Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Pharm Des ; 28(42): 3456-3468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415092

RESUMO

BACKGROUND: The mechanism of Heat Shock Protein 90 (HSP90) in Ulcerative Colitis (UC) has been studied, and mitogenic-activated protein kinases (MAPK) also contribute to the pathogenesis of UC. However, the effect of the HSP90/MAPK pathway in UC is still unclear. Therefore, the mainstay of this research is to explore the mechanism of action of this pathway in UC. Compound sophorae decoction (CSD), as a Chinese herbal decoction, can synergistically affect the above process. OBJECTIVE: This study aimed to uncover the synergistic effects of HSP90 inhibitors regulating the MAPK pathway for treating DSS-induced colitis in mice and the synergistic effects of CSD. METHODS: This experiment used oral administration of standard diets containing 3% dextran sodium sulfate (DSS) to establish an experimental colitis model in mice. The model was treated with HSP90 inhibitor, CSD, or dexamethasone. Mouse feces, mobility, body weight, colon length, and colon histopathology scores were recorded daily to assess the degree of colitis inflammation. Expression levels of HSP90 and MAPK pathway-related genes and proteins were evaluated by Western blot and qPCR. The evaluation of intestinal mucosal permeability was measured by enzyme-linked immunosorbent assay (ELISA), which could detect the protein level of D-Amino Acid Oxidase (DAO) and D-lactic acid (D-LA). The same went for downstream molecules AFT-2, p53, and apoptosis-related proteins BAX, BCL-2, Caspase3, and survivin in the MAPK pathway. Immunohistochemical measured p-38, p-JNK, and p-ERK expressions. JAM-A and claudin-1 connexin were tested by immunofluorescence staining. The TUNEL method was for measuring the apoptosis rate of colonic epithelial cells. CBA kit determined the level of inflammatory factors of colons. RESULTS: HSP90 inhibitor can improve the degree of pathological damage in the colon of mice treated with DSS, increase the mice's weight and the length of the colon, and significantly reduce the disease activity index (DAI) score. Intraperitoneal injection of HSP90 inhibitor can reduce the expression of MAPK pathway markers P38, JNK, ERK, and their phosphorylation and decrease the content of AFT-2 and p53, which is downstream of the MAPK pathway. In addition, treatment of the HSP90 inhibitor up-regulated the expression of anti-apoptotic proteins BCL-2 and survivin, as well as down-regulated apoptotic protein caspase3, BAX in the colon of mice with colitis. Lower levels of inflammatory factors such as IL-6, MCP-1, IFN-γ, TNF, IL-12p70, and increased IL-10 were observed after HSP90 inhibitor therapy. Furthermore, the combination treatment of CSD can enhance the effect of the single HSP90 inhibitor treatment and play a synergistic effect. CONCLUSION: These data suggest that an HSP90 inhibitor is available to treat UC by inhibiting the MAPK signaling pathway. This axis can restore the intestinal mucosa barrier's function by reducing intestinal mucosa's permeability and inhibiting apoptosis of intestinal epithelial cells. The specific mechanism is that HSP90 inhibitor can reduce the pathological damage and inflammation levels of colitis mice, and reduce the apoptosis rate of colonic epithelial cells and the mucosal permeability, thereby restoring the mucosal barrier function. During this process, CSD works synergistically to improve the therapeutic effect of the HSP90 inhibitor.


Assuntos
Colite Ulcerativa , Colite , Sophora , Animais , Camundongos , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Proteína X Associada a bcl-2/uso terapêutico , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sophora/metabolismo , Survivina/metabolismo , Survivina/farmacologia , Survivina/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Proteína Supressora de Tumor p53/uso terapêutico , Proteínas de Choque Térmico HSP90/metabolismo
2.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682783

