Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172050, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565356

RESUMO

In China, aquatic supply chain network design does not include the green concept or the coordination of environmental and economic performance. Sea cucumber (Apostichopus japonicus) is an aquatic product of high economic value; however, studies on sea cucumber supply chain network optimization are lacking. This study is the first to design the sea cucumber supply chain and construct an optimization model. Considering the characteristics of the sea cucumber industry, LCA for Experts software and the CML-IA-Aug. 2016-world method were used to assess each aquaculture model's global warming potential (GWP), as the environmental performance indicator. In addition, multi-objective genetic algorithm (MOGA) coupled with Modified Technique for Order of Preference by Similarity to Ideal Solution (M-TOPSIS) integrates yield production, economic benefits, and environmental performance. The results demonstrated that cage seed rearing (CSR) combined bottom sowing aquaculture (BSA) represents the best production strategy upstream of the sea cucumber supply chain. In the downstream, the best proportion of sales channels in supermarkets, boutique stores and online shops accounted for 14.79 %, 58.02 % and 27.19 % of the production, respectively. The proposed optimization scenario 4 (S4) can increase product profit by 27.88 % and reduce GWP by 56.89 %. The following improvement measures are proposed: using sea cucumber aquaculture industry standards (cleaner production and green supplier selection) to regulate the behavior of enterprises, adopting an ecological and green production strategy, eliminating high-energy consumption and high emission production practices, and promoting widespread adoption of green consumption concepts. Finally, these measures may improve the sea cucumber supply chain, achieve coordinated environmental and economic performance development in the sea cucumber industry, and provide guidance for green optimization of other aquatic product supply chains in China.


Assuntos
Aquicultura , Pepinos-do-Mar , Animais , Aquicultura/métodos , China , Pepinos-do-Mar/crescimento & desenvolvimento , Aquecimento Global , Stichopus/crescimento & desenvolvimento
2.
Sci Rep ; 11(1): 7564, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828212

RESUMO

Breeding of polyploid aquatic animals is still an important approach and research hotspot for realizing the economic benefits afforded by the improvement of aquatic animal germplasm. To better understand the molecular mechanisms of the growth of triploid sea cucumbers, we performed gene expression and genome-wide comparisons of DNA methylation using the body wall tissue of triploid sea cucumbers using RNA-seq and MethylRAD-seq technologies. We clarified the expression pattern of triploid sea cucumbers and found no dosage effect. DEGs were significantly enriched in the pathways of nucleic acid and protein synthesis, cell growth, cell division, and other pathways. Moreover, we characterized the methylation pattern changes and found 615 differentially methylated genes at CCGG sites and 447 differentially methylated genes at CCWGG sites. Integrative analysis identified 23 genes (such as Guf1, SGT, Col5a1, HAL, HPS1, etc.) that exhibited correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions in the growth of triploid sea cucumbers. Our data provide new insights into the epigenetic and transcriptomic alterations of the body wall tissue of triploid sea cucumbers and preliminarily elucidate the molecular mechanism of their growth, which is of great significance for the breeding of fine varieties of sea cucumbers.


Assuntos
Stichopus/genética , Animais , Cruzamento , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Stichopus/crescimento & desenvolvimento , Distribuição Tecidual , Triploidia
3.
Ecotoxicol Environ Saf ; 209: 111794, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348256

RESUMO

Microplastics (MPs) in the form of microfibres (MFs) are of great concern because of their size and increasing abundance, which increase their potential to interact with or be ingested by aquatic organisms. Although MFs are the dominant shape of MPs ingested by sea cucumbers in habitats, their effect on sea cucumbers remains unclear. This study examined the effect of dietary exposure to MFs on the growth and physiological status of both juvenile and adult Apostichopus japonicus sea cucumbers. MFs were mixed into the diet of sea cucumbers for 60 d at environmentally relevant concentrations of 0.6 MFs g-1, 1.2 MFs g-1 and 10 MFs g-1. Dietary exposure to MFs, with concentrations at or above those commonly found in the habitats, did not significantly affect the growth and faecal production rate of either juvenile or adult sea cucumbers. However, a disruption in immunity indices (acid phosphatase and alkaline phosphatase activity) and oxidative stress indices (total antioxidant capacity and malondialdehyde content) was observed in juvenile and adult sea cucumbers, indicating that these indices might be useful as potential biomarkers of the exposure to MF ingestion in sea cucumbers. This study provides insights into the toxicity mechanism of MF ingestion in a commercially and ecologically important species.


