Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.600
Filtrar
1.
Biophys J ; 123(5): 525-526, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38297835
2.
J Biol Chem ; 300(1): 105521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042484

RESUMO

Myosin essential light chains A1 and A2 are identical isoforms except for an extension of ∼40 amino acids at the N terminus of A1 that binds F-actin. The extension has no bearing on the burst hydrolysis rate (M-ATP → M-ADP-Pi) as determined by chemical quench flow (100 µM isoenzyme). Whereas actomyosin-S1A2 steady state MgATPase (low ionic strength, 20 °C) is hyperbolically dependent on concentration: Vmax 7.6 s-1, Kapp 6.4 µM (F-actin) and Vmax 10.1 s-1, Kapp 5.5 µM (native thin filaments, pCa 4), the relationship for myosin-S1A1 is bimodal; an initial rise at low concentration followed by a decline to one-third the Vmax of S1A2, indicative of more than one rate-limiting step and A1-enforced flux through the slower actomyosin-limited hydrolysis pathway. In double-mixing stopped-flow with an indicator, Ca(II)-mediated activation of Pi dissociation (regulatedAM-ADP-Pi → regulatedAM-ADP + Pi) is attenuated by A1 attachment to thin filaments (pCa 4). The maximum accelerated rates of Pi dissociation are: 81 s-1 (S1A1, Kapp 8.9 µM) versus 129 s-1 (S1A2, Kapp 58 µM). To investigate apomyosin-S1-mediated activation, thin filaments (EGTA) are premixed with a given isomyosin-S1 and double-mixing is repeated with myosin-S1A1 in the first mix. Similar maximum rates of Pi dissociation are observed, 44.5 s-1 (S1A1) and 47.1 s-1 (S1A2), which are lower than for Ca(II) activation. Overall, these results biochemically demonstrate how the longer light chain A1 can contribute to slower contraction and higher force and the shorter version A2 to faster contraction and lower force, consistent with their distribution in different types of striated muscle.


Assuntos
Actomiosina , Cadeias Leves de Miosina , Actinas/metabolismo , Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise , Isoenzimas/metabolismo , Cinética , Cadeias Leves de Miosina/química , Subfragmentos de Miosina/metabolismo , Humanos , Animais
3.
J Biol Chem ; 300(1): 105565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103642

RESUMO

The biochemical SRX (super-relaxed) state of myosin has been defined as a low ATPase activity state. This state can conserve energy when the myosin is not recruited for muscle contraction. The SRX state has been correlated with a structurally defined ordered (versus disordered) state of muscle thick filaments. The two states may be linked via a common interacting head motif (IHM) where the two heads of heavy meromyosin (HMM), or myosin, fold back onto each other and form additional contacts with S2 and the thick filament. Experimental observations of the SRX, IHM, and the ordered form of thick filaments, however, do not always agree, and result in a series of unresolved paradoxes. To address these paradoxes, we have reexamined the biochemical measurements of the SRX state for porcine cardiac HMM. In our hands, the commonly employed mantATP displacement assay was unable to quantify the population of the SRX state with all data fitting very well by a single exponential. We further show that mavacamten inhibits the basal ATPases of both porcine ventricle HMM and S1 (Ki, 0.32 and 1.76 µM respectively) while dATP activates HMM cooperatively without any evidence of an SRX state. A combination of our experimental observations and theories suggests that the displacement of mantATP in purified proteins is not a reliable assay to quantify the SRX population. This means that while the structurally defined IHM and ordered thick filaments clearly exist, great care must be employed when using the mantATP displacement assay.


Assuntos
Trifosfato de Adenosina , Ensaios Enzimáticos , Miosina não Muscular Tipo IIA , Suínos , ortoaminobenzoatos , Animais , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Benzilaminas/farmacologia , Ensaios Enzimáticos/métodos , Ensaios Enzimáticos/normas , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Ventrículos do Coração/metabolismo , Contração Miocárdica , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , ortoaminobenzoatos/metabolismo , Uracila/análogos & derivados , Uracila/farmacologia
4.
Biochim Biophys Acta Gen Subj ; 1867(12): 130488, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838354

