Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8003): 445-452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383785

RESUMO

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Sítios de Ligação , Biocatálise , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Ligação Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , RNA de Transferência/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura
2.
Nature ; 627(8003): 437-444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383789

RESUMO

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Homeostase , Membranas Intracelulares/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , RNA de Transferência/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura
3.
Mol Cell ; 81(2): 304-322.e16, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33357414

RESUMO

Protein synthesis must be finely tuned in the developing nervous system as the final essential step of gene expression. This study investigates the architecture of ribosomes from the neocortex during neurogenesis, revealing Ebp1 as a high-occupancy 60S peptide tunnel exit (TE) factor during protein synthesis at near-atomic resolution by cryoelectron microscopy (cryo-EM). Ribosome profiling demonstrated Ebp1-60S binding is highest during start codon initiation and N-terminal peptide elongation, regulating ribosome occupancy of these codons. Membrane-targeting domains emerging from the 60S tunnel, which recruit SRP/Sec61 to the shared binding site, displace Ebp1. Ebp1 is particularly abundant in the early-born neural stem cell (NSC) lineage and regulates neuronal morphology. Ebp1 especially impacts the synthesis of membrane-targeted cell adhesion molecules (CAMs), measured by pulsed stable isotope labeling by amino acids in cell culture (pSILAC)/bioorthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry (MS). Therefore, Ebp1 is a central component of protein synthesis, and the ribosome TE is a focal point of gene expression control in the molecular specification of neuronal morphology during development.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Neocórtex/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas , Proteostase/genética , Proteínas de Ligação a RNA/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Animais , Animais Recém-Nascidos , Sítios de Ligação , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Cultura Primária de Células , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo
4.
RNA ; 27(2): 221-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219089

RESUMO

During their maturation, nascent 40S subunits enter a translation-like quality control cycle, where they are joined by mature 60S subunits to form 80S-like ribosomes. While these assembly intermediates are essential for maturation and quality control, how they form, and how their structure promotes quality control, remains unknown. To address these questions, we determined the structure of an 80S-like ribosome assembly intermediate to an overall resolution of 3.4 Å. The structure, validated by biochemical data, resolves a large body of previously paradoxical data and illustrates how assembly and translation factors cooperate to promote the formation of an interface that lacks many mature subunit contacts but is stabilized by the universally conserved methyltransferase Dim1. We also show how Tsr1 enables this interface by blocking the canonical binding of eIF5B to 40S subunits, while maintaining its binding to 60S. The structure also shows how this interface leads to unfolding of the platform, which allows for temporal regulation of the ATPase Fap7, thus linking 40S maturation to quality control during ribosome assembly.


Assuntos
Adenilato Quinase/genética , Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , Proteínas Nucleares/genética , Nucleosídeo-Trifosfatase/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Sítios de Ligação , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Biogênese de Organelas , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(47): 29851-29861, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168716

RESUMO

Kinetoplastids are unicellular eukaryotic parasites responsible for such human pathologies as Chagas disease, sleeping sickness, and leishmaniasis. They have a single large mitochondrion, essential for the parasite survival. In kinetoplastid mitochondria, most of the molecular machineries and gene expression processes have significantly diverged and specialized, with an extreme example being their mitochondrial ribosomes. These large complexes are in charge of translating the few essential mRNAs encoded by mitochondrial genomes. Structural studies performed in Trypanosoma brucei already highlighted the numerous peculiarities of these mitoribosomes and the maturation of their small subunit. However, several important aspects mainly related to the large subunit (LSU) remain elusive, such as the structure and maturation of its ribosomal RNA. Here we present a cryo-electron microscopy study of the protozoans Leishmania tarentolae and Trypanosoma cruzi mitoribosomes. For both species, we obtained the structure of their mature mitoribosomes, complete rRNA of the LSU, as well as previously unidentified ribosomal proteins. In addition, we introduce the structure of an LSU assembly intermediate in the presence of 16 identified maturation factors. These maturation factors act on both the intersubunit and the solvent sides of the LSU, where they refold and chemically modify the rRNA and prevent early translation before full maturation of the LSU.