RESUMO

Sophoraflavanone G (SG), isolated from Sophora flavescens, has anti-inflammatory and anti-tumor bioactive properties. We previously showed that SG promotes apoptosis in human breast cancer cells and leukemia cells and reduces the inflammatory response in lipopolysaccharide-stimulated macrophages. We investigated whether SG attenuates airway hyper-responsiveness (AHR) and airway inflammation in asthmatic mice. We also assessed its effects on the anti-inflammatory response in human tracheal epithelial cells. Female BALB/c mice were sensitized with ovalbumin, and asthmatic mice were treated with SG by intraperitoneal injection. We also exposed human bronchial epithelial BEAS-2B cells to different concentrations of SG to evaluate its effects on inflammatory cytokine levels. SG treatment significantly reduced AHR, eosinophil infiltration, goblet cell hyperplasia, and airway inflammation in the lungs of asthmatic mice. In the lungs of ovalbumin-sensitized mice, SG significantly promoted superoxide dismutase and glutathione expression and attenuated malondialdehyde levels. SG also suppressed levels of Th2 cytokines and chemokines in lung and bronchoalveolar lavage samples. In addition, we confirmed that SG decreased pro-inflammatory cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B cells. Taken together, our data demonstrate that SG shows potential as an immunomodulator that can improve asthma symptoms by decreasing airway-inflammation-related oxidative stress.


Assuntos
Asma , Hipersensibilidade Respiratória , Sophora , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Eosinófilos/metabolismo , Feminino , Flavanonas , Inflamação/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Estresse Oxidativo , Hipersensibilidade Respiratória/metabolismo , Sophora/metabolismo
3.
Plant Sci ; 322: 111347, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35700842

RESUMO

Sophora japonica is a leguminous tree species native to China. To explore the nitrogen (N) source preference and its impact on stress tolerance, a hydroponic experiment was designed in which S. japonica seedlings were supplied with sole ammonium (NH4+) or sole nitrate (NO3-) nutrition under 75 mM NaCl-induced salt stress. The growth and N metabolism performance were investigated. In the absence of NaCl, plants fed NH4+ showed better root growth than those fed NO3-, but there was no difference in aerial part growth. Salinity inhibited the root growth of NH4+-fed plants and the shoot growth of NO3--fed plants, while the total N accumulation was suppressed under either N form. Specifically, in NH4+-fed plants, salinity significantly increased the net photosynthetic rate, root NH4+ content and root antioxidant enzyme activities. Higher nitrate reductase (NR) activities but lower glutamate synthetase (GS) activities were observed in both leaves and roots. Leaf AMT1.1 and AMT2.1a in NH4+-fed plants positively reacted to salt stress, whereas the expression of four AMTs was reduced or remained unchanged in roots. In contrast, salinity suppressed the net photosynthetic rate, antioxidant enzyme activities, and GS activity in the leaves of NO3--fed plants. Upregulation of NPF1.2, NPF2.11, NPF4.6 and NPF7.3, as well as unaltered NR activity, caused higher NO3- content in the leaves. Moreover, NR and glutamate synthase (GOGAT) activities together with the transcription of most NRTs were promoted by salinity in the roots of NO3--fed plants. Additionally, compared to those treated with NH4+, in response to salinity, NO3--treated seedlings showed more intensive repression of the net photosynthetic rate, chlorophyll content, and both shoot and root growth. Overall, these results suggest that S. japonica plants grew better in NH4+ medium than in NO3- medium, and the different N metabolism responses improved S. japonica tolerance to salinity with NH4+ application. This study provides new insights for understanding the mechanism of salt tolerance, breeding resistant varieties of S. japonica, and developing scientific fertilization management strategies during the seedling cultivation period.


Assuntos
Compostos de Amônio , Sophora , Compostos de Amônio/metabolismo , Antioxidantes/metabolismo , Glutamato-Amônia Ligase/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Salinidade , Plântula , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Sophora/metabolismo
4.
Sheng Wu Gong Cheng Xue Bao ; 38(4): 1565-1575, 2022 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-35470627