RESUMO

BACKGROUND: Associations between actin filaments (AFs) and intermediate filaments (IFs) are frequently observed in living cells. The crosstalk between these cytoskeletal components underpins cellular organization and dynamics; however, the molecular basis of filamentous interactions is not fully understood. Here, we describe the mode of interaction between AFs and desmin IFs (DIFs) in a reconstituted in vitro system. METHODS: AFs (rabbit skeletal muscle) and DIFs (chicken gizzard) were labeled with fluorescent dyes. DIFs were immobilized on a heavy meromyosin (HMM)-coated collodion surface. HMM-driven AFs with ATP hydrolysis was assessed in the presence of DIFs. Images of single filaments were obtained using fluorescence microscopy. Vector changes in the trajectories of single AFs were calculated from microscopy images. RESULTS: AF speed transiently decreased upon contact with DIF. The difference between the incoming and outgoing angles of a moving AF broadened upon contact with a DIF. A smaller incoming angle tended to result in a smaller outgoing angle in a nematic manner. The percentage of moving AFs decreased with an increasing DIF density, but the speed of the moving AFs was similar to that in the no-desmin control. An abundance of DIFs tended to exclude AFs from the HMM-coated surfaces. CONCLUSIONS: DIFs agitate the movement of AFs with the orientation. DIFs can bind to HMMs and weaken actin-myosin interactions. GENERAL SIGNIFICANCE: The study indicates that apart from the binding strength, the accumulation of weak interactions characteristic of filamentous structures may affect the dynamic organization of cell architecture.


Assuntos
Citoesqueleto de Actina , Filamentos Intermediários , Animais , Coelhos , Filamentos Intermediários/metabolismo , Desmina/análise , Desmina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Miosinas/metabolismo , Subfragmentos de Miosina/análise , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo
5.
Arch Biochem Biophys ; 747: 109753, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714251

RESUMO

The MF30 monoclonal antibody, which binds to the myosin subfragment-2 (S2), was found to increase the extent of myofibril shortening. Yet, previous observations found no effect of this antibody on actin sliding over myosin during in vitro motility assays with purified proteins in which myosin binding protein C (MyBPC) was absent. MF30 is hypothesized to enhance the availability of myosin heads (subfragment-1 or S1) to bind actin by destabilizing the myosin S2 coiled-coil and sterically blocking S2 from binding S1. The mechanism of action likely includes MF30's substantial size, thereby inhibiting S1 heads and MyBPC from binding S2. Hypothetically, MF30 should enhance the ON state of myosin, thereby increasing muscle contraction. Our findings indicate that MF30 binds preferentially to the unfolded heavy chains of S2, displaying positive cooperativity. However, the dose-response curve of MF30's enhancement of myofibril shortening did not suggest complex interactions with S2. Single, double, and triple-stained myofibrils with increasing amounts of antibodies against myosin rods indicate a possible competition with MyBPC. Additional assays revealed decreased fluorescence intensity at the C-zone (central zone in the sarcomere, where MyBPC is located), where MyBPC may inhibit MF30 binding. Another monoclonal antibody named MF20, which binds to the light meromyosin (LMM) without affecting myofibril contraction, showed less reduction in fluorescence intensity at the C-zone in expansion microscopy than MF30. Expansion microscopy images of myofibrils labeled with MF20 revealed labeling of the A-band (anisotropic band) and a slight reduction in the labeling at the C-zone. The staining pattern obtained from the expansion microscopy image was consistent with images from photolocalization microscopy which required the synthesis of unique photoactivatable quantum dots, and Zeiss Airyscan imaging as well as alternative expansion microscopy digestion methods. Consistent with the hypothesis that MF30 competes with MyBPC binding to S2, cardiac tissue from MyBPC knockout mice was stained more intensely, especially in the C-zone, by MF30 compared to the wild type.


Assuntos
Actinas , Microscopia , Animais , Camundongos , Actinas/metabolismo , Ligação Competitiva , Miosinas/metabolismo , Subfragmentos de Miosina/metabolismo , Anticorpos Monoclonais
6.
Arch Biochem Biophys ; 726: 109240, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667907