Assuntos
Leishmania/fisiologia , Ribossomos Mitocondriais/ultraestrutura , Processamento Pós-Transcricional do RNA/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Trypanosoma cruzi/fisiologia , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Microscopia Crioeletrônica , Humanos , Leishmania/citologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Ribossomos Mitocondriais/efeitos dos fármacos , Ribossomos Mitocondriais/metabolismo , Modelos Moleculares , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Trypanosoma cruzi/citologia , Trypanosoma cruzi/efeitos dos fármacos
6.
Nat Commun ; 11(1): 3542, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669547

RESUMO

Ribosome biogenesis is an elaborate and energetically expensive program that involve two hundred protein factors in eukaryotes. Nuclear export of pre-ribosomal particles is one central step which also serves as an internal structural checkpoint to ensure the proper completion of nuclear assembly events. Here we present four structures of human pre-60S particles isolated through a nuclear export factor NMD3, representing assembly stages immediately before and after nuclear export. These structures reveal locations of a dozen of human factors, including an uncharacterized factor TMA16 localized between the 5S RNA and the P0 stalk. Comparison of these structures shows a progressive maturation for the functional regions, such as peptidyl transferase centre and peptide exit tunnel, and illustrate a sequence of factor-assisted rRNA maturation events. These data facilitate our understanding of the global conservation of ribosome assembly in eukaryotes and species-specific features of human assembly factors.


Assuntos
Núcleo Celular/metabolismo , Modelos Moleculares , RNA Ribossômico 5S/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Microscopia Crioeletrônica , Humanos , RNA Ribossômico 5S/isolamento & purificação , RNA Ribossômico 5S/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Proteínas Ribossômicas/isolamento & purificação , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura
7.
Nucleic Acids Res ; 48(1): 405-420, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31745560

RESUMO

More than 200 assembly factors (AFs) are required for the production of ribosomes in yeast. The stepwise association and dissociation of these AFs with the pre-ribosomal subunits occurs in a hierarchical manner to ensure correct maturation of the pre-rRNAs and assembly of the ribosomal proteins. Although decades of research have provided a wealth of insights into the functions of many AFs, others remain poorly characterized. Pol5 was initially classified with B-type DNA polymerases, however, several lines of evidence indicate the involvement of this protein in ribosome assembly. Here, we show that depletion of Pol5 affects the processing of pre-rRNAs destined for the both the large and small subunits. Furthermore, we identify binding sites for Pol5 in the 5' external transcribed spacer and within domain III of the 25S rRNA sequence. Consistent with this, we reveal that Pol5 is required for recruitment of ribosomal proteins that form the polypeptide exit tunnel in the LSU and that depletion of Pol5 impairs the release of 5' ETS fragments from early pre-40S particles. The dual functions of Pol5 in 60S assembly and recycling of pre-40S AFs suggest that this factor could contribute to ensuring the stoichiometric production of ribosomal subunits.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Biossíntese de Proteínas , RNA Ribossômico/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sítios de Ligação , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
8.
Elife ; 82019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31115337

RESUMO

During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). Our data reveal how the central functional site of the ribosome is sculpted and suggest how the formation of translation-competent 60S subunits is disrupted in leukaemia-associated ribosomopathies.


Assuntos
Peptidil Transferases/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Peptidil Transferases/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura
9.
Mol Cell ; 74(6): 1205-1214.e8, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31080011

RESUMO

Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.


Assuntos
Fatores de Iniciação em Eucariotos/química , Hepacivirus/genética , Iniciação Traducional da Cadeia Peptídica , RNA Viral/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Células HEK293 , Hepacivirus/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Sítios Internos de Entrada Ribossomal , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/genética , RNA Viral/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
10.
Nat Commun ; 10(1): 958, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814529

RESUMO

The catalytic activity of the ribosome is mediated by RNA, yet proteins are essential for the function of the peptidyl transferase center (PTC). In eukaryotes, final assembly of the PTC occurs in the cytoplasm by insertion of the ribosomal protein Rpl10 (uL16). We determine structures of six intermediates in late nuclear and cytoplasmic maturation of the large subunit that reveal a tightly-choreographed sequence of protein and RNA rearrangements controlling the insertion of Rpl10. We also determine the structure of the biogenesis factor Yvh1 and show how it promotes assembly of the P stalk, a critical element for recruitment of GTPases that drive translation. Together, our structures provide a blueprint for final assembly of a functional ribosome.


Assuntos
Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Conformação Proteica , RNA Fúngico/química , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
11.
RNA ; 25(4): 465-471, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670483

RESUMO

The eukaryotic ribosome is assembled through a complex process involving more than 200 factors. As preribosomal RNA is transcribed, assembly factors bind the nascent pre-rRNA and guide its correct folding, modification, and cleavage. While these early events in the assembly of the small ribosomal subunit have been relatively well characterized, assembly of the large subunit precursors, or pre-60S, is less well understood. Recent structures of nucleolar intermediates of large subunit assembly have shed light on the role of many early large subunit assembly factors, but how these particles emerge is still unknown. Here, we use the expression and purification of truncated pre-rRNAs to examine the initial assembly of pre-60S particles. Using this approach, we can recapitulate the early recruitment of large subunit assembly factors mainly to the domains I, II, and VI of the assembling 25S rRNA.


