Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 158(12): 4129-4138, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069360

RESUMO

Primary aldosteronism (PA) is a common form of endocrine hypertension that is characterized by the excessive production of aldosterone relative to suppressed plasma renin levels. PA is usually caused by either a unilateral aldosterone-producing adenoma or bilateral adrenal hyperplasia. Somatic mutations have been identified in several genes that encode ion pumps and channels that may explain the aldosterone excess in over half of aldosterone-producing adenomas, whereas the pathophysiology of bilateral adrenal hyperplasia is largely unknown. A number of mouse models of hyperaldosteronism have been described that recreate some features of the human disorder, although none replicate the genetic basis of human PA. Animal models that reproduce the genotype-phenotype associations of human PA are required to establish the functional mechanisms that underlie the endocrine autonomy and deregulated cell growth of the affected adrenal and for preclinical studies of novel therapeutics. Herein, we discuss the differences in adrenal physiology across species and describe the genetically modified mouse models of PA that have been developed to date.


Assuntos
Glândulas Suprarrenais/fisiologia , Glândulas Suprarrenais/fisiopatologia , Modelos Animais de Doenças , Hiperaldosteronismo/fisiopatologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Proteína da Polipose Adenomatosa do Colo/genética , Glândulas Suprarrenais/metabolismo , Animais , Criptocromos/deficiência , Criptocromos/genética , Humanos , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos Knockout , Camundongos Transgênicos , Canais de Potássio/deficiência , Canais de Potássio/genética , Canais de Potássio de Domínios Poros em Tandem/deficiência , Canais de Potássio de Domínios Poros em Tandem/genética , Especificidade da Espécie
2.
FEBS Lett ; 590(23): 4372-4380, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27800604

RESUMO

KCNMA1 is a pore-forming α-subunit of the large conductance Ca2+ - and voltage-activated K+ channels, referred to as BK channels, which play key roles in various physiological functions. However, the role of KCNMA1 in mature adipocytes remains unclear. In this study, we reveal that kcnma1 expression is downregulated in white adipose tissue of mice fed a high-fat diet and in hypertrophied adipocytes. Furthermore, inhibition of kcnma1 expression or treatment with a BK channel blocker attenuated insulin-induced Akt phosphorylation in mature adipocytes. These results strongly indicate that KCNMA1 contributes to the regulation of insulin signalling in mature adipocytes.


Assuntos
Adipócitos/citologia , Insulina/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Transdução de Sinais , Células 3T3 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hipertrofia/metabolismo , Indóis/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Nat Neurosci ; 17(8): 1055-63, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24952642

RESUMO

Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum and lysosomal ion channels in the regulation of Ca(2+) is well established. In contrast, surprisingly little is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally, blockade of nuclear BK channels (nBK channels) induces NE-derived Ca(2+) release, nucleoplasmic Ca(2+) elevation and cyclic AMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca(2+)-sensitive gene expression and promotes dendritic arborization in a nuclear Ca(2+)-dependent manner. These results suggest that the nBK channel functions as a molecular link between neuronal activity and nuclear Ca(2+) to convey signals from synapse to nucleus and is a new modulator, operating at the NE, of synaptic activity-dependent neuronal functions.


Assuntos
Sinalização do Cálcio/genética , Regulação da Expressão Gênica , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Membrana Nuclear/ultraestrutura , Fosforilação/genética , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/genética
4.
Kidney Int ; 86(1): 139-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24573316

RESUMO

The large-conductance, calcium-activated BK-α/ß4 potassium channel, localized to the intercalated cells of the distal nephron, mediates potassium secretion during high-potassium, alkaline diets. Here we determine whether BK-α/ß4-mediated potassium transport is dependent on epithelial sodium channel (ENaC)-mediated sodium reabsorption. We maximized sodium-potassium exchange in the distal nephron by feeding mice a low-sodium, high-potassium diet. Wild-type and BK-ß4 knockout mice were maintained on a low-sodium, high-potassium, alkaline diet or a low-sodium, high-potassium, acidic diet for 7-10 days. Wild-type mice maintained potassium homeostasis on the alkaline, but not acid, diet. BK-ß4 knockout mice could not maintain potassium homeostasis on either diet. During the last 12 h of diet, wild-type mice on either a regular, alkaline, or an acid diet, or knockout mice on an alkaline diet, were administered amiloride (an ENaC inhibitor). Amiloride enhanced sodium excretion in all wild-type and knockout groups to similar values; however, amiloride diminished potassium excretion by 59% in wild-type but only by 33% in knockout mice on an alkaline diet. Similarly, amiloride decreased the trans-tubular potassium gradient by 68% in wild-type but only by 42% in knockout mice on an alkaline diet. Amiloride treatment equally enhanced sodium excretion and diminished potassium secretion in knockout mice on an alkaline diet and wild-type mice on an acid diet. Thus, the enhanced effect of amiloride on potassium secretion in wild-type compared to knockout mice on the alkaline diet clarify a BK- α/ß4-mediated potassium secretory pathway in intercalated cells driven by ENaC-mediated sodium reabsorption linked to bicarbonate secretion.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Néfrons/metabolismo , Sódio/metabolismo , Amilorida/farmacologia , Animais , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Hidroclorotiazida/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Néfrons/efeitos dos fármacos , Potássio/metabolismo , Potássio na Dieta/administração & dosagem , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Sódio na Dieta/administração & dosagem
5.
Proc Natl Acad Sci U S A ; 110(26): 10836-41, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754429

