Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(7): e1009239, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314446

RESUMO

Loss of function mutations of SCN1A, the gene coding for the voltage-gated sodium channel NaV1.1, cause different types of epilepsy, whereas gain of function mutations cause sporadic and familial hemiplegic migraine type 3 (FHM-3). However, it is not clear yet how these opposite effects can induce paroxysmal pathological activities involving neuronal networks' hyperexcitability that are specific of epilepsy (seizures) or migraine (cortical spreading depolarization, CSD). To better understand differential mechanisms leading to the initiation of these pathological activities, we used a two-neuron conductance-based model of interconnected GABAergic and pyramidal glutamatergic neurons, in which we incorporated ionic concentration dynamics in both neurons. We modeled FHM-3 mutations by increasing the persistent sodium current in the interneuron and epileptogenic mutations by decreasing the sodium conductance in the interneuron. Therefore, we studied both FHM-3 and epileptogenic mutations within the same framework, modifying only two parameters. In our model, the key effect of gain of function FHM-3 mutations is ion fluxes modification at each action potential (in particular the larger activation of voltage-gated potassium channels induced by the NaV1.1 gain of function), and the resulting CSD-triggering extracellular potassium accumulation, which is not caused only by modifications of firing frequency. Loss of function epileptogenic mutations, on the other hand, increase GABAergic neurons' susceptibility to depolarization block, without major modifications of firing frequency before it. Our modeling results connect qualitatively to experimental data: potassium accumulation in the case of FHM-3 mutations and facilitated depolarization block of the GABAergic neuron in the case of epileptogenic mutations. Both these effects can lead to pyramidal neuron hyperexcitability, inducing in the migraine condition depolarization block of both the GABAergic and the pyramidal neuron. Overall, our findings suggest different mechanisms of network hyperexcitability for migraine and epileptogenic NaV1.1 mutations, implying that the modifications of firing frequency may not be the only relevant pathological mechanism.


Assuntos
Epilepsia/genética , Transtornos de Enxaqueca/genética , Modelos Neurológicos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Potenciais de Ação/fisiologia , Animais , Biologia Computacional , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Feminino , Neurônios GABAérgicos/fisiologia , Mutação com Ganho de Função , Humanos , Interneurônios/fisiologia , Ativação do Canal Iônico/fisiologia , Mutação com Perda de Função , Masculino , Conceitos Matemáticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos de Enxaqueca/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.1/deficiência , Canal de Sódio Disparado por Voltagem NAV1.1/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Córtex Somatossensorial/fisiopatologia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/deficiência , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/fisiologia
2.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33411695

RESUMO

Loss-of-function (LOF) variants in SCN1B, encoding voltage-gated sodium channel ß1 subunits, are linked to human diseases with high risk of sudden death, including developmental and epileptic encephalopathy and cardiac arrhythmia. ß1 Subunits modulate the cell-surface localization, gating, and kinetics of sodium channel pore-forming α subunits. They also participate in cell-cell and cell-matrix adhesion, resulting in intracellular signal transduction, promotion of cell migration, calcium handling, and regulation of cell morphology. Here, we investigated regulated intramembrane proteolysis (RIP) of ß1 by BACE1 and γ-secretase and show that ß1 subunits are substrates for sequential RIP by BACE1 and γ-secretase, resulting in the generation of a soluble intracellular domain (ICD) that is translocated to the nucleus. Using RNA sequencing, we identified a subset of genes that are downregulated by ß1-ICD overexpression in heterologous cells but upregulated in Scn1b-null cardiac tissue, which lacks ß1-ICD signaling, suggesting that the ß1-ICD may normally function as a molecular brake on gene transcription in vivo. We propose that human disease variants resulting in SCN1B LOF cause transcriptional dysregulation that contributes to altered excitability. Moreover, these results provide important insights into the mechanism of SCN1B-linked channelopathies, adding RIP-excitation coupling to the multifunctionality of sodium channel ß1 subunits.


Assuntos
Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cricetulus , Acoplamento Excitação-Contração/genética , Acoplamento Excitação-Contração/fisiologia , Expressão Gênica , Células HEK293 , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteólise , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Transdução de Sinais , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/deficiência , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética
3.
Ann Clin Transl Neurol ; 6(6): 1121-1126, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31211177

RESUMO

Pathogenic loss-of-function variants in SCN1B are linked to Dravet syndrome (DS). Previous work suggested that neuronal pathfinding defects underlie epileptogenesis and SUDEP in the Scn1b null mouse model of DS. We tested this hypothesis by inducing Scn1b deletion in adult mice that had developed normally. Epilepsy and SUDEP, which occur by postnatal day 21 in Scn1b null animals, were observed within 20 days of induced Scn1b deletion in adult mice, suggesting that epileptogenesis in SCN1B-DS does not result from defective brain development. Thus, the developmental brain defects observed previously in Scn1b null mice may model other co-morbidities of DS.