Assuntos
Biogênese de Organelas , Precursores de RNA/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/metabolismo , Clonagem Molecular , Plasmídeos/química , Plasmídeos/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem/métodos
12.
Elife ; 72018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30460895

RESUMO

The biogenesis of 60S ribosomal subunits is initiated in the nucleus where rRNAs and proteins form pre-60S particles. These pre-60S particles mature by transiently interacting with various assembly factors. The ~5000 amino-acid AAA+ ATPase Rea1 (or Midasin) generates force to mechanically remove assembly factors from pre-60S particles, which promotes their export to the cytosol. Here we present three Rea1 cryoEM structures. We visualise the Rea1 engine, a hexameric ring of AAA+ domains, and identify an α-helical bundle of AAA2 as a major ATPase activity regulator. The α-helical bundle interferes with nucleotide-induced conformational changes that create a docking site for the substrate binding MIDAS domain on the AAA +ring. Furthermore, we reveal the architecture of the Rea1 linker, which is involved in force generation and extends from the AAA+ ring. The data presented here provide insights into the mechanism of one of the most complex ribosome maturation factors.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Trifosfato de Adenosina/química , RNA Ribossômico/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Fenômenos Biomecânicos , Clonagem Molecular , Microscopia Crioeletrônica , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Biogênese de Organelas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/enzimologia , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
13.
Nature ; 556(7699): 126-129, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512650

RESUMO

Early co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly factors regulate and chaperone the systematic folding of pre-ribosomal RNA subdomains. However, owing to a lack of structural information, the role of these factors during early nucleolar 60S assembly is not fully understood. Here we report cryo-electron microscopy (cryo-EM) reconstructions of the nucleolar pre-60S ribosomal subunit in different conformational states at resolutions of up to 3.4 Å. These reconstructions reveal how steric hindrance and molecular mimicry are used to prevent both premature folding states and binding of later factors. This is accomplished by the concerted activity of 21 ribosome assembly factors that stabilize and remodel pre-ribosomal RNA and ribosomal proteins. Among these factors, three Brix-domain proteins and their binding partners form a ring-like structure at ribosomal RNA (rRNA) domain boundaries to support the architecture of the maturing particle. The existence of mutually exclusive conformations of these pre-60S particles suggests that the formation of the polypeptide exit tunnel is achieved through different folding pathways during subsequent stages of ribosome assembly. These structures rationalize previous genetic and biochemical data and highlight the mechanisms that drive eukaryotic ribosome assembly in a unidirectional manner.


Assuntos
Nucléolo Celular/química , Microscopia Crioeletrônica , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae , Reagentes de Ligações Cruzadas/química , Modelos Moleculares , Mimetismo Molecular , Domínios Proteicos , Estabilidade Proteica , Dobramento de RNA , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , Reprodutibilidade dos Testes , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
14.
Adv Biol Regul ; 67: 109-127, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942353

RESUMO

Mutations that target the ubiquitous process of ribosome assembly paradoxically cause diverse tissue-specific disorders (ribosomopathies) that are often associated with an increased risk of cancer. Ribosomes are the essential macromolecular machines that read the genetic code in all cells in all kingdoms of life. Following pre-assembly in the nucleus, precursors of the large 60S and small 40S ribosomal subunits are exported to the cytoplasm where the final steps in maturation are completed. Here, I review the recent insights into the conserved mechanisms of ribosome assembly that have come from functional characterisation of the genes mutated in human ribosomopathies. In particular, recent advances in cryo-electron microscopy, coupled with genetic, biochemical and prior structural data, have revealed that the SBDS protein that is deficient in the inherited leukaemia predisposition disorder Shwachman-Diamond syndrome couples the final step in cytoplasmic 60S ribosomal subunit maturation to a quality control assessment of the structural and functional integrity of the nascent particle. Thus, study of this fascinating disorder is providing remarkable insights into how the large ribosomal subunit is functionally activated in the cytoplasm to enter the actively translating pool of ribosomes.