RESUMO

Rabbit cardiac myosin contains fewer cysteine residues than the skeletal myosin (7 and 8.8 moles/105 gm. of myosin, respectively). A similar difference is found between the cysteine content of rabbit cardiac and skeletal heavy meromyosins; the cardiac heavy meromyosin contains 8.9 moles/105 gm. of protein as compared to 11 moles in the skeletal heavy meromyosin. In skeletal myosin, actomyosin, and myofibrils the Ca++-ATPase, Ca++-ITPase, and EDTA-ATPase activities are about three times higher than those of cardiac myosin, actomyosin, and myofibrils; whereas the skeletal to cardiac actomyosin-ATPase activity ratio is higher. The ATPase activities of both cardiac and skeletal myosins, actomyosins, and myofibrils, however, are close to each other when determined in the presence of Mg++ at high ionic strength. The abilities of cardiac and skeletal myosins to combine with actin at either high or low ionic strength are also essentially the same. The Ca++-ATPase, Ca++-ITPase, EDTA-ATPase, and actomyosin-ATPase activities of cardiac myosin, heavy meromyosin, and myofibrils, unlike those of skeletal myosin, heavy meromyosin, and myofibrils, do not increase over pH 8.0. The ATPase activities of cardiac and skeletal myosins in the presence of Mg++ at high ionic strength, on the other hand, are affected similarly by changes of pH. In cardiac myosin, heavy meromyosin, and myofibrils, the Ca++activated ATPase is less sensitive to high KC1 concentrations than is that of skeletal myosin, heavy meromyosin, and myofibrils.


Assuntos
Actomiosina , Subfragmentos de Miosina , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Miosinas Cardíacas , Cisteína , Miofibrilas/metabolismo , Subfragmentos de Miosina/metabolismo , Miosinas/metabolismo , Coelhos
7.
Macromol Biosci ; 22(5): e2100471, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35261163

RESUMO

The reconstituted motility system of actin-myosin is expected to be used in bioinspired transport devices, in which carried materials are attached to either moving actin filaments or walking myosin molecules. However, the dependence of the ability to transport on the size of the attached materials is still inadequately understood. Here, as carried materials, polyethylene glycols (PEGs) of various sizes are covalently bound to actin filaments, and the motility of PEG-attached filaments on a heavy meromyosin (HMM) immobilized on a glass surface is observed via fluorescence microscopy. Full attachment of 2 kDa PEG, with an approximately 2 nm gyration radius, decreases the velocity and fraction of moving actin filaments by approximately 10% relative to unattached filaments. For the 5 kDa PEG, the fraction of moving filaments is decreased by approximately 70% even when the filaments contain only 20% PEG-attached actin. The attachment of both sizes of PEGs suppresses the actin-activated ATPase activity at the same level. These results suggest that actin filaments can carry PEGs up to 2 kDa having the same size as actin monomers, while the rate of ATP hydrolysis is limited. The size dependence may provide a criterion for material delivery via actin filaments in nanotransport applications.


Assuntos
Actinas , Polímeros , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Subfragmentos de Miosina/metabolismo , Miosinas/metabolismo , Polímeros/metabolismo
8.
Biochim Biophys Acta Gen Subj ; 1866(6): 130132, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307509

RESUMO

BACKGROUND: The interaction of N-terminal extension of the myosin A1 essential light chain (A1 ELC) with actin is receiving increasing attention as a target in utilizing synthetic A1 ELC N-terminal-derived peptides in cardiac dysfunction therapy. METHODS: To elucidate the mechanism by which these peptides regulate actin-myosin interaction, here we have investigated their effects on the myosin subfragment 1 (S1)-induced polymerization of G-actin. RESULTS: The MLCFpep and MLCSpep peptides spanning the 3-12 of A1 ELC sequences from fast and slow skeletal muscle, respectively, increased the rate of actin polymerization not only by S1(A2) but also the rate of S1(A1)-induced actin polymerization, suggesting that they did not interfere with the direct binding of A1 ELC with actin. The efficiency of actin polymerization in the presence of the N-terminal ELC peptides depended on their sequence. Substitution of aspartic acid for neutral asparagine at position 5 of MLCFpep dramatically enhanced its ability to stimulate S1-induced polymerization and enabled it to initiate polymerization of G-actin in the absence of S1. CONCLUSIONS: These and other results presented in this work suggest that the modulation of myosin motor activity by N-terminal ELC peptides is exerted through a change in actin filament conformation rather than through blocking the A1 ELC-actin interaction. GENERAL SIGNIFICANCE: The results imply the possibility of enhancing therapeutic effects of these peptides by modifications of their sequence.


