Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.829
Filtrar
1.
Microb Biotechnol ; 17(6): e14473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877615

RESUMO

Poly-L-lactic acid (PLLA) is currently the most abundant bioplastic; however, limited environmental biodegradability and few recycling options diminish its value as a biodegradable commodity. Enzymatic recycling is one strategy for ensuring circularity of PLLA, but this approach requires a thorough understanding of enzymatic mechanisms and protein engineering strategies to enhance activity. In this study, we engineer PLLA depolymerizing subtilisin enzymes originating from Bacillus species to elucidate the molecular mechanisms dictating their PLLA depolymerization activity and to improve their function. The surface-associated amino acids of two closely related subtilisin homologues originating from Bacillus subtilis (BsAprE) and Bacillus pumilus (BpAprE) were compared, as they were previously engineered to have nearly identical active sites, but still varied greatly in PLLA depolymerizing activity. Further analysis identified several surface-associated amino acids in BpAprE that lead to enhanced PLLA depolymerization activity when engineered into BsAprE. In silico protein modelling demonstrated increased enzyme surface hydrophobicity in engineered BsAprE variants and revealed a structural motif favoured for PLLA depolymerization. Experimental evidence suggests that increases in activity are associated with enhanced polymer binding as opposed to substrate specificity. These data highlight enzyme adsorption as a key factor in PLLA depolymerization by subtilisins.


Assuntos
Poliésteres , Poliésteres/metabolismo , Poliésteres/química , Adsorção , Polimerização , Bacillus/enzimologia , Bacillus/genética , Subtilisinas/química , Subtilisinas/genética , Subtilisinas/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/química , Modelos Moleculares , Engenharia de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
2.
Food Res Int ; 188: 114499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823844

RESUMO

The aim of this study was to evaluate the effect of the enzymatic hydrolysis, performed using Alcalase and Protamex enzymes, on the technological functionalities and the antioxidant capacity of whey protein hydrolysates (WPHs) to identify the conditions allowing to obtain target functionality/ies. Samples were characterized for hydrolysis degree (DH), molecular weight distribution, structural properties, and food-related functionalities. Free sulfhydryl groups and surface hydrophobicity significantly decreased with the increase in DH, regardless of the used enzyme. The foaming and antioxidant properties of Alcalase WPHs were higher as compared to those of WPI, reaching the maximum value at DH = 18-20 %, while higher DH resulted in impaired functionality. Gelling properties were guaranteed when WPI was hydrolysed by Protamex at DH < 15 % while foaming and antioxidant abilities were fostered at 15 < DH < 21 %. These results were well correlated with MW distribution and were rationalized into a road map which represents a useful tool in the selection of proper hydrolysis conditions (time, DH, enzyme type) to obtain WPHs with tailored functionalities. Research outcomes highlighted the possibility to drive protein hydrolysis to optimize the desired functionality/ies.


Assuntos
Antioxidantes , Interações Hidrofóbicas e Hidrofílicas , Hidrolisados de Proteína , Proteínas do Soro do Leite , Antioxidantes/química , Proteínas do Soro do Leite/química , Hidrólise , Hidrolisados de Proteína/química , Subtilisinas/metabolismo , Subtilisinas/química , Peso Molecular , Subtilisina/metabolismo , Subtilisina/química
3.
Food Chem ; 452: 139550, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735108

RESUMO

A green strategy employing water as solvent has been adopted to obtain protein hydrolysates from fish meal (FM), its water-soluble fraction (WSP), and its non-water-soluble fraction (NSP). The techno-functional properties of the hydrolysates have been investigated and compared to hydrolysates obtained with Alcalase®. In general, SWH hydrolysates presented higher content of free amino acids and higher degree of hydrolysis, which reflected on the molecular size distribution. However, Alcalase® hydrolysates presented better solubility (from 74 ± 4% for NSP at pH = 2 up to 99 ± 1% for WSP at pH = 4-7). According to fluorescence experiments, FM and NSP hydrolysates showed the highest surface hydrophobicity, which has been related to better emulsifying properties and higher emulsion stability. The emulsions stabilized with 2%wt. of SWH-treated NSP showed the smallest particle sizes, with D[4,3] = 155 nm at day 0, and good stability, with D[4,3] = 220 nm at day 7, proving that water fractionation followed by SWH treatment is a good method to improve the techno-functional properties of the hydrolysates.