Assuntos
Microplásticos/toxicidade , Pepinos-do-Mar/fisiologia , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes , Dieta , Ingestão de Alimentos , Imunidade Inata , Malondialdeído , Plásticos , Stichopus/crescimento & desenvolvimento
4.
Artigo em Inglês | MEDLINE | ID: mdl-33212209

RESUMO

The sea cucumber (Apostichopus japonicus) is an economically important mariculture species in Asia. However, the genetic breeding of sea cucumbers is difficult because the sexes cannot be identified by appearance. Therefore, studies on sex-related genes are helpful in revealing the mechanisms of sex determination and differentiation in sea cucumbers. P-element induced wimpy testis (piwi) is a germ cell marker involved in gametogenesis in vertebrates; however, the expression pattern and function during gametogenesis remain unclear in sea cucumbers. In this study, we identified a piwi homolog gene in A. japonicus (Ajpiwi1) and investigated its expression pattern, and function. Ajpiwi1 is a maternal factor and is ubiquitously expressed in adult tissues, including the ovary and testis. Ajpiwi1 expression is strong in early oocytes, spermatocytes, and spermatogonia; weak in mature oocytes; and undetected in spermatids and intra-gonadal somatic cells. The knockdown of Ajpiwi1 by RNA interference (RNAi) led to the downregulation of other conserved sex-related genes such as dmrt1, foxl2, and germ cell-less. Therefore, Ajpiwi1 might play a critical role during gametogenesis in A. japonicus. This study creates new possibilities for studying sex-related gene functions in the sea cucumber and builds a gene function research platform based on RNAi for the first time.


Assuntos
Proteínas de Peixes/metabolismo , Ovário/metabolismo , Stichopus/metabolismo , Testículo/metabolismo , Animais , Clonagem Molecular/métodos , DNA Complementar/genética , Feminino , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Masculino , Oócitos/metabolismo , Filogenia , Interferência de RNA , Homologia de Sequência de Aminoácidos , Fatores Sexuais , Espermatogônias/metabolismo , Stichopus/genética , Stichopus/crescimento & desenvolvimento
5.
Genomics ; 113(1 Pt 2): 967-978, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33144216

RESUMO

The sea cucumber Apostichopus japonicus is dioecious, with seasonal reproduction. G protein-coupled receptor (GPCR)-mediated signaling systems might play critical roles in the reproductive control of A. japonicus. Here, we classified GPCR from the genome in silico and used transcriptomic analyses to further mine those that function in gonadal-development control. Totally, 487 GPCRs were predicted from A. japonicus, and 183 of these were further annotated to molecular pathways. Transcriptome analysis revealed 327 GPCRs expressed in gonads, and these were classified into four families and 19 subfamilies. Three pathways were apparently associated with reproduction, including neuroactive ligand-receptor interaction, the mTOR and Wnt signaling pathways. Seven and eight ovary- and testis-specific GPCRs were filtered, and the gene expression profiles were determined in multiple tissues and gonads at different developmental stages by qPCR. These results provide new insights into the discovery of GPCR-mediated signaling control in sea cucumber reproduction, especially in gonadal development control.


Assuntos
Gônadas/metabolismo , Receptores Acoplados a Proteínas G/genética , Stichopus/genética , Transcriptoma , Animais , Gônadas/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/metabolismo , Stichopus/crescimento & desenvolvimento , Stichopus/metabolismo
6.
Fish Shellfish Immunol ; 106: 1087-1094, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32890761

RESUMO

Probiotics play vital roles in controlling diseases, enhancing specific and non-specific immunity and stimulating growth in the aquaculture industry. However, the effect of fermentation of feed by probiotics on the immune ability of sea cucumber has not been reported to date. Here, three candidate probiotic strains (Bacillus species) were isolated from the culture seawater and sediment of sea cucumber, and fishmeal and scallop mantle fermented by the candidate probiotic strains were used to feed sea cucumber. The results showed that the free amino acid and small peptide contents of the fishmeal and scallop mantle were significantly increased after fermentation for 72 h. However, the weight gain (WG) and specific growth rate (SGR) of sea cucumber showed no significant differences among the fermented fishmeal, fermented scallop mantle and control groups. Scallop mantle fermented by the three candidate probiotics could increase the coelomocyte number and respiratory burst activity. The immune-related enzymatic activity was increased after consuming the fermented fishmeal and scallop mantle, while the activity of antioxidant enzymes was reduced. The expression levels of immune- and antioxidant-related genes were changed after consuming the fermented fishmeal and scallop mantle. Taken together, our results suggest that probiotics could increase the immunocompetence of sea cucumber, and fermented scallop mantle might be a potential substitute for fishmeal during feed preparation. Our results lay a foundation for further understanding the relationship between probiotics and the non-specific immunity of sea cucumber.