RESUMO

8-prenylnaringenin (8-PN) is a potent estrogen with high medicinal values. It also serves as an important precursor for many prenylated flavonoids. Microbial synthesis of 8-PN is mainly hindered by the low catalytic activity of prenyltransferases (PTS) and insufficient supply of precursors. In this work, a SfN8DT-1 from Sophora flavescens was used to improve the efficiency of (2S)-naringenin prenylation. The predicted structure of SfN8DT-1 showed that its main body is comprised of 9 α-helices and 8 loops, along with a long side chain formed by nearly 120 amino acids. SfN8DT-1 mutants with different side-chain truncated were tested in Saccharomyces cerevisiae. A mutant expressing the truncated enzyme at K62 site, designated as SfND8T-1-t62, produced the highest 8-PN titer. Molecular docking of SfN8DT-1-t62 with (2S)-naringenin and dimethylallyl diphosphate (DMAPP) showed that K185 was a potentially crucial residue. Alanine scanning within a range of 0.5 nm around these two substrates showed that the mutant K185A may decrease its affinity to substrates, which also indicated K185 was a potentially critical residue. Besides, the mutant K185W enhanced the affinity to ligands implied by the simulated saturation mutation, while the saturated mutation of K185 showed a great decrease in 8-PN production, indicating K185 is vital for the activity of SfN8DT-1. Subsequently, overexpressing the key genes of Mevalonate (MVA) pathway further improved the titer of 8-PN to 31.31 mg/L, which indicated that DMAPP supply is also a limiting factor for 8-PN synthesis. Finally, 44.92 mg/L of 8-PN was produced in a 5 L bioreactor after 120 h, which is the highest 8-PN titer reported to date.


Assuntos
Dimetilaliltranstransferase , Flavanonas/biossíntese , Sophora , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Flavonoides/metabolismo , Simulação de Acoplamento Molecular , Prenilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sophora/genética , Sophora/metabolismo
5.
BMC Plant Biol ; 22(1): 144, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337273

RESUMO

Sophora davidii is an important plant resource in the karst region of Southwest China, but S. davidii plant-height mutants are rarely reported. Therefore, we performed phenotypic, anatomic structural, transcriptomic and metabolomic analyses to study the mechanisms responsible for S. davidii plant-height mutants. Phenotypic and anatomical observations showed that compared to the wild type, the dwarf mutant displayed a significant decrease in plant height, while the tall mutant displayed a significant increase in plant height. The dwarf mutant cells were smaller and more densely arranged, while those of the wild type and the tall mutant were larger and loosely arranged. Transcriptomic analysis revealed that differentially expressed genes (DEGs) involved in cell wall biosynthesis, expansion, phytohormone biosynthesis, signal transduction pathways, flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched in the S. davidii plant-height mutants. Metabolomic analysis revealed 57 significantly differential metabolites screened from both the dwarf and tall mutants. A total of 8 significantly different flavonoid compounds were annotated to LIPID MAPS, and three metabolites (chlorogenic acid, kaempferol and scopoletin) were involved in phenylpropanoid biosynthesis and flavonoid biosynthesis. These results shed light on the molecular mechanisms of plant height in S. davidii mutants and provide insight for further molecular breeding programs.


Assuntos
Sophora , Transcriptoma , Perfilação da Expressão Gênica , Metabolômica , Reguladores de Crescimento de Plantas/metabolismo , Sophora/genética , Sophora/metabolismo
6.
J Proteomics ; 253: 104457, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-34933133

RESUMO

Salt stress is the major abiotic stress worldwide, adversely affecting crop yield and quality. Utilizing salt tolerance genes for the genetic breeding of crops is one of the most effective measures to withstand salinization. Sophora alopecuroides is a well-known saline-alkaline and drought-tolerant medicinal plant. Understanding the underlying molecular mechanism for Sophora alopecuroides salt tolerance is crucial to identifying the salt-tolerant genes. In this study, we performed tandem mass tag (TMT) based proteomic profiling of S. alopecuroides leaves under 150 mM NaCl induced salt stress condition for 3 d and 7 d. Data are available on ProteomeXchange (PXD027627). Furthermore, the proteomic findings were validated through parallel reaction monitoring (PRM). We observed that the expression levels of several transporter proteins related to the secondary messenger signaling pathway were altered under salt stress conditions induced for 3 d. However, the expression of the certain transferase, oxidoreductase, dehydrogenase, which are involved in the biosynthesis of flavonoids, alkaloids, phenylpropanoids, and amino acid metabolism, were mainly alerted after 7 d post-salt-stress induction. Several potential genes that might be involved in salt stress conditions were identified; however, it demands further investigation. Although salt stress affects the level of secondary metabolites, their correlation needs to be investigated further. SIGNIFICANCE: Salinization is the most severe abiotic adversity, which has had a significant negative effect on world food security over the time. Excavating salt-tolerant genes from halophytes or medicinal plants is one of the important measures to cope with salt stress. S. alopecuroides is a well-known medicinal plant with anti-tumor, anti-inflammatory, and antibacterial effects, anti-saline properties, and resistance to drought stress. Currently, only a few studies have explored the S. alopecuroides' gene function, and regulation and these studies are mostly related to the unpublished genome sequence information of S. alopecuroides. Recently, transcriptomics and metabolomics studies have been carried on the abiotic stress in S. alopecuroides roots. Multiple studies have shown that altered gene expression at the transcript level and altered metabolite levels do not correspond to the altered protein levels. In this study, TMT and PRM based proteomic analyses of S. alopecuroides leaves under salt stress condition induced using 150 mM NaCl for 3 d and 7 d was performed. These analyses elucidated the activation of different mechanisms in response to salt stress. A total of 434 differentially abundant proteins (DAPs) in salt stress conditions were identified and analyzed. For the first time, this study utilized proteomics technology to dig out plentiful underlying salt-tolerant genes from the medicinal plant, S. alopecuroides. We believe that this study will be of great significance to crop genetics and breeding.


