecular Inversion Probes-Next generation sequencing (MIPs-NGS) and TruSeq® Custom Amplicon-Next generation sequencing (TSCA-NGS). Capture probes were designed to target nine sodium channel genes (SCN3A, SCN8A-SCN11A, and SCN1B-SCN4B). One hundred sixty-six patients with diabetic and idiopathic neuropathy were tested by both methods, 70 patients were validated by Sanger sequencing. Sensitivity, specificity and performance of both techniques were comparable, and in agreement with Sanger sequencing. The average targeted regions coverage for MIPs-NGS was 97.3% versus 93.9% for TSCA-NGS. MIPs-NGS has a more versatile assay design and is more flexible than TSCA-NGS. The cost of MIPs-NGS is >5 times cheaper than TSCA-NGS when 500 or more samples are tested. In conclusion, MIPs-NGS is a reliable, flexible, and relatively inexpensive method to detect genetic variations in a large cohort of patients. In our centers, MIPs-NGS is currently implemented as a routine diagnostic tool for screening of sodium channel genes in painful neuropathy patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sondas Moleculares/genética , Análise de Sequência de DNA/métodos , Inversão Cromossômica/genética , Sondas de DNA/genética , Testes Genéticos/métodos , Humanos , Mutação , Neuralgia/genética , Sensibilidade e Especificidade
14.
PLoS One ; 15(9): e0229475, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915783

RESUMO

The importance of glial cells in the modulation of neuronal processes is now generally accepted. In particular, enormous progress in our understanding of astrocytes and microglia physiology in the central nervous system (CNS) has been made in recent years, due to the development of genetic and molecular toolkits. However, the roles of satellite glial cells (SGCs) and macrophages-the peripheral counterparts of astrocytes and microglia-remain poorly studied despite their involvement in debilitating conditions, such as pain. Here, we characterized in dorsal root ganglia (DRGs), different genetically-modified mouse lines previously used for studying astrocytes and microglia, with the goal to implement them for investigating DRG SGC and macrophage functions. Although SGCs and astrocytes share some molecular properties, most tested transgenic lines were found to not be suitable for studying selectively a large number of SGCs within DRGs. Nevertheless, we identified and validated two mouse lines: (i) a CreERT2 recombinase-based mouse line allowing transgene expression almost exclusively in SGCs and in the vast majority of SGCs, and (ii) a GFP-expressing line allowing the selective visualization of macrophages. In conclusion, among the tools available for exploring astrocyte functions, a few can be used for studying selectively a great proportion of SGCs. Thus, efforts remain to be made to characterize other available mouse lines as well as to develop, rigorously characterize and validate new molecular tools to investigate the roles of DRG SGCs, but also macrophages, in health and disease.


Assuntos
Gânglios Espinais/fisiologia , Macrófagos/fisiologia , Modelos Animais , Células Satélites Perineuronais/fisiologia , Animais , Astrócitos , Técnicas Biossensoriais/métodos , Células Cultivadas , Gânglios Espinais/citologia , Imuno-Histoquímica , Microscopia Intravital/métodos , Camundongos , Camundongos Transgênicos , Sondas Moleculares/química , Sondas Moleculares/genética , Imagem Óptica , Fótons , Cultura Primária de Células
15.
ACS Synth Biol ; 9(9): 2267-2273, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32810400

RESUMO

A streamlined approach toward the rapid fabrication of streptavidin-biotin-based protein microarrays was investigated. First, using our engineered versatile plasmid (pBADcM-tBirA) and an optimal coexpression strategy for biotin ligase and biotin acceptor peptide (BAP) chimeric recombinant protein, an autogeneration system for biotinylated probes was developed. This system permitted an advantageous biotinylation of BAP chimeric recombinant proteins, providing a strategy for the high-throughput synthesis of biotinylated probes. Then, to bypass the conventional rate-limiting steps, we employed an on-chip purification process to immobilize the biotinylated probes with high-throughput recombinant lysates. The integration of the autogeneration of probes and on-chip purification not only contributed to the effective and reliable fabrication of the protein microarray, but also enabled simplification of the process and an automated throughput format. This labor- and cost-effective approach may facilitate the use of protein microarrays for diagnosis, pharmacology, proteomics, and other laboratory initiatives.