Assuntos
Bacillus , Probióticos/farmacologia , Stichopus , Ração Animal , Animais , Bacillus/isolamento & purificação , Catalase/genética , Dieta/veterinária , Fermentação , Produtos Pesqueiros , Hemólise , Muramidase/genética , Pectinidae , Probióticos/isolamento & purificação , Pseudoalteromonas , Stichopus/genética , Stichopus/crescimento & desenvolvimento , Stichopus/imunologia , Superóxido Dismutase/genética
7.
Commun Biol ; 3(1): 371, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651448

RESUMO

Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya.


Assuntos
Equinodermos/genética , Lytechinus/genética , Stichopus/genética , Exoesqueleto/anatomia & histologia , Animais , Evolução Biológica , DNA/genética , Equinodermos/anatomia & histologia , Equinodermos/embriologia , Equinodermos/crescimento & desenvolvimento , Biblioteca Gênica , Genes Homeobox/genética , Genoma/genética , Lytechinus/anatomia & histologia , Lytechinus/crescimento & desenvolvimento , Filogenia , Proteômica , Análise de Sequência de DNA , Stichopus/anatomia & histologia , Stichopus/crescimento & desenvolvimento
8.
Sci Rep ; 9(1): 1131, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718912

RESUMO

The transcriptome of the holothurian Apostichopus japonicus was sequenced at four developmental stages-blastula, gastrula, auricularia, pentactula-on an Illumina sequencer. Based on our RNA-seq data and the paired-end reads from 16 libraries obtained by other researchers earlier, we have achieved the currently most complete transcriptome assembly for A. japonicus with the best basic statistical parameters. An analysis of the obtained transcriptome has revealed 174 differentially expressed transcription factors, as well as stage-specific transcription factors that are most promising for further study. In addition, a total of 1,174,999 high-quality single nucleotide polymorphisms have been identified, including 58,932 indels. A GO enrichment analysis of contigs containing polymorphic loci shows the predominance of GO terms associated with immune response. The data obtained by us provide an additional basis for a deeper study of the mechanisms of the planktotrophic-type development in holothurians and can be used in commercial sea cucumber breeding programs.


Assuntos
Perfilação da Expressão Gênica/métodos , Stichopus/crescimento & desenvolvimento , Fatores de Transcrição/genética , Animais , Cruzamento , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Stichopus/genética
9.
Environ Pollut ; 245: 1071-1078, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30682741

RESUMO

Microplastic ingestion by the farmed sea cucumber is undocumented. Microplastics were isolated from the sea cucumber Apostichopus japonicus that was collected from eight farms along the Bohai Sea and the Yellow Sea in China. To examine microplastic ingestion, the intestines were isolated, digested and then subjected to the floatation test. The microplastic abundance in the sediment ranged from 20 to 1040 particles kg-1 of dry sediment, while the ingested microplastics ranged from 0 to 30 particles intestine-1. After filtering the coelomic fluid, the extracted microplastics from the coelomic fluid ranged from 0 to 19 particles animal-1. Thus, we speculated that microplastics may transfer to the coelomic fluid of sea cucumber. The ingested microplastics did not correlate with the animal body weight but was site dependent, suggesting that sea cucumber may serve as sentinel for microplastic pollution monitoring in the sediment. The microplastics were identified by Fourier transform infrared micro spectroscopy, and the polymer types were mainly cellophane, polyester, and polyethylene terephthalate. This study revealed that, microplastics widely existed in sea cucumber farms, and that sea cucumbers ingest microplastics as suitable with their mouth open. Moreover, the microplastics might transfer to the coelomic fluid of the sea cucumber. Further investigations are needed to assess the chronic effect of the microplastics on the growth and physiological status of the sea cucumber.