Assuntos
Sophora , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Estresse Salino , Sophora/genética , Sophora/metabolismo , Estresse Fisiológico/genética
7.
Chinese Journal of Biotechnology ; (12): 1565-1575, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927801

RESUMO

8-prenylnaringenin (8-PN) is a potent estrogen with high medicinal values. It also serves as an important precursor for many prenylated flavonoids. Microbial synthesis of 8-PN is mainly hindered by the low catalytic activity of prenyltransferases (PTS) and insufficient supply of precursors. In this work, a SfN8DT-1 from Sophora flavescens was used to improve the efficiency of (2S)-naringenin prenylation. The predicted structure of SfN8DT-1 showed that its main body is comprised of 9 α-helices and 8 loops, along with a long side chain formed by nearly 120 amino acids. SfN8DT-1 mutants with different side-chain truncated were tested in Saccharomyces cerevisiae. A mutant expressing the truncated enzyme at K62 site, designated as SfND8T-1-t62, produced the highest 8-PN titer. Molecular docking of SfN8DT-1-t62 with (2S)-naringenin and dimethylallyl diphosphate (DMAPP) showed that K185 was a potentially crucial residue. Alanine scanning within a range of 0.5 nm around these two substrates showed that the mutant K185A may decrease its affinity to substrates, which also indicated K185 was a potentially critical residue. Besides, the mutant K185W enhanced the affinity to ligands implied by the simulated saturation mutation, while the saturated mutation of K185 showed a great decrease in 8-PN production, indicating K185 is vital for the activity of SfN8DT-1. Subsequently, overexpressing the key genes of Mevalonate (MVA) pathway further improved the titer of 8-PN to 31.31 mg/L, which indicated that DMAPP supply is also a limiting factor for 8-PN synthesis. Finally, 44.92 mg/L of 8-PN was produced in a 5 L bioreactor after 120 h, which is the highest 8-PN titer reported to date.


Assuntos
Dimetilaliltranstransferase/metabolismo , Flavonoides/metabolismo , Simulação de Acoplamento Molecular , Prenilação , Saccharomyces cerevisiae/metabolismo , Sophora/metabolismo
8.
Braz. J. Pharm. Sci. (Online) ; 58: e20992, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420434

RESUMO

Abstract In this study, it was aimed to investigate the amount of antioxidant, protective properties against DNA damage and antibacterial properties against various pathogens after the interaction of Ag metal (Ag NPs/Sa) of Sophora alopecuroides L. (S. alopecuroides L) plant seed, which is grown in Igdir and used in the treatment of many diseases. The DPPH radical quenching activity of Ag NPs/Sa was performed by using Blois method, DNA damage prevention activity by gel electrophoresis and antibacterial property by disk diffusion method. With the green synthesis method, AgNPs obtained as a result of the reaction of the plant and Ag metal are UV visible spectrophotometer (UV-vis), fourier-transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). DPPH radical quenching activity of Ag NPs/Sa was investigated in the concentration range of 25-250 µg/ml. The radical quenching activity at a concentration of 250 µg/ml was 85,215 ± 0,101%, while this value was 93,018% for the positive control BHA. It has been observed that the protective property of pBR322 plasmid DNA damage against OH radicals originating from H2O2 increases with concentration. It has been observed that Ag NPs/Sa has significant antimicrobial properties against some pathogens (B. subtilis ATCC 6633 E. coli ATCC 25952, B. cereus ATCC 10876, P. aeruginosa ATCC 27853, E. faecalis ATCC 29212, S. aureus ATTC 29213 and C. albicans ATTC 90028) that cause disease and even some pathogens are more effective than antibiotics