Assuntos
Produtos Pesqueiros , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Hidrolisados de Proteína , Hidrólise , Hidrolisados de Proteína/química , Animais , Produtos Pesqueiros/análise , Peixes , Solubilidade , Emulsões/química , Química Verde , Fracionamento Químico , Aminoácidos/química , Subtilisinas/química , Subtilisinas/metabolismo
4.
Nat Commun ; 15(1): 3762, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704378

RESUMO

Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Epitopos , Flagelina , Espécies Reativas de Oxigênio , Subtilisinas , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Epitopos/imunologia , Epitopos/metabolismo , Flagelina/metabolismo , Flagelina/imunologia , Mutação , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Subtilisinas/metabolismo , Subtilisinas/genética
5.
Arch Biochem Biophys ; 757: 110026, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718957

RESUMO

Heterologous expression of nattokinase, a potent fibrinolytic enzyme, has been successfully carried out in various microorganisms. However, the successful expression of this enzyme as a soluble protein was not achieved in E. coli. This study delves into the expression of nattokinase in E. coli as a soluble protein followed by its biochemical characterization and functional analysis for fibrinolytic activity. E. coli BL21C41 and pET32a vector host strain with pGro7 protein chaperone induced with IPTG at 16 °C 180 rpm for 16 h enabled the production of recombinant nattokinase in soluble fraction. Enzymatic assays demonstrated its protease activity, while characterization revealed optimal catalytic conditions at 37 °C and pH 8.0, with remarkable stability over a broad pH range (6.0-10.0) and up to 50 °C. The kinetic constants were determined as follows: Km = 25.83 ± 3.43 µM, Vmax = 62.91 ± 1.68 µM/s, kcat = 38.45 ± 1.06 s-1, and kcat/Km = 1.49 × 106 M-1 s-1. In addition, the fibrinolytic activity of NK, quantified by the fibrin plate hydrolysis assay was 1038 ± 156 U/ml, with a corresponding specific activity of 1730 ± 260 U/mg and the assessment of clot lysis time on an artificial clot (1 mg) was found to be 51.5 ± 2.5 min unveiling nattokinase's fibrinolytic potential. Through molecular docking, a substantial binding energy of -6.46 kcal/mol was observed between nattokinase and fibrin, indicative of a high binding affinity. Key fibrin binding residues, including Ser300, Leu302, and Asp303, were identified and confirmed. These mutants affected specifically the fibrin binding and not the proteolytic activity of NK. This comprehensive study provides crucial conditions for the expression of protein in soluble form in E. coli and biochemical properties paving the way for future research and potential applications in medicine and biotechnology.


Assuntos
Escherichia coli , Fibrina , Proteínas Recombinantes , Subtilisinas , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrina/metabolismo , Fibrina/química , Subtilisinas/metabolismo , Subtilisinas/genética , Subtilisinas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Cinética , Fibrinólise , Concentração de Íons de Hidrogênio , Ligação Proteica , Expressão Gênica
6.
J Agric Food Chem ; 72(22): 12738-12751, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788151