Assuntos
Aquicultura , Monitoramento Ambiental/métodos , Plásticos/análise , Stichopus/química , Poluentes Químicos da Água/análise , Animais , China , Oceanos e Mares , Água do Mar/química , Espectroscopia de Infravermelho com Transformada de Fourier , Stichopus/crescimento & desenvolvimento , Stichopus/metabolismo
10.
Fish Shellfish Immunol ; 84: 434-440, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30308294

RESUMO

The global abuse and misuse of antibiotics in the treatment and prevention of bacterial infections has resulted in the ubiquitous existence of these drugs in aquatic environments, which causes frequent antimicrobial resistance and pollution in ecosystems. However, the chronic effects of antimicrobial agents on aquatic animal growth and health have not been fully evaluated. In the present study, three typical antibiotics (tetracycline, erythromycin, and norfloxacin) were administered orally to juvenile sea cucumbers Apostichopus japonicus for 45 days, to mimic the long-term use of antibiotics. As a result, tetracycline and erythromycin promoted the growth and digestive activity of lipase, pepsin, and trypsin, but norfloxacin did not show significant prompting effect on digestive activity and even retarded the weight gain of the sea cucumbers. The mortality was higher in antibiotic treated groups between the 2nd and 4th days after challenge with Vibrio splendidus. At the same time, lower immune-related parameters were found in antibiotic feeding juveniles, suggesting that the use of antibiotics might weaken the immune defense system of sea cucumbers. This study revealed that antibiotic administration could facilitate the growth of sea cucumbers to varying degrees yet coupled with high risks of impaired immune function and compromised disease resistance.


Assuntos
Antibacterianos/farmacologia , Eritromicina/farmacologia , Imunidade Inata/efeitos dos fármacos , Norfloxacino/farmacologia , Stichopus/efeitos dos fármacos , Tetraciclina/farmacologia , Ração Animal/análise , Animais , Antibacterianos/administração & dosagem , Dieta , Suplementos Nutricionais/análise , Eritromicina/administração & dosagem , Intestinos/efeitos dos fármacos , Intestinos/enzimologia , Norfloxacino/administração & dosagem , Stichopus/enzimologia , Stichopus/crescimento & desenvolvimento , Stichopus/imunologia , Tetraciclina/administração & dosagem , Vibrio/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-30241009

RESUMO

Pigmentation processes provide a traceable and relevant trait for understanding key issues in evolutionary biology such as adaptation, speciation and the maintenance of balanced polymorphisms. The sea cucumber Apostichopus japonicus, which has nutritive and medical properties, is considered the most valuable commercial species in many parts of Asia. Compared with the green morph, the purple morph is rare and has great appeal to consumers. However, little is currently known about the molecular mechanism of body color formation in A. japonicus, even in echinoderm. Here, we employ illumina sequencing to examine expression patterns of the gene network underlying body wall development in purple and green morphs of A. japonicus. Overall, the number of down-regulated genes in the green morph was significantly more than in the purple morph during the pigmentation stage. We observed dynamic expression patterns of a large number of pigment, regulation and growth genes from the "Melanogenesis", "Melanoma", "Wnt signaling pathway", "Notch signaling pathway", "epithelium development", "epidermal growth factor receptor binding","growth factor activity" and "growth", including contrasting expression patterns of these genes in green and purple morph. This study provides comprehensive lists of differentially expressed genes during body wall development in the green and purple morphs, revealing potential candidate genes that may be involved in regulating body color formation and polymorphism. These data will provide valuable information for future genetic studies on sea cucumbers elucidating the molecular mechanisms underlying pigmentation, and may support the culture of desirable color morphs.


Assuntos
Pigmentação , Stichopus/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genômica , Análise de Sequência de RNA , Stichopus/anatomia & histologia , Stichopus/crescimento & desenvolvimento
12.
Fish Shellfish Immunol ; 77: 175-186, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29609025

RESUMO

Bioflocs are not only a source of supplemental nutrition but also provide substantial probiotic bacteria and bioactive compounds, which play an important role in improving physiological health of aquatic organisms. A 60-day experiment was conducted to investigate the growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber in biofloc systems with different carbon sources (glucose, sucrose and starch). Control (no biofloc) and three biofloc systems were set up, and each group has three replicates. The results showed that biofloc volume (BFV) and total suspended solids (TSS) increased in the sequences of glucose > sucrose > starch and green sea cucumber > white sea cucumber during the experiment. The highest specific growth rates (SGRs) were observed in biofloc system with glucose as carbon source, which also had relatively lower glucose, lactate and cortisol levels in coelomic fluid and higher glycogen content in muscle compared to other groups. There were significant increased Bacillus and Lactobacillus counts of sea cucumber intestine in biofloc systems, and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) also showed obvious ascending trends. Significant increases in total coelomocytes counts (TCC), phagocytosis, respiratory burst, complement C3 content and lysozyme (LSZ) and acid phosphatase (ACP) activities of sea cucumber were all found in biofloc system (glucose). The expression patterns of most immune-related genes (i.e. Hsp90, Hsp70, c-type lectin (CL), toll-like receptor (TLR)) were up-regulated, suggesting the promotion of pathogen recognition ability and immune signaling pathways activation by biofloc. Furthermore, green and white sea cucumber had significantly higher survival rates in biofloc systems during the 14-day challenge test. In conclusion, biofloc technology could improve growth and physiological health of A. japonicus, by optimizing intestinal microbiota, strengthening antioxidant ability, enhancing non-specific immune response and disease resistance against pathogens, meanwhile glucose was recommended as optimal carbon source in biofloc system of sea cucumber culturing.