Assuntos
Actinas , Cadeias Leves de Miosina , Actinas/metabolismo , Músculo Esquelético/metabolismo , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo
9.
Acta Crystallogr D Struct Biol ; 77(Pt 10): 1233-1240, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605427

RESUMO

Time-resolved cryo-electron microscopy (TrEM) allows the study of proteins under non-equilibrium conditions on the millisecond timescale, permitting the analysis of large-scale conformational changes or assembly and disassembly processes. However, the technique is developing and there have been few comparisons with other biochemical kinetic studies. Using current methods, the shortest time delay is on the millisecond timescale (∼5-10 ms), given by the delay between sample application and vitrification, and generating longer time points requires additional approaches such as using a longer delay line between the mixing element and nozzle, or an incubation step on the grid. To compare approaches, the reaction of ATP with the skeletal actomyosin S1 complex was followed on grids prepared with a 7-700 ms delay between mixing and vitrification. Classification of the cryo-EM data allows kinetic information to be derived which agrees with previous biochemical measurements, showing fast dissociation, low occupancy during steady-state hydrolysis and rebinding once ATP has been hydrolysed. However, this rebinding effect is much less pronounced when on-grid mixing is used and may be influenced by interactions with the air-water interface. Moreover, in-flow mixing results in a broader distribution of reaction times due to the range of velocities in a laminar flow profile (temporal spread), especially for longer time delays. This work shows the potential of TrEM, but also highlights challenges and opportunities for further development.


Assuntos
Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Microfluídica/métodos , Músculo Esquelético/metabolismo , Subfragmentos de Miosina/química , Manejo de Espécimes/métodos , Animais , Coelhos
10.
Biophys J ; 120(11): 2222-2236, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864791

RESUMO

Cardiac muscle contraction is driven by the molecular motor myosin, which uses the energy from ATP hydrolysis to generate a power stroke when interacting with actin filaments, although it is unclear how this mechanism is impaired by mutations in myosin that can lead to heart failure. We have applied a fluorescence resonance energy transfer (FRET) strategy to investigate structural changes in the lever arm domain of human ß-cardiac myosin subfragment 1 (M2ß-S1). We exchanged the human ventricular regulatory light chain labeled at a single cysteine (V105C) with Alexa 488 onto M2ß-S1, which served as a donor for Cy3ATP bound to the active site. We monitored the FRET signal during the actin-activated product release steps using transient kinetic measurements. We propose that the fast phase measured with our FRET probes represents the macroscopic rate constant associated with actin-activated rotation of the lever arm during the power stroke in M2ß-S1. Our results demonstrated M2ß-S1 has a slower actin-activated power stroke compared with fast skeletal muscle myosin and myosin V. Measurements at different temperatures comparing the rate constants of the actin-activated power stroke and phosphate release are consistent with a model in which the power stroke occurs before phosphate release and the two steps are tightly coupled. We suggest that the actin-activated power stroke is highly reversible but followed by a highly irreversible phosphate release step in the absence of load and free phosphate. We demonstrated that hypertrophic cardiomyopathy (R723G)- and dilated cardiomyopathy (F764L)-associated mutations both reduced actin activation of the power stroke in M2ß-S1. We also demonstrate that both mutations alter in vitro actin gliding in the presence and absence of load. Thus, examining the structural kinetics of the power stroke in M2ß-S1 has revealed critical mutation-associated defects in the myosin ATPase pathway, suggesting these measurements will be extremely important for establishing structure-based mechanisms of contractile dysfunction.


Assuntos
Actinas , Cardiomiopatias , Actinas/genética , Trifosfato de Adenosina , Miosinas Cardíacas , Humanos , Mutação , Subfragmentos de Miosina
11.
J Biol Chem ; 296: 100471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639160

RESUMO

Actin-myosin mediated contractile forces are crucial for many cellular functions, including cell motility, cytokinesis, and muscle contraction. We determined the effects of ten actin-binding compounds on the interaction of cardiac myosin subfragment 1 (S1) with pyrene-labeled F-actin (PFA). These compounds, previously identified from a small-molecule high-throughput screen (HTS), perturb the structural dynamics of actin and the steady-state actin-activated myosin ATPase activity. However, the mechanisms underpinning these perturbations remain unclear. Here we further characterize them by measuring their effects on PFA fluorescence, which is decreased specifically by the strong binding of myosin to actin. We measured these effects under equilibrium and steady-state conditions, and under transient conditions, in stopped-flow experiments following addition of ATP to S1-bound PFA. We observed that these compounds affect early steps of the myosin ATPase cycle to different extents. They increased the association equilibrium constant K1 for the formation of the strongly bound collision complex, indicating increased ATP affinity for actin-bound myosin, and decreased the rate constant k+2 for subsequent isomerization to the weakly bound ternary complex, thus slowing the strong-to-weak transition that actin-myosin interaction undergoes early in the ATPase cycle. The compounds' effects on actin structure allosterically inhibit the kinetics of the actin-myosin interaction in ways that may be desirable for treatment of hypercontractile forms of cardiomyopathy. This work helps to elucidate the mechanisms of action for these compounds, several of which are currently used therapeutically, and sets the stage for future HTS campaigns that aim to discover new drugs for treatment of heart failure.