Assuntos
Sementes/anatomia & histologia , Sophora/metabolismo , Fabaceae/efeitos adversos , Plantas/efeitos adversos , Análise Espectral/métodos , Difração de Raios X/instrumentação , Nanopartículas/classificação , Anti-Infecciosos/classificação , Antioxidantes/classificação
9.
Arch Pharm Res ; 44(11): 903-986, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34907492

RESUMO

Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.


Assuntos
Compostos Fitoquímicos/farmacologia , Sophora/metabolismo , Desenvolvimento de Medicamentos , Humanos , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/uso terapêutico , Metabolismo Secundário , Sophora/química
10.
BMC Plant Biol ; 21(1): 566, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856930

RESUMO

BACKGROUND: Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. RESULTS: To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. CONCLUSION: This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/fisiologia , RNA de Plantas/genética , Sophora/metabolismo , Estresse Fisiológico , Transcriptoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência de RNA , Sophora/genética
11.
Biomed Res Int ; 2021: 8893563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790825

RESUMO

Sophora viciifolia Hance is an edible plant used in traditional Chinese medicine. Sophocarpine, a tetracyclic quinolizidine alkaloid, is one of the most abundant active ingredients in Sophora viciifolia Hance. Here, we study the analgesic and anti-inflammatory effects, as well as the acute toxicity of sophocarpine from Sophora viciifolia Hance in mice. Sophocarpine (20, 40, and 80 mg/kgbw) significantly prolonged the delay period before a hot plate reaction occurred (all P < 0.05), and the delay before a tail-flick response was induced by a warm bath (P < 0.05; P < 0.01). Sophocarpine (40, 80 mg/kg) resulted in dose-dependent inhibition of the writhing reaction induced by acetic acid in mice (P < 0.05; P < 0.001, respectively). Sophocarpine (80 mg/kg) reduced the total duration of a formalin-induced pain response (P < 0.05). Sophocarpine prolonged the foot-licking latency of mice after the hot plate reaction, and this effect was antagonized by calcium chloride and enhanced by verapamil. Sophocarpine (20, 40, and 80 mg/kg) significantly inhibited xylene-induced ear edema (P < 0.01; P < 0.001; P < 0.001, respectively) and the penetration of acetic acid-induced dye into the peritoneal cavity (P < 0.01; P < 0.01; P < 0.001, respectively). It also reduced the levels of proinflammatory cytokine interleukin (IL)-1ß, IL-6, and prostaglandin E2 (P < 0.05, P < 0.01, P < 0.001) and those of serum nitric oxide (P < 0.05). The results of this study suggest that sophocarpine possesses certain analgesic and anti-inflammatory activities, which may be related to calcium and inhibition of the secretion of inflammatory factors.


Assuntos
Alcaloides/farmacologia , Dor/tratamento farmacológico , Alcaloides/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Animais não Endogâmicos , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , NF-kappa B , Dor/fisiopatologia , Extratos Vegetais/farmacologia , Sophora/metabolismo
12.
Food Funct ; 12(24): 12503-12512, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34806108

RESUMO

Hyperuricemia is a metabolic condition closely linked to xanthine oxidase (XOD) function, which is involved in the production of uric acid (UA). In this study, XOD was used as a target to construct an in vitro and in vivo activity screening and verification system. The XOD inhibition ability of the main components from the water extract of Sophorae Flos (WSF), an unopened dry flower bud of Sophora japonica, was screened by HPLC. Isorhamnetin (IRh) was identified as a major flavonoid XOD inhibitor from WSF, and we characterized its effects and potential mechanism in ameliorating UA levels and renal function in hyperuricemia model mice. Hyperuricemia was induced by oral administration of potassium oxonate (PO) and hypoxanthine to mice for 7 days. The biochemical index results showed that treatments with low, medium, and high doses of IRh (50, 100, and 150 mg kg-1) significantly reduced serum UA levels and inhibited XOD activity in serum and in the liver. Additionally, IRh effectively decreased the levels of serum creatinine and blood urea nitrogen, suggesting that it possessed nephroprotective effects in hyperuricemic mice. Furthermore, histopathological results showed that nuclear lesions and renal tubule dilatation in the kidneys of IRh-treated hyperuricemic mice were reduced, suggesting that IRh may alleviate renal injury. Molecular docking results showed that IRh combined well with XOD and is an effective XOD inhibitor. In conclusion, IRh from Sophora japonica may reduce the UA levels and alleviate renal injury by inhibiting XOD activity. It potentially functions as a therapeutic drug and dietary supplement to treat hyperuricemia.