RESUMO

Phytosterol (PS) is a steroid, and its bioavailability can be enhanced by interacting with protein in the C-24 hydroxyl group. The interaction between sterols and amino acid residues in proteins can be enhanced by enzymatic hydrolysis. Phytosterol and whey insulation hydrolysates (WPH1-4) fabricated by the Alcalase enzyme at different enzymatic hydrolysis times were selected as delivery systems to simulate sterol C-24 hydroxyl group interaction with protein. Increasing hydrolysis time can promote the production of ß-Lg, which raises the ratio of ß-turn in the secondary structure and promotes the formation of interaction between WPH and PS. The correlation coefficient between hydrogen bonds and encapsulation efficiency (EE) and bioaccessibility is 0.91 and 0.88 (P < 0.05), respectively, indicating that hydrogen bonds of two components significantly influenced the combination by concealing the hydrophobic amino acids and some residues, which improved PS EE and bioavailability by 3.03 and 2.84 times after PS was combined with the WPI hydrolysate. These findings are expected to enhance the absorption of PS and other macromolecules by protein enzymatic hydrolysis to broaden their applications for food.


Assuntos
Digestão , Fitosteróis , Hidrolisados de Proteína , Proteínas do Soro do Leite , Fitosteróis/química , Fitosteróis/metabolismo , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Hidrólise , Disponibilidade Biológica , Ligação de Hidrogênio , Subtilisinas/química , Subtilisinas/metabolismo , Humanos , Animais
7.
Eur J Pharm Biopharm ; 199: 114281, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599299

RESUMO

Nattokinase (NK) is a thrombolytic enzyme extracted from natto, which can be used to prevent and treat blood clots. However, it is sensitive to the environment, especially the acidic environment of human stomach acid, and its effect of oral ingestion is minimal. This study aims to increase NK's oral and storage stability by embedding NK in microcapsules prepared with chitosan (CS) and γ-polyglutamic acid (γ-PGA). The paper prepared a double-layer NK oral delivery system by layer self-assembly and characterized its stability and in vitro simulated digestion. According to the research results, the bilayer putamen structure has a protective effect on NK, which not only maintains high activity in various environments (such as acid-base, high temperature) and long-term storage (60 days), but also effectively protects the loaded NK from being destroyed in gastric fluid and achieves its slow release. This work has proved the feasibility of the design of bilayer putamen structure in oral administration and has good fibrolytic activity. Therefore, the novel CS/γ-PGA microcapsules are expected to be used in nutraceutical delivery systems.


Assuntos
Quitosana , Estabilidade de Medicamentos , Fibrinolíticos , Ácido Poliglutâmico , Subtilisinas , Quitosana/química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Subtilisinas/metabolismo , Subtilisinas/química , Fibrinolíticos/química , Fibrinolíticos/administração & dosagem , Fibrinolíticos/farmacologia , Administração Oral , Humanos , Digestão/efeitos dos fármacos , Cápsulas , Sistemas de Liberação de Medicamentos/métodos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Portadores de Fármacos/química
8.
Int J Biol Macromol ; 268(Pt 2): 131779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679250

RESUMO

Natto contains a potent fibrinolytic enzyme called nattokinase (NK), which has thrombolytic, antihypertensive, antiatherosclerotic and lipid-lowering effects. Although NK has been recognized for its beneficial effect on humans with atherosclerotic cardiovascular disease (ASCVD), the underlying mechanisms involved in vascular inflammation-atherosclerosis development remain largely unknown. The current study aimed to explore the effects of NK on gene regulation, autophagy, necroptosis and inflammasome in vascular inflammation. The transcriptional profiles of NK in endothelial cells (ECs) by RNA sequencing (RNA-seq) revealed that NK affected THBS1, SRF and SREBF1 mRNA expression. In Q-PCR analysis, SRF and THBS1 were upregulated but SREBF1 was unaffected in ECs treated with NK. NK treatment induced autophagy and inhibited NLRP3 inflammasome and necroptosis in ECs. Furthermore, the inhibition of SRF or THBS1 by siRNA suppressed autophagy and enhanced the NLRP3 inflammasome and necroptosis. In a mouse model, NK reduced vascular inflammation by activating autophagy and inhibiting NLRP3 inflammasome and necroptosis. Our findings provide the first evidence that NK upregulates SRF and THBS1 genes, subsequently increasing autophagy and decreasing necroptosis and NLRP3 inflammasome formation to reduce vascular inflammation. Therefore, NK could serve as nutraceuticals or adjuvant therapies to reduce vascular inflammation and possible atherosclerosis progression.