Assuntos
Actinas/química , Actinas/metabolismo , Miosinas Cardíacas/metabolismo , Actinas/efeitos dos fármacos , Adenosina Trifosfatases/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Animais , Miosinas Cardíacas/efeitos dos fármacos , Miosinas Cardíacas/fisiologia , Bovinos , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Cinética , Contração Muscular/fisiologia , Subfragmentos de Miosina/efeitos dos fármacos , Subfragmentos de Miosina/metabolismo , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Física , Ligação Proteica , Pirenos/química , Coelhos , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Food Chem ; 346: 128910, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33460961

RESUMO

Phosphates are commonly included in meat processing, where oxidation is inevitable, to improve water binding. This present study attempted to reveal the interactive roles of protein oxidation and tetrasodium pyrophosphate (TSPP) on the crosslinking pattern of myosin mediated by transglutaminase (TGase). Mild oxidation at 1 mM H2O2 facilitated the TGase-initiated crosslinking, with the dominate crosslinking site shifted from S1 (in nonoxidized myosin) to Rod. The introduction of TSPP alleviated the oxidation stress on proteins, and was conductive to the crosslinking reaction notably at the LMM domain. The crosslinking sites in untreated myosin were identified as Gln-613 (S1) and Gln-1498 (LMM) by amino-acid sequence analysis, while strongly oxidation resulted in the loss of Gln-1498. Contrastively, four new reactive crosslinking sites were generated by TSPP, one (Gln-558/Gln-567) located on S1 and three (Gln-1362, Gln-1374, and Gln-1423/Gln-1426) on LMM. Yet, Gln-1362 was eliminated under strong oxidation at 50 mM H2O2.


Assuntos
Proteínas de Bactérias/metabolismo , Difosfatos/química , Subfragmentos de Miosina/metabolismo , Transglutaminases/metabolismo , Sequência de Aminoácidos , Animais , Peróxido de Hidrogênio/química , Carne/análise , Subfragmentos de Miosina/química , Oxirredução , Suínos
13.
J Muscle Res Cell Motil ; 42(2): 137-147, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32929610

RESUMO

Two single mutations, R694N and E45Q, were introduced in the beta isoform of human cardiac myosin to remove permanent salt bridges E45:R694 and E98:R694 in the SH1-SH2 helix of the myosin head. Beta isoform-specific bridges E45:R694 and E98:R694 were discovered in the molecular dynamics simulations of the alpha and beta myosin isoforms. Alpha and beta isoforms exhibit different kinetics, ADP dissociates slower from actomyosin containing beta myosin isoform, therefore, beta myosin stays strongly bound to actin longer. We hypothesize that the electrostatic interactions in the SH1-SH2 helix modulate the affinity of ADP to actomyosin, and therefore, the time of the strong actomyosin binding. Wild type and the mutants of the myosin head construct (1-843 amino acid residues) were expressed in differentiated C2C12 cells, and the duration of the strongly bound state of actomyosin was characterized using transient kinetics spectrophotometry. All myosin constructs exhibited a fast rate of ATP binding to actomyosin and a slow rate of ADP dissociation, showing that ADP release limits the time of the strongly bound state of actomyosin. The mutant R694N showed a faster rate of ADP release from actomyosin, compared to the wild type and the E45Q mutant, thus indicating that electrostatic interactions within the SH1-SH2 helix region of human cardiac myosin modulate ADP release and thus, the duration of the strongly bound state of actomyosin.