Assuntos
Hiperuricemia/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/fisiopatologia , Quercetina/análogos & derivados , Sophora/metabolismo , Ácido Úrico/sangue , Animais , Modelos Animais de Doenças , Hiperuricemia/metabolismo , Masculino , Camundongos , Quercetina/farmacologia , Xantina Oxidase/antagonistas & inibidores
13.
Planta ; 254(4): 77, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34535825

RESUMO

MAIN CONCLUSION: Overexpression of SaAQP can improve the salt tolerance of transgenic soybean hairy roots and A. thaliana. Salt stress severely affects crop yield and food security. There is a need to improve the salt tolerance of crops, but the discovery and utilization of salt-tolerance genes remains limited. Owing to its strong stress tolerance, Sophora alopecuroides is ideal for the identification of salt-tolerance genes. Therefore, we aimed to screen and identify the salt-tolerance genes in S. alopecuroides. With a yeast expression library of seedlings, salt-tolerant genes were screened using a salt-containing medium to simulate salt stress. By combining salt-treatment screening and transcriptome sequencing, 11 candidate genes related to salt tolerance were identified, including genes for peroxidase, inositol methyltransferase, aquaporin, cysteine synthase, pectinesterase, and WRKY. The expression dynamics of candidate genes were analyzed after salt treatment of S. alopecuroides, and salt tolerance was verified in yeast BY4743. The candidate genes participated in the salt-stress response in S. alopecuroides, and their overexpression significantly improved the salt tolerance of yeast. Salt tolerance mediated by SaAQP was further verified in soybean hairy roots and Arabidopsis thaliana, and it was found that SaAQP might enhance the salt tolerance of A. thaliana by participating in a reactive oxygen species scavenging mechanism. This result provides new genetic resources in plant breeding for salt resistance.


Assuntos
Tolerância ao Sal , Sophora , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Sophora/genética , Sophora/metabolismo , Estresse Fisiológico
14.
PLoS One ; 16(9): e0254627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492027

RESUMO

We used fresh leaves of Sophora japonica L. variety 'Qingyun 1' (A0) and 10 superior clones of the same species (A1-A10) to explore leaf morphological characteristics and total particle retention per unit leaf area under natural and artificial simulated dust deposition treatments. Our objectives were to explore the relationship between the two methods and to assess particle size distribution, X-ray fluorescence (XRF) heavy metal content, and scanning electron and atomic force microscopy (SEM and AFM) characteristics of leaf surface microstructure. Using the membership function method, we evaluated the dust retention capacity of each clone based on the mean degree of membership of its dust retention index. Using correlation analysis, we selected leaf morphological and SEM and AFM indices related significantly to dust retention capacity. Sophora japonica showed excellent overall dust retention capacity, although this capacity differed among clones. A5 had the strongest overall retention capacity, A2 had the strongest retention capacity for PM2.5, A9 had the strongest retention capacity for PM2.5-10, A0 had the strongest retention capacity for PM>10, and A2 had the strongest specific surface area (SSA) and heavy metal adsorption capacity. Overall, A1 had the strongest comprehensive dust retention ability, A5 was intermediate, and A7 had the weakest capacity. Certain leaf morphological and SEM and AFM characteristic indices correlated significantly with the dust retention capacity.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Material Particulado/análise , Sophora/química , Adsorção , China , Monitoramento Ambiental , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Sophora/anatomia & histologia , Sophora/metabolismo
15.
Angew Chem Int Ed Engl ; 60(46): 24566-24572, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34431597