Assuntos
Inflamação , Subtilisinas , Trombospondina 1 , Animais , Masculino , Camundongos , Autofagia/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamassomos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Subtilisinas/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Camundongos Endogâmicos C57BL
9.
Mar Biotechnol (NY) ; 26(2): 404-420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558367

RESUMO

Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.


Assuntos
Sacos Aéreos , Peixes , Animais , Sacos Aéreos/química , Sacos Aéreos/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/farmacologia , Antioxidantes/química , Compostos de Bifenilo/química , Cyprinidae/metabolismo , Proteínas de Peixes/metabolismo , Gelatina/química , Hidrólise , Osteogênese/efeitos dos fármacos , Picratos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Subtilisinas/metabolismo , Peixes/metabolismo
10.
J Agric Food Chem ; 72(18): 10627-10639, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38664940

RESUMO

Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and ß-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from ß-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.


Assuntos
Alérgenos , Leite de Soja , Subtilisinas , Humanos , Alérgenos/química , Alérgenos/imunologia , Alérgenos/metabolismo , Hipersensibilidade Alimentar/prevenção & controle , Hipersensibilidade Alimentar/imunologia , Globulinas/química , Globulinas/imunologia , Hidrólise , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Pós/química , Leite de Soja/química , Proteínas de Soja/química , Proteínas de Soja/imunologia , Proteínas de Soja/metabolismo , Relação Estrutura-Atividade , Subtilisinas/metabolismo
11.
Biochem Cell Biol ; 102(3): 275-284, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484367

RESUMO

Neutrophil myeloperoxidase/H2O2/chloride system is a key mechanism to control pathogen infection. This enzyme, myeloperoxidase, plays a pivotal role in the arsenal of azurophilic granules that are released through degranulation upon neutrophil activation, which trigger local hypochlorous acid production. Myeloperoxidase gene encodes a protein precursor named promyeloperoxidase that arbors a propeptide that gets cleaved later during secretory routing in post-endoplasmic reticulum compartments. Although evidence suggested that this processing event was performed by one or different enzymes from the proprotein convertases family, the identity of this enzyme was never investigated. In this work, the naturally producing myeloperoxidase promyelocytic cell line HL-60 was used to investigate promyeloperoxidase cleavage during granulocytic differentiation in response to proprotein convertase inhibitors decanoyl-RVKR-chloromethylketone and hexa-d-arginine. Stable PC knockdown of endogenously expressed proprotein convertases, furin and PC7, was achieved using lentiviral delivery of shRNAs. None of the knockdown cell line could reproduce the effect of the pan-proprotein convertases inhibitor decanoyl-RVKR-chloromethylketone that accumulated intracellular promyeloperoxidase stores in HL-60 cells, therefore illustrating that both furin and PC7 redundantly process this proprotein.


Assuntos
Furina , Peroxidase , Humanos , Células HL-60 , Furina/metabolismo , Furina/genética , Peroxidase/metabolismo , Granulócitos/metabolismo , Granulócitos/citologia , Diferenciação Celular , Subtilisinas/metabolismo , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Clorometilcetonas de Aminoácidos/farmacologia
12.
Plant Physiol ; 195(2): 1681-1693, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38478507

RESUMO

Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.