Assuntos
Sondas Moleculares/metabolismo , Análise Serial de Proteínas/métodos , Biotina/química , Biotina/metabolismo , Biotinilação , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Medições Luminescentes , Sondas Moleculares/genética , Peptídeos/genética , Peptídeos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Análise Serial de Proteínas/instrumentação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo
16.
Mol Vis ; 26: 378-391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32476818

RESUMO

Purpose: Family-based genetic linkage analysis and genome-wide association studies (GWASs) have identified many genomic loci associated with primary open-angle glaucoma (POAG). Several causative genes of POAG have been intensively analyzed by sequencing in different populations. However, few investigations have been conducted on the identification of variants of coding region in the genes identified in GWASs. Therefore, further research is needed to investigate whether they harbor pathogenically relevant rare coding variants and account for the observed association. Methods: To identify the potentially disease-relevant variants (PDVs) in POAG-associated genes in Chinese patients, we applied molecular inversion probe (MIP)-based panel sequencing to analyze 26 candidate genes in 235 patients with POAG and 241 control subjects. Results: The analysis identified 82 PDVs in 66 individuals across 235 patients with POAG. By comparison, only 18 PDVs in 19 control subjects were found, indicating an enrichment of PDVs in the POAG cohort (28.1% versus 7.9%, p = 8.629e-09). Among 26 candidate genes, the prevalence rate of PDVs in five genes showed a statistically significant difference between patients and controls (33 out of 235 versus 1 out of 241, p = 4.533e-10), including ATXN2 (p = 0.0033), TXNRD2 (p = 0.0190), MYOC (p = 0.0140), FOXC1 (p = 0.0140), and CDKN2B (p = 0.0287). Furthermore, two sisters harboring a stop-loss mutation EFEMP1 p.Ter494Glu were found in the POAG cohort, and further analysis of the family strongly suggested that EFEMP1 p.Ter494Glu was a potentially disease-causing mutation for POAG. A statistically significant difference in age at diagnosis between patients with PDVs and those without PDVs was found, implying that some of the identified PDVs may have a role in promoting the early onset of POAG disease. Conclusions: The results suggest that some of the associations identified in POAG risk loci can be ascribed to rare coding variants with likely functional effects that modify POAG risk.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Glaucoma de Ângulo Aberto/genética , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idoso , Povo Asiático , Ataxina-2/genética , Estudos de Coortes , Inibidor de Quinase Dependente de Ciclina p15/genética , Proteínas do Citoesqueleto/genética , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Feminino , Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença , Glaucoma de Ângulo Aberto/patologia , Glicoproteínas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Sondas Moleculares/genética , Mutação , Domínios Proteicos , Fatores de Risco , Tiorredoxina Redutase 2/genética
17.
Sci Rep ; 10(1): 5894, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246002

RESUMO

Proteases have been implicated in the development of many pathological conditions, including cancer. Detection of protease activity in diseased tissues could therefore be useful for diagnosis, prognosis, and the development of novel therapeutic approaches. Due to tight post-translational regulation, determination of the expression level of proteases alone may not be indicative of protease activities, and new methods for measuring protease activity in biological samples such as tumor biopsies are needed. Here we report a novel zymography-based technique, called the IHZTM assay, for the detection of specific protease activities in situ. The IHZ assay involves imaging the binding of a protease-activated monoclonal antibody prodrug, called a Probody® therapeutic, to tissue. Probody therapeutics are fully recombinant, masked antibodies that can only bind target antigen after removal of the mask by a selected protease. A fluorescently labeled Probody molecule is incubated with a biological tissue, thereby enabling its activation by tissue endogenous proteases. Protease activity is measured by imaging the activated Probody molecule binding to antigen present in the sample. The method was evaluated in xenograft tumor samples using protease specific substrates and inhibitors, and the measurements correlated with efficacy of the respective Probody therapeutics. Using this technique, a diverse profile of MMP and serine protease activities was characterized in breast cancer patient tumor samples. The IHZ assay represents a new type of in situ zymography technique that can be used for the screening of disease-associated proteases in patient samples from multiple pathological conditions.