RESUMO

The large-conductance Ca(2+)- and voltage-activated K(+) channel (BK(Ca), MaxiK), which is encoded by the Kcnma1 gene, is generally expressed at the plasma membrane of excitable and nonexcitable cells. However, in adult cardiomyocytes, a BK(Ca)-like channel activity has been reported in the mitochondria but not at the plasma membrane. The putative opening of this channel with the BK(Ca) agonist, NS1619, protects the heart from ischemic insult. However, the molecular origin of mitochondrial BK(Ca) (mitoBK(Ca)) is unknown because its linkage to Kcnma1 has been questioned on biochemical and molecular grounds. Here, we unequivocally demonstrate that the molecular correlate of mitoBK(Ca) is the Kcnma1 gene, which produces a protein that migrates at ∼140 kDa and arranges in clusters of ∼50 nm in purified mitochondria. Physiological experiments further support the origin of mitoBK(Ca) as a Kcnma1 product because NS1619-mediated cardioprotection was absent in Kcnma1 knockout mice. Finally, BKCa transcript analysis and expression in adult cardiomyocytes led to the discovery of a 50-aa C-terminal splice insert as essential for the mitochondrial targeting of mitoBK(Ca).


Assuntos
Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Mitocôndrias Cardíacas/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/ultraestrutura , Dados de Sequência Molecular , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Homologia de Sequência de Aminoácidos
6.
Shock ; 35(5): 485-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21330953

RESUMO

Nitric oxide-mediated activation of large conductance calcium-activated potassium (BK) channels is considered an important underlying mechanism of sepsis-induced hypotension. Indeed, the nonselective K-channel inhibitor, tetraethylammonium chloride (TEA), has been proposed as a potential treatment to raise blood pressure in septic shock by virtue of its ability to inhibit BK channels. As experimental evidence has so far relied on pharmacological inhibition, we examined the effects of channel deletion using BKα subunit knockout (α, Slo) mice in two mouse models of polymicrobial sepsis, namely, intraperitoneal fecal slurry and cecal ligation and puncture. Comparison was made against TEA treatment in wild-type (WT) mice. Following slurry, BKα and WT mice developed similar degrees of hypotension over 10 h with no difference in cardiac output as assessed by echocardiography between groups. Tetraethylammonium chloride raised blood pressure significantly in septic WT mice, but had no effect on survival. However, following cecal ligation and puncture, a significantly reduced survival was seen in both BKα mice and (high-dose) TEA-treated WT mice compared with untreated WT animals. In conclusion, the BK channel does not appear to be integral to sepsis-induced hypotension but does affect survival through other mechanisms. The pressor effect of TEA may be related to effects on other potassium channels.


Assuntos
Hipotensão/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Sepse/microbiologia , Sepse/mortalidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Genótipo , Hipotensão/tratamento farmacológico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Camundongos Knockout , Bloqueadores dos Canais de Potássio/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepse/tratamento farmacológico , Sepse/genética , Tetraetilamônio/uso terapêutico
7.
PLoS One ; 3(12): e3884, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19060951

RESUMO

BACKGROUND: Circadian ( approximately 24 hr) rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN) of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR) over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+) channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/-) mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT) and Kcnma1(-/-) slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/-) SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.


Assuntos
Potenciais de Ação/fisiologia , Ritmo Circadiano/fisiologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Núcleo Supraquiasmático/fisiologia , Animais , Eletrodos , Técnicas In Vitro , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Camundongos , Condicionamento Físico Animal , Fatores de Tempo
8.
Am J Physiol Cell Physiol ; 294(3): C810-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18216162

RESUMO

The exocrine salivary glands of mammals secrete K+ by an unknown pathway that has been associated with HCO3(-) efflux. However, the present studies found that K+ secretion in the mouse submandibular gland did not require HCO3(-), demonstrating that neither K+/HCO3(-) cotransport nor K+/H+ exchange mechanisms were involved. Because HCO3(-) did not appear to participate in this process, we tested whether a K channel is required. Indeed, K+ secretion was inhibited >75% in mice with a null mutation in the maxi-K, Ca2+-activated K channel (KCa1.1) but was unchanged in mice lacking the intermediate-conductance IKCa1 channel (KCa3.1). Moreover, paxilline, a specific maxi-K channel blocker, dramatically reduced the K+ concentration in submandibular saliva. The K+ concentration of saliva is well known to be flow rate dependent, the K+ concentration increasing as the flow decreases. The flow rate dependence of K+ secretion was nearly eliminated in KCa1.1 null mice, suggesting an important role for KCa1.1 channels in this process as well. Importantly, a maxi-K-like current had not been previously detected in duct cells, the theoretical site of K+ secretion, but we found that KCa1.1 channels localized to the apical membranes of both striated and excretory duct cells, but not granular duct cells, using immunohistochemistry. Consistent with this latter observation, maxi-K currents were not detected in granular duct cells. Taken together, these results demonstrate that the secretion of K+ requires and is likely mediated by KCa1.1 potassium channels localized to the apical membranes of striated and excretory duct cells in the mouse submandibular exocrine gland.