Assuntos
Arabidopsis , Morte Celular , Fusarium , Nicotiana , Doenças das Plantas , Fusarium/patogenicidade , Virulência , Arabidopsis/microbiologia , Arabidopsis/genética , Doenças das Plantas/microbiologia , Nicotiana/microbiologia , Nicotiana/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Subtilisinas/metabolismo , Subtilisinas/genética , Gossypium/microbiologia , Folhas de Planta/microbiologia , Células Vegetais/microbiologia
13.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473782

RESUMO

Microsporum canis is a widely distributed dermatophyte, which is among the main etiological agents of dermatophytosis in humans and domestic animals. This fungus invades, colonizes and nourishes itself on the keratinized tissues of the host through various virulence factors. This review will bring together the known information about the mechanisms, enzymes and their associated genes relevant to the pathogenesis processes of the fungus and will provide an overview of those virulence factors that should be better studied to establish effective methods of prevention and control of the disease. Public databases using the MeSH terms "Microsporum canis", "virulence factors" and each individual virulence factor were reviewed to enlist a series of articles, from where only original works in English and Spanish that included relevant information on the subject were selected. Out of the 147 articles obtained in the review, 46 were selected that reported virulence factors for M. canis in a period between 1988 and 2023. The rest of the articles were discarded because they did not contain information on the topic (67), some were written in different languages (3), and others were repeated in two or more databases (24) or were not original articles (7). The main virulence factors in M. canis are keratinases, fungilisins and subtilisins. However, less commonly reported are biofilms or dipeptidylpeptidases, among others, which have been little researched because they vary in expression or activity between strains and are not considered essential for the infection and survival of the fungus. Although it is known that they are truly involved in resistance, infection and metabolism, we recognize that their study could strengthen the knowledge of the pathogenesis of M. canis with the aim of achieving effective treatments, as well as the prevention and control of infection.


Assuntos
Microsporum , Fatores de Virulência , Humanos , Animais , Fatores de Virulência/metabolismo , Microsporum/genética , Microsporum/metabolismo , Animais Domésticos , Subtilisinas/metabolismo
14.
Food Chem ; 447: 138947, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492294

RESUMO

Walnut dreg (WD) active peptides are an important source of dietary antioxidants; however, the products of conventional hydrolysis have limited industrial output owing to poor flavour and low bioactivity. To this end, in this study, we aimed to employ bvLAP, an aminopeptidase previously identified in our research, as well as commercially available Alcalase for bi-enzyme digestion. The flavour, antioxidant activity, and structures of products resulting from various digestion methods were compared. The results showed that the bi-enzyme digestion products had enhanced antioxidant activity, increased ß-sheet content, and reduced bitterness intensity from 9.65 to 6.93. Moreover, bi-enzyme hydrolysates showed a more diverse amino acid composition containing 1640 peptides with distinct sequences. These results demonstrate that bi-enzyme hydrolysis could be a potential process for converting WD into functional food ingredients. Additionally, our results provide new concepts that can be applied in waste processing and high-value utilisation of WD.


Assuntos
Antioxidantes , Juglans , Hidrólise , Antioxidantes/química , Juglans/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Subtilisinas/metabolismo
15.
Food Funct ; 15(7): 3722-3730, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489157

RESUMO

Bioactive peptides have been considered potential components for the future functional foods and nutraceuticals generation. The enzymatic method of hydrolysis has several advantages compared to those of chemical hydrolysis and fermentation. Despite this fact, the high cost of natural and commercial proteases limits the commercialization of hydrolysates in the food and pharmacological industries. For this reason, more efficient and economically interesting techniques, such as the immobilisation of the enzyme, are gaining attention. In the present study, a new protein hydrolysate from Lupinus angustifolius was generated by enzymatic hydrolysis through the immobilisation of the enzyme alcalase® (imLPH). After the chemical and nutritional characterization of the imLPH, an in vivo study was carried out in order to evaluate the effect of 12 weeks treatment with imLPH on the plasmatic lipid profile and antioxidant status in western-diet-fed apolipoprotein E knockout mice. The immobilisation of alcalase® generated an imLPH with a degree of hydrolysis of 29.71 ± 2.11%. The imLPH was mainly composed of protein (82.50 ± 0.88%) with a high content of glycine/glutamine, arginine, and aspartic acid/asparagine. The imLPH-treatment reduced the amount of abdominal white adipose tissue, total plasma cholesterol, LDL-C, and triglycerides, as well as the cardiovascular risk indexes (CRI) -I, CRI-II, and atherogenic index of plasma. The imLPH-treated mice also showed an increase in the plasma antioxidant capacity. For the first time, this study demonstrates the beneficial in vivo effect of a lupin protein hydrolysate obtained with the alcalase® immobilised and points out this approach as a possible cost-effective solution at the expensive generation of the hydrolysate through the traditional batch conditions with soluble enzymes.