Assuntos
Resistência à Doença , Imunidade Inata , Probióticos/farmacologia , Stichopus/imunologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta , Microbioma Gastrointestinal , Stichopus/crescimento & desenvolvimento , Stichopus/microbiologia , Stichopus/fisiologia
13.
Mar Biotechnol (NY) ; 20(2): 193-205, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29492749

RESUMO

Heterosis is important for sea cucumber breeding, but its molecular mechanism remains largely unexplored. In this study, parental lines of Apostichopus japonicus from Russia (R) and China (C) were used to construct hybrids (CR and RC) by reciprocal crossing. We examined the transcriptional profiles of the hybrids (CR and RC) and the purebreds (CC and RR) at different developmental times. A total of 60.27 Gb of clean data was obtained, and 176,649 unigenes were identified, of which 50,312 unigenes were annotated. A total of 414,536 SNPs were identified. A total of 7011 differentially expressed genes (DEGs) were obtained between the purebreds and hybrids at 45 days after fertilization (DAF), and a total of 8218 DEGs were obtained between the purebreds and hybrids at 75 DAF. In addition, a total of 7652 DEGs were obtained between 45 DAF and 75 DAF. The significant DEGs were mainly involved in the MAPK and FOXO signaling pathways, especially in the Ras-Raf-MEK1/2-ERK module, which may be a key regulator of development and growth in juvenile A. japonicus. In addition, we also identified key growth-related genes, such as fgfs, igfs, megfs and hgfs, which were upregulated in the hybrids (RC and CR); these genes may play important roles in heterosis in A. japonicus. Our study provides fundamental information on the molecular mechanisms underlying heterosis in sea cucumber and might suggest strategies for the selection of rapidly growing strains of sea cucumber in aquaculture.


Assuntos
Stichopus/crescimento & desenvolvimento , Stichopus/genética , Animais , Aquicultura , Quimera , Regulação da Expressão Gênica no Desenvolvimento , Vigor Híbrido , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Transcriptoma
14.
Fish Shellfish Immunol ; 75: 158-163, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29331348

RESUMO

In order to reveal the effects of l-tryptophan (Trp) on the physiology and immune response of sea cucumber (Apostichopus japonicus Selenka) exposed to crowding stress, four density groups of sea cucumbers (i.e. 4, 8, 16 and 32 individuals per 40 L water, represented as L, ML, MH and H) were fed with diets containing 0, 1, 3 and 5% l-tryptophan respectively for 75 days. The results showed that the specific growth rates (SGR) of the sea cucumber fed with diet with 3% Trp (L, 2.1; ML, 1.76; MH, 1.2; H, 0.7) were significantly higher than those fed with basal diet without Trp supplementation (P < .05). Peak amylase activity occurred at H stress density at 3% dietary Trp. Trypsin activity was higher in diet 3% in ML and MH densities than the controls, which increased by 66.4% and 53.8%. However, the lipase activity first increased and then decreased from the stocking density L to H, with highest values of 3% Trp group showed the highest value than other groups. Compared to those fed with the basal diet, sea cucumber fed diets with Trp (3%) had significantly higher phagocytic activities (0.28 OD540/106 cells, H) in coelomic fluid and respiratory burst activities (0.105 OD630/106 cells, MH) (P < .05). The results suggested that Trp cannot improve superoxide dismutase (SOD) activity at L, ML and MH densities. The alkaline phosphatase activity (AKP) significantly decreased at H stress density. Under the experimental conditions, the present results confirmed that a diet supplemented with 3% Trp was able to enhance intestinal enzyme activities, non-specific immune response and higher growth performance of A. japonicus.