Assuntos
Actomiosina , Miosinas Cardíacas , Actinas/metabolismo , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina , Miosinas Cardíacas/genética , Humanos , Cinética , Subfragmentos de Miosina/metabolismo , Ligação Proteica , Eletricidade Estática
14.
J Biol Chem ; 296: 100114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234590

RESUMO

A hallmark feature of myosin-II is that it can spontaneously self-assemble into bipolar synthetic thick filaments (STFs) in low-ionic-strength buffers, thereby serving as a reconstituted in vitro model for muscle thick filaments. Although these STFs have been extensively used for structural characterization, their functional evaluation has been limited. In this report, we show that myosins in STFs mirror the more electrostatic and cooperative interactions that underlie the energy-sparing super-relaxed (SRX) state, which are not seen using shorter myosin subfragments, heavy meromyosin (HMM) and myosin subfragment 1 (S1). Using these STFs, we show several pathophysiological insults in hypertrophic cardiomyopathy, including the R403Q myosin mutation, phosphorylation of myosin light chains, and an increased ADP:ATP ratio, destabilize the SRX population. Furthermore, WT myosin containing STFs, but not S1, HMM, or STFs-containing R403Q myosin, recapitulated the ADP-induced destabilization of the SRX state. Studies involving a clinical-stage small-molecule inhibitor, mavacamten, showed that it is more effective in not only increasing myosin SRX population in STFs than in S1 or HMM but also in increasing myosin SRX population equally well in STFs made of healthy and disease-causing R403Q myosin. Importantly, we also found that pathophysiological perturbations such as elevated ADP concentration weakens mavacamten's ability to increase the myosin SRX population, suggesting that mavacamten-bound myosin heads are not permanently protected in the SRX state but can be recruited into action. These findings collectively emphasize that STFs serve as a valuable tool to provide novel insights into the myosin SRX state in healthy, diseased, and therapeutic conditions.


Assuntos
Benzilaminas/química , Benzilaminas/metabolismo , Miosinas/metabolismo , Uracila/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo , Contração Miocárdica/fisiologia , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Miosinas/química , Fosforilação/fisiologia , Uracila/química , Uracila/metabolismo
15.
Biochemistry ; 59(50): 4725-4734, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33290064

RESUMO

The phosphorylated and unphosphorylated forms of tropomyosin Tpm1.1(α) are prepared from adult rabbit heart and compared biochemically. Electrophoresis confirms the high level of enrichment of the chromatography fractions and is consistent with a single site of phosphorylation. Covalently bound phosphate groups at position 283 of Tpm1.1(α) increase the rate of digestion at Leu-169, suggestive of a conformational rearrangement that extends to the midregion. Such a rearrangement, which is supported by ellipticity measurements between 25 and 42 °C, is consistent with a phosphorylation-mediated tightening of the interaction between various myofilament components. In a nonradioactive, co-sedimentation assay [30 mM KCl, 1 mM Mg(II), and 4 °C], phosphorylated Tpm1.1(α) displays a higher affinity for F-actin compared to that of the unphosphorylated control (Kd, 0.16 µM vs 0.26 µM). Phosphorylation decreases the concentration of thin filaments (pCa 4 plus ATP) required to attain a half-maximal rate of release of product from a pre-power stroke complex [myosin-S1-2-deoxy-3-O-(N-methylanthraniloyl)ADP-Pi], as investigated by double-mixing stopped-flow fluorescence, suggestive of a change in the proportion of active (turned on) and inactive (turned off) conformers, but similar maximum rates of product release are observed with either type of reconstituted thin filament. Phosphorylated thin filaments (pCa 4 and 8) display a higher affinity for myosin-S1(ADP) versus the control scenario without affecting isotherm steepness. Specific activities of ATP and Tpm1.1(α) are determined during an in vitro incubation of rat cardiac tissue [12 day-old, 50% phosphorylated Tpm1.1(α)] with [32P]orthophosphate. The incorporation of an isotope into tropomyosin lags behind that of ATP by a factor of approximately 10, indicating that transfer is a comparatively slow process.