Assuntos
Lupinus , Hidrolisados de Proteína , Animais , Camundongos , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Antioxidantes/química , Lupinus/metabolismo , Subtilisinas/metabolismo , Endopeptidases/metabolismo , Hidrólise
16.
Int J Biol Macromol ; 262(Pt 1): 130069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340918

RESUMO

Squid pen (SP) is a valuable source of protein and ß-chitin. However, current research has primarily focused on extracting ß-chitin from SP. This study innovatively extracted both SP protein hydrolysates (SPPHs) and SP ß-chitin (SPC) simultaneously using protease hydrolysis. The effects of different proteases on their structural characteristics and bioactivity were evaluated. The results showed that SP alcalase ß-chitin (SPAC) had the highest degree of deproteinization (DP, 98.19 %) and SP alcalase hydrolysates (SPAH) had a degree of hydrolysis (DH) of 24.47 %. The analysis of amino acid composition suggested that aromatic amino acids accounted for 17.44 % in SPAH. Structural characterization revealed that SP flavourzyme hydrolysates (SPFH) had the sparsest structure. SPC exhibited an excellent crystallinity index (CI, over 60 %) and degree of acetylation (DA, over 70 %). During simulated gastrointestinal digestion (SGD), the hydroxyl radical scavenging activity, ABTS radical scavenging activity, Fe2+ chelating activity, and reducing power of the SPPHs remained stable or increased significantly. Additionally, SPFC exhibited substantial inhibitory effects on Staphylococcus aureus and Escherichia coli (S. aureus and E. coli), with inhibition circle diameters measuring 2.4 cm and 2.1 cm. These findings supported the potential use of SPPHs as natural antioxidant alternatives and suggested that SPC could serve as a potential antibacterial supplement.


Assuntos
Peptídeo Hidrolases , Hidrolisados de Proteína , Animais , Peptídeo Hidrolases/metabolismo , Hidrólise , Hidrolisados de Proteína/química , Decapodiformes/química , Quitina , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Antioxidantes/química , Subtilisinas/metabolismo
17.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338437

RESUMO

This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.


Assuntos
Bombyx , Maclura , Animais , Humanos , Hidrólise , Bombyx/metabolismo , Papaína/metabolismo , Frutas/metabolismo , Pós , Peptídeo Hidrolases/metabolismo , Proteínas do Soro do Leite , Proteínas de Soja , Subtilisinas/metabolismo , Etanol
18.
Magn Reson Chem ; 62(6): 452-462, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38237933

RESUMO

Benchtop diffusion nuclear magnetic resonance (NMR) spectroscopy was used to perform quantitative monitoring of enzymatic hydrolysis. The study aimed to test the feasibility of the technology to characterize enzymatic hydrolysis processes in real time. Diffusion ordered spectroscopy (DOSY) was used to measure the signal intensity and apparent self-diffusion constant of solubilized protein in hydrolysate. The NMR technique was tested on an enzymatic hydrolysis reaction of red cod, a lean white fish, by the endopeptidase alcalase at 50°C. Hydrolysate samples were manually transferred from the reaction vessel to the NMR equipment. Measurement time was approximately 3 min per time point. The signal intensity from the DOSY experiment was used to measure protein concentration and the apparent self-diffusion constant was converted into an average molecular weight and an estimated degree of hydrolysis. These values were plotted as a function of time and both the rate of solubilization and the rate of protein breakdown could be calculated. In addition to being rapid and noninvasive, DOSY using benchtop NMR spectroscopy has an advantage compared with other enzymatic hydrolysis characterization methods as it gives a direct measure of average protein size; many functional properties of proteins are strongly influenced by protein size. Therefore, a method to give protein concentration and average size in real time will allow operators to more tightly control production from enzymatic hydrolysis. Although only one type of material was tested, it is anticipated that the method should be applicable to a broad variety of enzymatic hydrolysis feedstocks.