Assuntos
Imunidade Inata/efeitos dos fármacos , Stichopus/imunologia , Estresse Fisiológico/efeitos dos fármacos , Triptofano/farmacologia , Ração Animal/análise , Animais , Aglomeração , Dieta , Suplementos Nutricionais/análise , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/enzimologia , Imunidade Inata/imunologia , Densidade Demográfica , Stichopus/efeitos dos fármacos , Stichopus/enzimologia , Stichopus/crescimento & desenvolvimento , Triptofano/administração & dosagem
15.
Fish Shellfish Immunol ; 74: 69-75, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29284147

RESUMO

A feeding experiment was conducted to evaluate the effects of four strains of lactic acid bacteria (LAB) [i.e. Lactobacillus plantarum LL11 (LP), Weissella confuse LS13 (WC), Lactococcus lactis LH8 (LL) and Enterococcus faecalis LC3 (ES)] isolated from marine fish on growth, immune response and expression levels of immune-related gens in body wall of juvenile sea cucumber Apostichopus japonicus. As a result, sea cucumber had better growth performance fed supplementation of LP and ES than the control group (P < .05). Survival rate in each LAB supplementation group was significantly higher than that in control group after Vibrio splendidus challenge (P < .05). In regards to the enzyme activities, LP supplementation significantly imporved the enzyme activities of alkaline phosphatase (AKP) (P < .05), acid phosphatase (ACP) and superoxide dismutase (SOD), ES supplementation significantly imporved AKP activity (P < .05), and WC supplementation significantly imporved ACP activity (P < .05). However, lysozyme (LSZ) activity was not significantly changed in the four LAB supplementation treatments (P > .05). For the gene expression levels, different expression patterns were observed among four groups, heat shock proteins (HSP60, HSP70 and HSP90) and caspase-2 showed dramatic up-regulation at 30 d while NF-kappa-B transcription factor p65 was down-regulated at 15 d and up-regulated at 30 d, and nitric oxide synthase was down-regulated at both timepoints in almost all the four groups. In conclusion, the four LAB strains screened from marine fish supplemented in diets indicated positive effects on immune response for A. japonicus, especially, the L. plantarum LL11 and E. faecalis LC3 indicated better growth performance.


Assuntos
Expressão Gênica/imunologia , Imunidade Inata/genética , Lactobacillales/química , Probióticos/farmacologia , Stichopus/efeitos dos fármacos , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais/análise , Stichopus/genética , Stichopus/crescimento & desenvolvimento , Stichopus/imunologia
16.
Fish Shellfish Immunol ; 72: 143-152, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29102628

RESUMO

Bioflocs are rich in various probiotics and bioactive compounds, which play an important role in improving growth and health status of aquatic organisms. A 60-day experiment was conducted to investigate the effects of dietary supplementation of biofloc on growth performance, digestive enzyme activity, physiological stress, antioxidant status, expression of immune-related genes and disease resistance of sea cucumber Apostichopus japonicus. Juvenile sea cucumbers were fed five experimental diets containing graded levels of biofloc from 0% to 20% (referred as B0, B5, B10, B15 and B20, respectively). The results showed that the sea cucumbers at dietary supplementation levels of 10%-15% biofloc had significantly higher specific growth rate (SGR) compared to control group (diet B0). Digestive enzyme activity increased with the increasing of dietary biofloc level, while no significant difference was found between diets B15 and B20. Dietary supplementation of biofloc also had significant influences on physiological stress parameters except for lactate. There was no significant discrepancy in total coelomocytes counts (TCC) in coelomic fluid of sea cucumber between the treatments. Phagocytosis and respiratory burst of cellular immune at 15% and 20% biofloc levels were significantly higher than those of control group. Significant increases in superoxide dismutase (SOD), total nitric oxide synthase (T-NOS), lysozyme (LSZ), acid phosphatase (ACP) and alkaline phosphatase (AKP) activities of sea cucumber were found at highest dietary supplementation level of 20% biofloc. The expression patterns of immune-related genes (i.e., Hsp90, Hsp70, p105, Rel, NOS and LSZ) in tissues of sea cucumber were analyzed between the experimental diets, and a general trend of up-regulation was observed at higher biofloc levels. Furthermore, dietary 10%-20% biofloc significantly reduced cumulative mortality of sea cucumber after being challenged with Vibrio splendidus. In conclusion, dietary supplementation of biofloc could improve growth performance of A. japonicus, by increasing digestive enzyme activity, releasing physiological stress, enhancing immune response and disease resistance of sea cucumber. The suitable supplemental level of approximately 15% biofloc was recommended in the present study.