RESUMO

UDP-glucuronosyltransferase 1A1 (UGT1A1) is a vital metabolic enzyme responsible for the clearance of endogenous substances and drugs. Hitherto, the development of fluorescent probes for UGTs was severely restricted due to the poor isoform selectivity and on-off or blue-shifted fluorescence response. Herein, we established a novel "molecular-splicing" strategy to construct a highly selective near-infrared (NIR) fluorescent probe, HHC, for UGT1A1, which exhibited a NIR signal at 720 nm after UGT1A1 metabolism. HHC was then successfully used for the real-time imaging of endogenous UGT1A1 in living cells and animals and to monitor the bile excretion function. In summary, an isoform-specific NIR fluorescent probe has been developed for monitoring UGT1A1 activity in living systems, high-throughput screening of novel UGT1A1 inhibitors and visual evaluation of bile excretion function.


Assuntos
Corantes Fluorescentes/química , Glucuronosiltransferase/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Corantes Fluorescentes/metabolismo , Vesícula Biliar/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/genética , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sophora/química , Sophora/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho
16.
Molecules ; 26(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299455

RESUMO

An unprecedented novel flavanone davidone F (1) with a seven-membered ring side chain, and a novel flavanonol davidone G (2), along with 11 known flavonoids, were isolated from the ethyl acetate fraction of Sophora davidii (Franch.) Skeels. Their planar structures were established by UV, IR, HRESIMS, 1D and 2D NMR data. The relative configurations of 1 and 2 were determined by calculation of NMR chemical shift values, the absolute configuration of 1 and 2 were assigned by comparing their experimental and calculated electronic circular dichroism (ECD) spectra. Moreover, compounds 1-13 were screened for the translocation activity of glucose transporter 4 (GLUT-4), and the fluorescence intensity was increased to the range of 1.56 and 2.79 folds. Compounds 1 and 2 showed moderate GLUT-4 translocation activity with 1.64 and 1.79 folds enhancement, respectively, at a concentration of 20 µg/mL.


Assuntos
Flavonoides/química , Flavonoides/isolamento & purificação , Sophora/metabolismo , China , Dicroísmo Circular/métodos , Flavanonas/química , Flavanonas/isolamento & purificação , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Raízes de Plantas/química , Sophora/química
17.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298928

RESUMO

Salt stress seriously restricts crop yield and quality, leading to an urgent need to understand its effects on plants and the mechanism of plant responses. Although phytohormones are crucial for plant responses to salt stress, the role of phytohormone signal transduction in the salt stress responses of stress-resistant species such as Sophora alopecuroides has not been reported. Herein, we combined transcriptome and metabolome analyses to evaluate expression changes of key genes and metabolites associated with plant hormone signal transduction in S. alopecuroides roots under salt stress for 0 h to 72 h. Auxin, cytokinin, brassinosteroid, and gibberellin signals were predominantly involved in regulating S. alopecuroides growth and recovery under salt stress. Ethylene and jasmonic acid signals may negatively regulate the response of S. alopecuroides to salt stress. Abscisic acid and salicylic acid are significantly upregulated under salt stress, and their signals may positively regulate the plant response to salt stress. Additionally, salicylic acid (SA) might regulate the balance between plant growth and resistance by preventing reduction in growth-promoting hormones and maintaining high levels of abscisic acid (ABA). This study provides insight into the mechanism of salt stress response in S. alopecuroides and the corresponding role of plant hormones, which is beneficial for crop resistance breeding.


Assuntos
Estresse Salino/genética , Transdução de Sinais/genética , Sophora/genética , Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Citocininas/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Melhoramento Vegetal/métodos , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Tolerância ao Sal/genética , Sophora/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética , Regulação para Cima/genética
18.
Sci Rep ; 11(1): 7388, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795823