Assuntos
Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Neoplasias/diagnóstico , Peptídeo Hidrolases/análise , Pró-Fármacos/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microscopia de Fluorescência , Sondas Moleculares/genética , Sondas Moleculares/farmacologia , Neoplasias/patologia , Peptídeo Hidrolases/metabolismo , Pró-Fármacos/farmacologia , Processamento de Proteína Pós-Traducional , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
FEBS Open Bio ; 10(6): 1056-1064, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32237061

RESUMO

The recombinant N-terminal domain of BC2L-C lectin (rBC2LCN) is useful for detecting not only human pluripotent stem cells but also some cancers. However, the cancer types and stages that can be detected by rBC2LCN remain unclear. In this study, we identified the human breast carcinoma subtypes and stages that can be detected by rBC2LCN. Compared with rBC2LCN-negative breast carcinoma cell lines, the rBC2LCN-positive cells expressed higher levels of human epidermal growth factor receptor 2 (HER2) and epithelial marker genes. Importantly, rBC2LCN histochemical staining of human breast carcinoma tissues demonstrated the utility of rBC2LCN in detecting breast carcinoma types that express HER2 and have not spread much in the early phase of growth. We conclude that rBC2LCN may have potential as a detection probe and a drug delivery vehicle to identify and treat early-stage HER2-positive breast carcinoma.


Assuntos
Proteínas de Bactérias/química , Neoplasias da Mama/diagnóstico , Lectinas/química , Sondas Moleculares/química , Antineoplásicos/administração & dosagem , Proteínas de Bactérias/genética , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Burkholderia cenocepacia , Portadores de Fármacos/química , Estudos de Viabilidade , Feminino , Humanos , Lectinas/genética , Células MCF-7 , Sondas Moleculares/genética , Estadiamento de Neoplasias , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Análise Serial de Tecidos/métodos
19.
Nano Lett ; 20(2): 1117-1123, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32003222

RESUMO

Endosomal escape is a key step for intracellular drug delivery of nucleic acids, but reliable and sensitive methods for its quantitation remain an unmet need. In order to rationally optimize the mRNA transfection efficiency of a library of polymeric materials, we designed a deactivated Renilla luciferase-derived molecular probe whose activity can be restored only in the cytosol. This probe can be coencapsulated with mRNA in the same delivery vehicle, thereby accurately measuring its endosomal escape efficiency. We examined a library of poly(amine-co-ester) (PACE) polymers with different end groups using this probe and observed a strong correlation between endosomal escape and transfection efficiency (R2 = 0.9334). In addition, we found that mRNA encapsulation efficiency and endosomal escape, but not uptake, were determinant factors for transfection efficiency. The polymers with high endosomal escape/transfection efficiency in vitro also showed good transfection efficiency in vivo, and mRNA expression was primarily observed in spleens after intravenous delivery. Together, our study suggests that the luciferase probe can be used as an effective tool to quantitate endosomal escape, which is essential for rational optimization of intracellular drug delivery systems.


Assuntos
Técnicas de Transferência de Genes , Luciferases de Renilla/genética , Sondas Moleculares/genética , RNA Mensageiro/genética , Citosol/química , Citosol/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Luciferases de Renilla/química , Sondas Moleculares/química , Nanopartículas/química , Transfecção/métodos
20.
Methods ; 183: 76-83, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31991194

RESUMO

RNA regulation is influenced by the dynamic changes in conformational accessibility on the transcript. Here we discuss the initial validation of a cell-free antisense probing method for structured RNAs, using the Tetrahymena group I intron as a control target. We observe changes in signal that qualitatively match prior traditional DMS footprinting experiments. Importantly, we have shown that application of this technique can elucidate new RNA information given its sensitivity for detecting rare intermediates that are not as readily observed by single-hit kinetics chemical probing techniques. Observing changes in RNA accessibility has broad applications in determining the effect that regulatory elements have on regional structures. We speculate that this method could be useful in quickly observing those interactions, along with other phenomena that influence RNA accessibility including RNA-RNA interactions and small molecules.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Técnicas de Sonda Molecular , RNA de Protozoário/química , RNA Viral/química , Íntrons/genética , Sondas Moleculares/química , Sondas Moleculares/genética , Conformação de Ácido Nucleico , Plasmídeos/genética , Biossíntese de Proteínas , RNA Antissenso/química , RNA Antissenso/genética , RNA de Protozoário/genética , RNA Viral/genética , RNA Viral/metabolismo , Tetrahymena/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...