Assuntos
Doenças da Medula Óssea/metabolismo , Insuficiência Pancreática Exócrina/metabolismo , Lipomatose/metabolismo , Mutação , Proteínas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Doenças da Medula Óssea/patologia , Microscopia Crioeletrônica , Insuficiência Pancreática Exócrina/patologia , Humanos , Lipomatose/patologia , Proteínas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Síndrome de Shwachman-Diamond
15.
J Struct Biol ; 200(2): 106-117, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28943480

RESUMO

We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class.


Assuntos
Microscopia Crioeletrônica/métodos , Imageamento Tridimensional/métodos , Plasmodium falciparum/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Leveduras/ultraestrutura , Algoritmos , Simulação por Computador , Modelos Estatísticos
16.
Nat Struct Mol Biol ; 24(10): 866-869, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892042

RESUMO

Mammalian mitochondrial ribosomes (mitoribosomes) have less rRNA content and 36 additional proteins compared with the evolutionarily related bacterial ribosome. These differences make the assembly of mitoribosomes more complex than the assembly of bacterial ribosomes, but the molecular details of mitoribosomal biogenesis remain elusive. Here, we report the structures of two late-stage assembly intermediates of the human mitoribosomal large subunit (mt-LSU) isolated from a native pool within a human cell line and solved by cryo-EM to ∼3-Šresolution. Comparison of the structures reveals insights into the timing of rRNA folding and protein incorporation during the final steps of ribosomal maturation and the evolutionary adaptations that are required to preserve biogenesis after the structural diversification of mitoribosomes. Furthermore, the structures redefine the ribosome silencing factor (RsfS) family as multifunctional biogenesis factors and identify two new assembly factors (L0R8F8 and mt-ACP) not previously implicated in mitoribosomal biogenesis.


Assuntos
Ribossomos Mitocondriais/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Microscopia Crioeletrônica , Humanos , Fatores de Tempo
17.
EMBO J ; 36(7): 854-868, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28179369

RESUMO

During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo-electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin-ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Biogênese de Organelas , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP/química , Proteínas de Ligação a RNA/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
18.
Nat Struct Mol Biol ; 24(3): 214-220, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28112732

RESUMO

A key step in ribosome biogenesis is the nuclear export of pre-ribosomal particles. Nmd3, a highly conserved protein in eukaryotes, is a specific adaptor required for the export of pre-60S particles. Here we used cryo-electron microscopy (cryo-EM) to characterize Saccharomyces cerevisiae pre-60S particles purified with epitope-tagged Nmd3. Our structural analysis indicates that these particles belong to a specific late stage of cytoplasmic pre-60S maturation in which ribosomal proteins uL16, uL10, uL11, eL40 and eL41 are deficient, but ribosome assembly factors Nmd3, Lsg1, Tif6 and Reh1 are present. Nmd3 and Lsg1 are located near the peptidyl-transferase center (PTC). In particular, Nmd3 recognizes the PTC in its near-mature conformation. In contrast, Reh1 is anchored to the exit of the polypeptide tunnel, with its C terminus inserted into the tunnel. These findings pinpoint a structural checkpoint role for Nmd3 in PTC assembly, and provide information about functional and mechanistic roles of these assembly factors in the maturation of the 60S ribosomal subunit.


Assuntos
Citoplasma/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoplasma/ultraestrutura , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
19.
Biochem J ; 474(2): 195-214, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062837

RESUMO

Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.


Assuntos
Biogênese de Organelas , RNA Ribossômico/química , RNA Nucleolar Pequeno/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
20.
Protein Sci ; 26(1): 103-112, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27643814

RESUMO

The assembly of ribosomal subunits starts in the nucleus, initiated by co-transcriptional folding of nascent ribosomal RNA (rRNA) transcripts and binding of ribosomal proteins and assembly factors. The internal transcribed spacer 2 (ITS2) is a precursor sequence to be processed from the intermediate 27S rRNA in the nucleoplasm; its removal is required for nuclear export of pre-60S particles. The proper processing of the ITS2 depends on multiple associated assembly factors and RNases. However, none of the structures of the known ITS2-binding factors is available. Here, we describe the modeling of the ITS2 subcomplex, including five assembly factors Cic1, Nop7, Nop15, Nop53, and Rlp7, using a combination of cryo-electron microscopy and cross-linking of proteins coupled with mass spectrometry approaches. The resulting atomic models provide structural insights into their function in ribosome assembly, and establish a framework for further dissection of their molecular roles in ITS2 processing.


Assuntos
Modelos Moleculares , RNA Ribossômico/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Espectrometria de Massas , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...