RESUMO

Sophora flavescens are widely used for their pharmacological effects. As its main pharmacological components, alkaloids and flavonoids are distributed in the root tissues wherein molecular mechanisms remain elusive. In this study, metabolite profiles are analyzed using metabolomes to obtain biomarkers detected in different root tissues. These biomarkers include alkaloids, phenylpropanoids, and flavonoids. The high-performance liquid chromatography analysis results indicate the differences in principal component contents. Oxymatrine, sophoridine, and matrine contents are the highest in the phloem, whereas trifolirhizin, maackiain, and kushenol I contents are the highest in the xylem. The transcript expression profiles also show tissue specificity in the roots. A total of 52 and 39 transcripts involved in alkaloid and flavonoid syntheses are found, respectively. Among them, the expression levels of LYSA1, LYSA2, AO2, AO6, PMT1, PMT17, PMT34, and PMT35 transcripts are highly and positively correlated with alkaloids contents. The expression levels of 4CL1, 4CL3, 4CL12, CHI5, CHI7, and CHI9 transcripts are markedly and positively correlated with flavonoids contents. Moreover, the quantitative profiles of alkaloids and flavonoids are provided, and the pivotal genes regulating their distribution in S. flavescens are determined. These results contribute to the existing data for the genetic improvement and target breeding of S. flavescens.


Assuntos
Alcaloides/química , Metaboloma , Sophora/química , Transcriptoma , Alcaloides/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Glucosídeos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Melhoramento Vegetal , Extratos Vegetais/farmacologia , Raízes de Plantas/metabolismo , Análise de Componente Principal , Pterocarpanos/química , Quinolizinas/química , RNA/metabolismo , Sophora/metabolismo , Matrinas
19.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673678

RESUMO

Salt stress is the main abiotic stress that limits crop yield and agricultural development. Therefore, it is imperative to study the effects of salt stress on plants and the mechanisms through which plants respond to salt stress. In this study, we used transcriptomics and metabolomics to explore the effects of salt stress on Sophora alopecuroides. We found that salt stress incurred significant gene expression and metabolite changes at 0, 4, 24, 48, and 72 h. The integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes (DEGs) and differential metabolites (DMs) obtained in the phenylpropanoid biosynthesis pathway were significantly correlated under salt stress. Of these, 28 DEGs and seven DMs were involved in lignin synthesis and 23 DEGs and seven DMs were involved in flavonoid synthesis. Under salt stress, the expression of genes and metabolites related to lignin and flavonoid synthesis changed significantly. Lignin and flavonoids may participate in the removal of reactive oxygen species (ROS) in the root tissue of S. alopecuroides and reduced the damage caused under salt stress. Our research provides new ideas and genetic resources to study the mechanism of plant responses to salt stress and further improve the salt tolerance of plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Metaboloma , Fenilpropionatos/metabolismo , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Sophora/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Lignina/biossíntese , Proteínas de Plantas/genética , Sophora/genética , Sophora/crescimento & desenvolvimento , Estresse Fisiológico
20.
Chemosphere ; 259: 127450, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593006

RESUMO

Phytoremediation is one of the most cost-effective and environmentally friendly ways to reduce adverse effects of cadmium (Cd) and lead (Pb) in the environment. The present study was conducted to investigate the bioaccumulation factor (BF) and translocation factor (TF) of Cd and Pb in muskweed (Myagrum perfoliatum) and foxtail sophora (Sophora alopecuroides). The impact of contamination on some growth responses of plants and soil biological indicators was also evaluated. A non-contaminated soil sample was divided into several subsamples: one subsample was left as control (without contamination) and the others were separately contaminated with three levels of Cd (3, 5, and 10 mg kg-1) and Pb (100, 300, and 600 mg kg-1). Pot experiments were performed under greenhouse conditions. The BF values of Cd were greater than 1 at all contamination levels indicating the potential of muskweed and foxtail sophora for the uptake and phytostabilization of Cd. The only TF > 1 was obtained for Cd in muskweed grown at the highest Cd contamination level. The TF values of Pb were much lower than those obtained for Cd indicating that Cd was more translocated from root to aerial parts of muskweed and foxtail sophora compared to Pb. The highest contamination levels of Cd and Pb did not significantly affect growth responses of muskweed and foxtail sophora. Furthermore, the cultivation of muskweed and foxtail sophora reduced the impact of Cd and Pb contamination on biological indicators including carbon mineralization ratio (CMR), substrate-induced respiration (SIR), microbial biomass carbon (MBC), and metabolic quotient (qCO2).


Assuntos
Biodegradação Ambiental , Brassicaceae/metabolismo , Cádmio/metabolismo , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Sophora/metabolismo , Biomassa , Cádmio/análise , Metais Pesados , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...