Assuntos
Tropomiosina/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Técnicas In Vitro , Cinética , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Fosforilação , Conformação Proteica , Estabilidade Proteica , Proteólise , Coelhos , Ratos , Serina/química , Tropomiosina/metabolismo , Troponina/química , Troponina/metabolismo
16.
Int J Biol Macromol ; 163: 1147-1153, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32668307

RESUMO

Electrostatic interactions between actin filaments and myosin molecules, which are ubiquitous proteins in eukaryotes, are crucial for their enzymatic activity and motility. Nonspecific electrostatic interactions between proteins are unavoidable in cells; therefore, it is worth exploring how ambient proteins, such as polyelectrolytes, affect actin-myosin functions. To understand the effect of counterionic proteins on actin-myosin, we examined ATPase activity and sliding velocity via actin-myosin interactions in the presence of the basic model protein hen egg lysozyme. In an in vitro motility assay with ATP, the sliding velocity of actin filaments on heavy meromyosin (HMM) decreased with increasing lysozyme concentrations. Actin filaments were completely stalled at a lysozyme concentration above 0.08 mg/mL. Lysozyme decreased the ATP hydrolysis rate of the actin-HMM complex but not that HMM alone. Co-sedimentation assays revealed that lysozyme enhanced the binding of HMM to actin filaments in the presence of ATP. Additionally, lysozyme could bind to actin and myosin filaments. The inhibitory effect of poly-l-lysine, histone mixture, and lactoferrin on the motility of actin-myosin was higher than that of lysozyme. Thus, nonspecific electrostatic interactions of basic proteins are involved in the bundling of actin filaments and modulation of essential functions of the actomyosin complex.


Assuntos
Actinas/metabolismo , Muramidase/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Subfragmentos de Miosina/metabolismo , Ligação Proteica/fisiologia , Coelhos , Eletricidade Estática
17.
Proc Natl Acad Sci U S A ; 116(33): 16384-16393, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358631

RESUMO

High-speed atomic force microscopy (HS-AFM) can be used to study dynamic processes with real-time imaging of molecules within 1- to 5-nm spatial resolution. In the current study, we evaluated the 3-state model of activation of cardiac thin filaments (cTFs) isolated as a complex and deposited on a mica-supported lipid bilayer. We studied this complex for dynamic conformational changes 1) at low and high [Ca2+] (pCa 9.0 and 4.5), and 2) upon myosin binding to the cTF in the nucleotide-free state or in the presence of ATP. HS-AFM was used to directly visualize the tropomyosin-troponin complex and Ca2+-induced tropomyosin movements accompanied by structural transitions of actin monomers within cTFs. Our data show that cTFs at relaxing or activating conditions are not ultimately in a blocked or activated state, respectively, but rather the combination of states with a prevalence that is dependent on the [Ca2+] and the presence of weakly or strongly bound myosin. The weakly and strongly bound myosin induce similar changes in the structure of cTFs as confirmed by the local dynamical displacement of individual tropomyosin strands in the center of a regulatory unit of cTF at the relaxed and activation conditions. The displacement of tropomyosin at the relaxed conditions had never been visualized directly and explains the ability of myosin binding to TF at the relaxed conditions. Based on the ratios of nonactivated and activated segments within cTFs, we proposed a mechanism of tropomyosin switching from different states that includes both weakly and strongly bound myosin.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/ultraestrutura , Subfragmentos de Miosina/ultraestrutura , Tropomiosina/ultraestrutura , Troponina/ultraestrutura , Citoesqueleto de Actina/química , Actinas/química , Animais , Cálcio/metabolismo , Bicamadas Lipídicas/química , Modelos Moleculares , Imagem Molecular , Contração Muscular/genética , Músculo Esquelético/química , Músculo Esquelético/ultraestrutura , Miocárdio/química , Miocárdio/ultraestrutura , Subfragmentos de Miosina/química , Miosinas/química , Ligação Proteica , Coelhos , Sarcômeros/química , Sarcômeros/ultraestrutura , Tropomiosina/química , Troponina/química
18.
Biochem Biophys Res Commun ; 515(2): 372-377, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31155291

RESUMO

Substitution of Ala for Thr residue in 155th position in γ-tropomyosin (Tpm3.12) is associated with muscle weakness. To understand the mechanisms of this defect, we studied the Ca2+-sensitivity of thin filaments in solution and multistep changes in mobility and spatial arrangement of actin, Tpm, and myosin heads during the ATPase cycle in reconstituted muscle fibres, using the polarized fluorescence microscopy. It was shown that the Ala155Thr (A155T) mutation increased the Ca2+-sensitivity of the thin filaments in solution. In the absence of the myosin heads in the muscle fibres, the mutation did not alter the ability of troponin to switch the thin filaments on and off at high and low Ca2+, respectively. However, upon the binding of myosin heads to the thin filaments at low Ca2+, the mutant Tpm was found to be markedly closer to the open position, than the wild-type Tpm. In the presence of the mutant Tpm, switching on of actin monomers and formation of the strong-binding state of the myosin heads were observed at low Ca2+, which indicated a higher myofilament Ca2+-sensitivity. The mutation decreased the amount of myosin heads bound strongly to actin at high Ca2+ and increased the number of these heads at relaxation. It is suggested that direct binding of myosin to Tpm may be one оf the reasons for muscle weakness associated with the A155T mutation. The use of reagents that decrease the Ca2+-sensitivity of the troponin complex may not be adequate to restore muscle function in patients with the A155T mutation.