Assuntos
Antioxidantes/metabolismo , Imunidade Inata , Probióticos/farmacologia , Stichopus/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Ração Animal/análise , Animais , Dieta , Stichopus/crescimento & desenvolvimento , Stichopus/imunologia
17.
Fish Shellfish Immunol ; 68: 232-242, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28709723

RESUMO

A feeding experiment was conducted to investigate the effects of dietary administration of synbiotic with Bacillus lincheniformis WS-2 (CGMCC No. 12813) and alginate oligosaccharides (AOS) on the growth, innate immune response, and intestinal microbiota of the sea cucumber Apostichopus japonicus and its resistance to Vibrio infection. Sea cucumbers were given a control diet (non-supplemented), pro diet (basal diet plus 1 × 109 cfu (g diet)-1B. lincheniformis WS-2), syn diet (basal diet plus 1 × 109 cfu (g diet)-1B. lincheniformis WS-2 and 10 g (kg diet) -1 AOS) or pre diet (basal diet plus 10 g (kg diet) -1 AOS) over a period of 60 days, and the growth performance and various innate immune parameters of the animals were evaluated after 30 and 60 days of feeding. No significant difference in growth performance was observed between the group fed with the syn and the group fed with the pro diet, but both these groups exhibited significant (P < 0.05) enhancement in growth performance compared to the control group. At the same time, both syn and pro diets also resulted in the animals having significantly higher levels of amylase, protease and alginate lyase activities compared to the con diet. Individuals fed with the syn or pro diet showed enhanced levels of various immune enzyme activities, compared to those fed with the con diet. At the end of the growth period, the sea cucumbers were challenged with Vibrio splendidus via intraperitoneal injection. The survival rates of sea cucumbers fed with the syn, pro or pre diet were significantly improved compared to that of sea cucumbers fed with the con diet, with sea cucumbers fed with synbiotic having the highest survival. In addition, increased proportions of Bacillus and Lactococcus were found in the intestinal tract of sea cucumbers fed with the syn diet (9.5% and 7.3%) compared to those of sea cucumbers fed with the pro diet (6.1% and 4.6%), con diet (4.0% and 3.4%), or pre diet (5.2% and 6.8%) after 60 days of feeding. Furthermore, the proportion of Vibrio in the intestinal tracts of sea cucumbers fed with the pro diet (2%) or syn diet (3.1%) was lower than that of sea cucumbers fed with the con diet (5.5%) or pre diet (3.8%), although no significant difference was detected between the pro diet and syn diet groups (P > 0.05). Overall, the results suggested that dietary synbiotic consisting of Bacillus lincheniformis and alginate oligosaccharides (AOS) could have positive benefit for sea cucumber aquaculture.


Assuntos
Bacillus licheniformis , Suplementos Nutricionais , Microbioma Gastrointestinal , Imunidade Inata , Stichopus , Simbióticos , Vibrio/fisiologia , Ração Animal/análise , Animais , Dieta , Distribuição Aleatória , Stichopus/crescimento & desenvolvimento , Stichopus/imunologia , Stichopus/microbiologia
18.
Fish Shellfish Immunol ; 63: 471-479, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28254498

RESUMO

Tussah immunoreactive substance (TIS) comprises a number of active chemicals with various bioactivities. The current study investigated the effects of these substances on the sea cucumber Apostichopus japonicus. The specific growth rate (SGR) of TIS-fed sea cucumbers was significantly enhanced, whereas no significant difference in SGR was observed between those soaked in antibiotics and those fed with basal diet only. TIS also improved the immune response of the animals when given at a dose of 1.0% or 2.0%, as shown by increased phagocytic, lysozyme, superoxide dismutase, alkaline phosphatase, acid phosphatase, and catalase activities following injection with live Vibrio splendidus. At a dose of 1.0% or 2.0%, TIS significantly enhanced the immune ability (P < 0.05) of the sea cucumbers, but except for lysozyme activity, other immune indices were reduced one day after the animals were injected with Vibrio splendidus. However, the values of these immune indexes were still significantly higher compared to those of the control groups (P < 0.05). Intestinal micro flora counts and high-throughput sequencing showed that dietary TIS could improve the amount of probiotic bacteria, yielding a 6-fold increase in Bacillus and 10-fold increase in Lactobacillus for sea cucumbers fed with 2.0% TIS diet compared to the control. Furthermore, TIS-containing diet also greatly reduced the number of harmful bacteria, with the number of Vibrio in sea cucumbers fed with 1%TIS diet decreased by 67% compared to the control. The results thus indicated that TIS increased the growth of sea cucumbers and enhanced their resistance to V. splendidus infection by improving the immunity of the animals. TIS also improved the gut microbiota profiles of the animals by increasing the probiotics and reducing the harmful bacteria within their guts.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/fisiologia , Imunidade Inata , Mariposas/química , Stichopus/microbiologia , Stichopus/fisiologia , Vibrio/fisiologia , Ração Animal/análise , Animais , Dieta , Relação Dose-Resposta a Droga , Mariposas/crescimento & desenvolvimento , Probióticos/análise , Pupa/química , Distribuição Aleatória , Stichopus/crescimento & desenvolvimento , Stichopus/imunologia
19.
J Therm Biol ; 60: 155-61, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27503728