Assuntos
Convulsões/genética , Convulsões/fisiopatologia , Morte Súbita Inesperada na Epilepsia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/deficiência , Animais , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/fisiopatologia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Sci Rep ; 9(1): 6210, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996233

RESUMO

Dravet syndrome (DS) is a catastrophic developmental and epileptic encephalopathy characterized by severe, pharmacoresistant seizures and the highest risk of Sudden Unexpected Death in Epilepsy (SUDEP) of all epilepsy syndromes. Here, we investigated the time course of maturation of neuronal GABAergic signaling in the Scn1b-/- and Scn1a+/- mouse models of DS. We found that GABAergic signaling remains immature in both DS models, with a depolarized reversal potential for GABAA-evoked currents compared to wildtype in the third postnatal week. Treatment of Scn1b-/- mice with bumetanide resulted in a delay in SUDEP onset compared to controls in a subset of mice, without prevention of seizure activity or amelioration of failure to thrive. We propose that delayed maturation of GABAergic signaling may contribute to epileptogenesis in SCN1B- and SCN1A-linked DS. Thus, targeting the polarity of GABAergic signaling in brain may be an effective therapeutic strategy to reduce SUDEP risk in DS.


Assuntos
Epilepsias Mioclônicas/etiologia , Canal de Sódio Disparado por Voltagem NAV1.1/deficiência , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/deficiência , Ácido gama-Aminobutírico/metabolismo , Animais , Bumetanida/uso terapêutico , Morte Súbita , Modelos Animais de Doenças , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/mortalidade , Epilepsia , Técnicas de Silenciamento de Genes , Camundongos , Convulsões , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 110(3): 1089-94, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277545

RESUMO

Voltage-gated Na(+) channel (VGSC) ß1 subunits, encoded by SCN1B, are multifunctional channel modulators and cell adhesion molecules (CAMs). Mutations in SCN1B are associated with the genetic epilepsy with febrile seizures plus (GEFS+) spectrum disorders in humans, and Scn1b-null mice display severe spontaneous seizures and ataxia from postnatal day (P)10. The goal of this study was to determine changes in neuronal pathfinding during early postnatal brain development of Scn1b-null mice to test the hypothesis that these CAM-mediated roles of Scn1b may contribute to the development of hyperexcitability. c-Fos, a protein induced in response to seizure activity, was up-regulated in the Scn1b-null brain at P16 but not at P5. Consistent with this, epileptiform activity was observed in hippocampal and cortical slices prepared from the P16 but not from the P5-P7 Scn1b-null brain. On the basis of these results, we investigated neuronal pathfinding at P5. We observed disrupted fasciculation of parallel fibers in the P5 null cerebellum. Further, P5 null mice showed reduced neuron density in the dentate gyrus granule cell layer, increased proliferation of granule cell precursors in the hilus, and defective axonal extension and misorientation of somata and processes of inhibitory neurons in the dentate gyrus and CA1. Thus, Scn1b is critical for neuronal proliferation, migration, and pathfinding during the critical postnatal period of brain development. We propose that defective neuronal proliferation, migration, and pathfinding in response to Scn1b deletion may contribute to the development of hyperexcitability.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/deficiência , Fatores Etários , Animais , Ataxia/etiologia , Ataxia/metabolismo , Ataxia/patologia , Padronização Corporal/genética , Padronização Corporal/fisiologia , Encéfalo/citologia , Movimento Celular , Proliferação de Células , Fenômenos Eletrofisiológicos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Convulsões/etiologia , Convulsões/metabolismo , Convulsões/patologia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo
6.
Epilepsia ; 53(11): 1959-67, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23016711

RESUMO

PURPOSE: In chronic epilepsy, a substantial proportion of up to 30% of patients remain refractory to antiepileptic drugs (AEDs). An understanding of the mechanisms of pharmacoresistance requires precise knowledge of how AEDs interact with their targets. Many commonly used AEDs act on the transient and/or the persistent components of the voltage-gated Na(+) current (I(NaT) and I(NaP) , respectively). Lacosamide (LCM) is a novel AED with a unique mode of action in that it selectively enhances slow inactivation of fast transient Na(+) channels. Given that functional loss of accessory Na(+) channel subunits is a feature of a number of neurologic disorders, including epilepsy, we examined the effects of LCM versus carbamazepine (CBZ) on the persistent Na(+) current (I(NaP) ), in the presence and absence of accessory subunits within the channel complex. METHODS: Using patch-clamp recordings in intact hippocampal CA1 neurons of Scn1b null mice, I(NaP) was recorded using slow voltage ramps. Application of 100 µm CBZ or 300 µm LCM reduced the maximal I(NaP) conductance in both wild-type and control mice. KEY FINDINGS: As shown previously by our group in Scn1b null mice, CBZ induced a paradoxical increase of I(NaP) conductance in the subthreshold voltage range, resulting in an ineffective block of repetitive firing in Scn1b null neurons. In contrast, LCM did not exhibit such a paradoxical increase, and accordingly maintained efficacy in blocking repetitive firing in Scn1b null mice. SIGNIFICANCE: These results suggest that the novel anticonvulsant LCM maintains activity in the presence of impaired Na(+) channel ß(1) subunit expression and thus may offer an improved efficacy profile compared with CBZ in diseases associated with an impaired expression of ß sub-units as observed in epilepsy.


Assuntos
Acetamidas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Carbamazepina/farmacologia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/deficiência , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Lacosamida , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Subunidades Proteicas/deficiência , Subunidades Proteicas/fisiologia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...