Assuntos
Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potássio/metabolismo , Saliva/metabolismo , Glândula Submandibular/metabolismo , Animais , Bicarbonatos/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Ativação do Canal Iônico , Cinética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana , Camundongos , Camundongos Knockout , Bloqueadores dos Canais de Potássio/farmacologia , Sódio/metabolismo , Glândula Submandibular/citologia , Glândula Submandibular/efeitos dos fármacos
9.
J Physiol ; 581(Pt 2): 801-17, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17379640

RESUMO

We have recently shown that the IK1 and maxi-K channels in parotid salivary gland acinar cells are encoded by the K(Ca)3.1 and K(Ca)1.1 genes, respectively, and in vivo stimulated parotid secretion is severely reduced in double-null mice. The current study tested whether submandibular acinar cell function also relies on these channels. We found that the K(+) currents in submandibular acinar cells have the biophysical and pharmacological footprints of IK1 and maxi-K channels and their molecular identities were confirmed by the loss of these currents in K(Ca)3.1- and K(Ca)1.1-null mice. Unexpectedly, the pilocarpine-stimulated in vivo fluid secretion from submandibular glands was essentially normal in double-null mice. This result and the possibility of side-effects of pilocarpine on the nervous system, led us to develop an ex vivo fluid secretion assay. Fluid secretion from the ex vivo assay was substantially (about 75%) reduced in animals with both K(+) channel genes ablated - strongly suggesting systemic complications with the in vivo assay. Additional experiments focusing on the membrane potential in isolated submandibular acinar cells revealed mechanistic details underlying fluid secretion in K(+) channel-deficient mice. The membrane potential of submandibular acinar cells from wild-type mice remained strongly hyperpolarized (-55 +/- 2 mV) relative to the Cl(-) equilibrium potential (-24 mV) during muscarinic stimulation. Similar hyperpolarizations were observed in K(Ca)3.1- and K(Ca)1.1-null mice (-51 +/- 3 and -48 +/- 3 mV, respectively), consistent with the normal fluid secretion produced ex vivo. In contrast, acinar cells from double K(Ca)3.1/K(Ca)1.1-null mice were only slightly hyperpolarized (-35 +/- 2 mV) also consistent with the ex vivo (but not in vivo) results. Finally, we found that the modest hyperpolarization of cells from the double-null mice was maintained by the electrogenic Na(+),K(+)-ATPase.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potássio/metabolismo , Saliva/metabolismo , Glândula Submandibular/metabolismo , Animais , Bioensaio/métodos , Cloretos/metabolismo , Clotrimazol/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana , Camundongos , Camundongos Knockout , Agonistas Muscarínicos/farmacologia , Técnicas de Patch-Clamp , Paxilina/farmacologia , Pilocarpina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Glândula Submandibular/citologia , Glândula Submandibular/efeitos dos fármacos
10.
Neuroscience ; 143(3): 837-49, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17074442

RESUMO

The molecular basis of high versus low frequency hearing loss and the differences in the sensitivity of outer hair cells depending on their cochlear localization are currently not understood. Here we demonstrate the existence of two different outer hair cell phenotypes along the cochlear axis. Outer hair cells in low frequency regions exhibit early sensitivity for loss of Ca(v)1.3 (alpha1 subunit 1.3 forming the class D L-type voltage-gated Ca(2+) channel), while high frequency regions display a progressive susceptibility for loss of the Ca(2+)-activated large conductance K(+) (BK) channel. Despite deafness, young Ca(v)1.3-deficient mice displayed distortion-product otoacoustic emissions (DPOAEs), indicating functional outer hair cells in the higher frequency range of the cochlea. Considering that DPOAEs are also found in the human deafness syndrome DFNB9 caused by mutations in the synaptic vesicle protein otoferlin, we tested the expression of otoferlin in outer hair cells. Surprisingly, otoferlin showed a distinct tonotopic expression pattern at both the mRNA and protein level. Otoferlin-expressing, Ca(v)1.3 deletion-sensitive outer hair cells in the low frequency range could be clearly separated from otoferlin-negative, BK deletion-sensitive outer hair cells in the high frequency range. In addition, BK deletion led to a higher noise vulnerability in low frequency regions, which are normally unaffected by the BK deletion alone, suggesting that BK currents are involved in survival mechanisms of outer hair cells under noise conditions. Our findings propose new mechanisms and candidate genes for explaining high and low frequency hearing loss.


Assuntos
Cóclea/citologia , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/fisiologia , Estimulação Acústica/métodos , Oxirredutases do Álcool , Animais , Animais Recém-Nascidos , Limiar Auditivo/fisiologia , Canais de Cálcio Tipo L/deficiência , Proteínas Correpressoras , Cóclea/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Regulação da Expressão Gênica/genética , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Emissões Otoacústicas Espontâneas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...