Assuntos
Cálcio/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Tropomiosina/genética , Tropomiosina/fisiologia , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Animais , Polarização de Fluorescência , Humanos , Técnicas In Vitro , Masculino , Debilidade Muscular/etiologia , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Subfragmentos de Miosina/metabolismo , Coelhos , Tropomiosina/química , Troponina/metabolismo
19.
Biophys J ; 116(12): 2246-2252, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31126584

RESUMO

Striated muscle contraction occurs when myosin thick filaments bind to thin filaments in the sarcomere and generate pulling forces. This process is regulated by calcium, and it can be perturbed by pathological conditions (e.g., myopathies), physiological adaptations (e.g., ß-adrenergic stimulation), and pharmacological interventions. Therefore, it is important to have a methodology to robustly determine the impact of these perturbations and statistically evaluate their effects. Here, we present an approach to measure the equilibrium constants that govern muscle activation, estimate uncertainty in these parameters, and statistically test the effects of perturbations. We provide a MATLAB-based computational tool for these analyses, along with easy-to-follow tutorials that make this approach accessible. The hypothesis testing and error estimation approaches described here are broadly applicable, and the provided tools work with other types of data, including cellular measurements. To demonstrate the utility of the approach, we apply it to elucidate the biophysical mechanism of a mutation that causes familial hypertrophic cardiomyopathy. This approach is generally useful for studying muscle diseases and therapeutic interventions that target muscle contraction.


Assuntos
Biologia Computacional , Cardiopatias/fisiopatologia , Músculos/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiopatias/genética , Cardiopatias/patologia , Modelos Cardiovasculares , Músculos/patologia , Mutação , Subfragmentos de Miosina/metabolismo , Incerteza
20.
Proc Natl Acad Sci U S A ; 116(24): 11731-11736, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31142654

RESUMO

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) accelerates cardiac contractility. However, the mechanisms by which cMyBP-C phosphorylation increases contractile kinetics have not been fully elucidated. In this study, we tested the hypothesis that phosphorylation of cMyBP-C releases myosin heads from the inhibited super-relaxed state (SRX), thereby determining the fraction of myosin available for contraction. Mice with various alanine (A) or aspartic acid (D) substitutions of the three main phosphorylatable serines of cMyBP-C (serines 273, 282, and 302) were used to address the association between cMyBP-C phosphorylation and SRX. Single-nucleotide turnover in skinned ventricular preparations demonstrated that phosphomimetic cMyBP-C destabilized SRX, whereas phospho-ablated cMyBP-C had a stabilizing effect on SRX. Strikingly, phosphorylation at serine 282 site was found to play a critical role in regulating the SRX. Treatment of WT preparations with protein kinase A (PKA) reduced the SRX, whereas, in nonphosphorylatable cMyBP-C preparations, PKA had no detectable effect. Mice with stable SRX exhibited reduced force production. Phosphomimetic cMyBP-C with reduced SRX exhibited increased rates of tension redevelopment and reduced binding to myosin. We also used recombinant myosin subfragment-2 to disrupt the endogenous interaction between cMyBP-C and myosin and observed a significant reduction in the population of SRX myosin. This peptide also increased force generation and rate of tension redevelopment in skinned fibers. Taken together, this study demonstrates that the phosphorylation-dependent interaction between cMyBP-C and myosin is a determinant of the fraction of myosin available for contraction. Furthermore, the binding between cMyBP-C and myosin may be targeted to improve contractile function.


Assuntos
Miosinas Cardíacas/metabolismo , Proteínas de Transporte/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação/fisiologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cinética , Camundongos , Camundongos Transgênicos , Contração Miocárdica/fisiologia , Subfragmentos de Miosina/metabolismo , Sarcômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...