Assuntos
Subtilisinas , Hidrólise , Subtilisinas/metabolismo , Subtilisinas/química , Difusão , Animais , Espectroscopia de Ressonância Magnética/métodos , Gadiformes/metabolismo
19.
Virulence ; 15(1): 2301246, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38170683

RESUMO

Streptococcus suis (S. suis), a significant zoonotic bacterial pathogen impacting swine and human, is associated with severe systemic diseases such as streptococcal toxic shock-like syndrome, meningitis, septicaemia, and abrupt fatality. The multifaceted roles of complement components C5a and C3a extend to orchestrating inflammatory cells recruitment, oxidative burst induction, and cytokines release. Despite the pivotal role of subtilisin-like serine proteases in S. suis pathogenicity, their involvement in immune evasion remains underexplored. In the present study, we identify two cell wall-anchored subtilisin-like serine proteases in S. suis, SspA-1 and SspA-2, as binding partners for C3a and C5a. Through Co-Immunoprecipitation, Enzyme-Linked Immunosorbent and Far-Western Blotting Assays, we validate their interactions with the aforementioned components. However, SspA-1 and SspA-2 have no cleavage activity against complement C3a and C5a performed by Cleavage assay. Chemotaxis assays reveal that recombinant SspA-1 and SspA-2 effectively attenuate monocyte chemotaxis towards C3a and C5a. Notably, the ΔsspA-1, ΔsspA-1, and ΔsspA-1/2 mutant strains exhibit compromised survival in blood, and resistance of opsonophagocytosis, alongside impaired survival in blood and in vivo colonization compared to the parental strain SC-19. Critical insights from the murine and Galleria mellonella larva infection models further underscore the significance of sspA-1 in altering mortality rates. Collectively, our findings indicate that SspA-1 and SspA-2 are novel binding proteins for C3a and C5a, thereby shedding light on their pivotal roles in S. suis immune evasion and the pathogenesis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Humanos , Suínos , Camundongos , Evasão da Resposta Imune , Complemento C3a , Streptococcus suis/metabolismo , Citocinas , Subtilisinas/metabolismo , Infecções Estreptocócicas/microbiologia
20.
Biochimie ; 218: 152-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37704077

RESUMO

The aims of this study are to characterize the antiplatelet activity of StSBTc-3, a potato serine protease with fibrino (geno) lytic activity, and to provide information on its mechanism of action. The results obtained show that StSBTc-3 inhibits clot retraction and prevents platelet aggregation induced by thrombin, convulxin, and A23187. Platelet aggregation inhibition occurs in a dose-dependent manner and is not affected by inactivation of StSBTc-3 with the inhibitor of serine proteases phenylmethylsulfonyl fluoride (PMSF). In addition, StSBTc-3 reduces fibrinogen binding onto platelets. In-silico calculations show a high binding affinity between StSBTc-3 and human α2bß3 integrin suggesting that the antiplatelet activity of StSBTc-3 could be associated with the fibronectin type III domain present in its amino acid sequence. Binding experiments show that StSBTc-3 binds to α2bß3 preventing the interaction between α2bß3 and fibrinogen and, consequently, inhibiting platelet aggregation. StSBTc-3 represents a promising compound to be considered as an alternative to commercially available drugs used in cardiovascular therapies.


Assuntos
Solanum tuberosum , Humanos , Serina/metabolismo , Plaquetas/metabolismo , Agregação Plaquetária , Serina Endopeptidases/metabolismo , Fibrinogênio/metabolismo , Subtilisinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...