RESUMO

The present study determined the changes in the fatty acid (FA) profiles of juvenile sea cucumber Apostichopus japonicus in response to the varied water temperature. Sea cucumbers with similar size (4.02±0.11g) were cultured for 8 weeks at 14°C, 18°C, 22°C and 26°C, respectively. At the end of the experiment, the specific growth rate (SGR) and the profiles of FAs in neutral lipids and phospholipids of the juvenile sea cucumbers cultured at different temperatures were determined. The SGRs of the sea cucumbers cultured at 26°C significantly decreased 46.3% compared to thos cultured at 18°C. Regression analysis showed that the SGR-temperature (T) relationship can be expressed as SGR=-0.0073T(2)+0.255T -1.0231 (R(2)=0.9936) and the highest SGR was predicted at 17.5°C. For the neutral lipids, the sum of saturated FAs (SFAs), monounsaturated FAs (MUFAs) or polyunsaturated FAs (PUFAs) of the sea cucumbers that were cultured at the water temperature from 18°C-26°C did not change significantly, indicating the insensitivity of FA profiles for the neutral lipids of sea cucumbers in response to increasing water temperature. For phospholipids, the sum of PUFAs in the sea cucumbers dramatically decreased with the gradually increased water temperature. The sum of SFAs and MUFAs of sea cucumbers, however, increased with the gradually elevated water temperature. In particular, the contents of highly unsaturated fatty acids (HUFAs), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA), in the phospholipids of the sea cucumbers decreased 37.2% and 26.1%, respectively, when the water temperature increased from 14°C to 26°C. In summary, the sea cucumbers A. japonicus can regulate the FA compositions, especially the contents of EPA and DHA, in the phospholipids so as to adapt to varied water temperature.


Assuntos
Ácidos Graxos/análise , Stichopus/crescimento & desenvolvimento , Animais , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Stichopus/química , Stichopus/metabolismo , Temperatura , Água/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-27354315

RESUMO

Myostatin (MSTN), also referred to as growth and differentiation factor-8 (GDF-8), is a member of the transforming growth factor-ß superfamily (TGF-ß) and an important negative regulator for skeletal muscle development and growth in vertebrates. However, its function is not clear in invertebrates. In this study, we cloned and analyzed the MSTN gene (Aj-MSTN) from sea cucumber (Apostichopus japonicus). The full-length cDNA sequence of Aj-MSTN gene was composed of 2912bp, which contained a 5' UTR of 487bp, an ORF of 1356bp encoding 452 amino acids and a 3' UTR of 1069bp. The structure of Aj-MSTN included a putative signal peptide, a TGF-ß propeptide domain and a conserved TGF-ß domain. Phylogenetic analysis showed that the Aj-MSTN gene was clustered in the same subgroup with the MSTN-like gene found in Strongylocentrotus purpuratus. Quantitative real-time PCR detection results indicated that the Aj-MSTN gene expressed widely in adult tissues and the highest expression level was observed in the body wall. At different developmental stages, the expression levels were increased significantly at early auricularia and doliolaria stages, and reached the peak at juvenile stage. Six SNPs were identified in 5' flanking region and exons of the Aj-MSTN gene. Association analysis showed that SNP-1, SNP-2 and SNP-4 had significant effects on dry body weight. The results suggested that Aj-MSTN gene could be used as a candidate gene for the selective breeding of A. japonicus.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Miostatina/genética , Stichopus/crescimento & desenvolvimento , Stichopus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Miostatina/química , Especificidade de Órgãos , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...