Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.327
Filtrar
1.
Open Biol ; 14(6): 230463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835243

RESUMO

Succinate dehydrogenase (SDH) is a protein complex that functions in the tricarboxylic acid cycle and the electron transport chain of mitochondria. In most eukaryotes, SDH is highly conserved and comprises the following four subunits: SdhA and SdhB form the catalytic core of the complex, while SdhC and SdhD anchor the complex in the membrane. Toxoplasma gondii is an apicomplexan parasite that infects one-third of humans worldwide. The genome of T. gondii encodes homologues of the catalytic subunits SdhA and SdhB, although the physiological role of the SDH complex in the parasite and the identity of the membrane-anchoring subunits are poorly understood. Here, we show that the SDH complex contributes to optimal proliferation and O2 consumption in the disease-causing tachyzoite stage of the T. gondii life cycle. We characterize a small membrane-bound subunit of the SDH complex called mitochondrial protein ookinete developmental defect (MPODD), which is conserved among myzozoans, a phylogenetic grouping that incorporates apicomplexan parasites and their closest free-living relatives. We demonstrate that TgMPODD is essential for SDH activity and plays a key role in attaching the TgSdhA and TgSdhB proteins to the membrane anchor of the complex. Our findings highlight a unique and important feature of mitochondrial energy metabolism in apicomplexan parasites and their relatives.


Assuntos
Proteínas de Protozoários , Succinato Desidrogenase , Toxoplasma , Toxoplasma/metabolismo , Toxoplasma/genética , Toxoplasma/enzimologia , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Humanos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Filogenia , Animais
2.
Drug Dev Res ; 85(4): e22199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812443

RESUMO

It has been reported that lipophilic statins such as atorvastatin can more readily penetrate into ß-cells and reach the mitochondria, resulting in mitochondrial dysfunction, oxidative stress, decrease in insulin release. Many studies have shown that natural products can protect mitochondrial dysfunction induced by drug in different tissue. We aimed to explore mitochondrial protection potency of hesperidin, vanillic acid, and sinapic acid as natural compounds against mitochondrial dysfunction induced by atorvastatin in pancreas isolated mitochondria. Mitochondria were isolated form rat pancreas and directly treated with toxic concentration of atorvastatin (500 µM) in presence of various concentrations hesperidin, vanillic acid, and sinapic acid (1, 10, and 100 µM) separately. Mitochondrial toxicity parameters such as the reactive oxygen species (ROS) formation, succinate dehydrogenases (SDH) activity, mitochondrial swelling, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) collapse, and malondialdehyde (MDA) production were measured. Our findings demonstrated that atorvastatin directly induced mitochondrial toxicity at concentration of 500 µM and higher in pancreatic mitochondria. Except MDA, atorvastatin caused significantly reduction in SDH activity, mitochondrial swelling, ROS formation, depletion of GSH, and collapse of MMP. While, our data showed that all three protective compounds at low concentrations ameliorated atorvastatin-induced mitochondrial dysfunction with the increase of SDH activity, improvement of mitochondrial swelling, MMP collapse and mitochondrial GSH, and reduction of ROS formation. We can conclude that hesperidin, vanillic acid, and sinapic acid can directly reverse the toxic of atorvastatin in rat pancreas isolated mitochondria, which may be beneficial for protection against diabetogenic-induced mitochondrial dysfunction in pancreatic ß-cells.


Assuntos
Atorvastatina , Ácidos Cumáricos , Hesperidina , Potencial da Membrana Mitocondrial , Mitocôndrias , Dilatação Mitocondrial , Pâncreas , Espécies Reativas de Oxigênio , Ácido Vanílico , Animais , Atorvastatina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Ácidos Cumáricos/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Dilatação Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácido Vanílico/farmacologia , Hesperidina/farmacologia , Glutationa/metabolismo , Ratos Wistar , Succinato Desidrogenase/metabolismo , Malondialdeído/metabolismo
3.
Life Sci ; 348: 122699, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718854

RESUMO

AIMS: Azoles have been widely employed for the treatment of invasive fungal diseases; however, their efficacy is diminished as pathogenic fungi tolerate them due to their fungistatic properties. Geldanamycin (GdA) can render azoles fungicidal by inhibiting the ATPase and molecular chaperone activities of heat shock protein 90 (Hsp90). Nonetheless, the clinical applicability of GdA is restricted due to its cytotoxic ansamycin scaffold structure, its induction of cytoprotective heat shock responses, and the conservative nature of Hsp90. Hence, it is imperative to elucidate the mechanism of action of GdA to confer fungicidal properties to azoles and mitigate the toxic adverse effects associated with GdA. MATERIALS AND METHODS: Through various experimental methods, including the construction of gene-deleted Candida albicans mutants, in vitro drug sensitivity experiments, Western blot analysis, reactive oxygen species (ROS) assays, and succinate dehydrogenase activity assays, we identified Hsp90 client proteins associated with the tolerance of C. albicans to azoles. KEY FINDINGS: It was observed that GdA effectively hindered the entry of Hsp90 into mitochondria, resulting in the alleviation of inhibitory effect of Hsp90 on succinate dehydrogenase. Consequently, the activation of succinate dehydrogenase led to an increased production of ROS. within the mitochondria, thereby facilitating the antifungal effects of azoles against C. albicans. SIGNIFICANCE: This research presents a novel approach for conferring fungicidal properties to azoles, which involves specifically disrupting the interaction of between Hsp90 and succinate dehydrogenase rather than employing a non-specific inhibition of ATPase activity of Hsp90.


Assuntos
Antifúngicos , Azóis , Benzoquinonas , Candida albicans , Proteínas de Choque Térmico HSP90 , Lactamas Macrocíclicas , Espécies Reativas de Oxigênio , Succinato Desidrogenase , Benzoquinonas/farmacologia , Lactamas Macrocíclicas/farmacologia , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Azóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Farmacorresistência Fúngica/efeitos dos fármacos
4.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720452

RESUMO

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Fungicidas Industriais , Oximas , Pirazóis , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Oximas/química , Oximas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Rhizoctonia/efeitos dos fármacos , Éteres/química , Éteres/farmacologia , Estrutura Molecular
5.
Phytomedicine ; 130: 155761, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38797031

RESUMO

BACKGROUND: Quercetin has received extensive attention for its therapeutic potential treating respiratory syncytial virus (RSV) infection diseases. Recent studies have highlighted quercetin's ability of suppressing alveolar macrophages (AMs)-derived lung inflammation. However, the anti-inflammatory mechanism of quercetin against RSV infection still remains elusive. PURPOSE: This study aims to elucidate the mechanism about quercetin anti-inflammatory effect on RSV infection. METHODS: BALB/c mice were intranasally infected with RSV and received quercetin (30, 60, 120 mg/kg/d) orally for 3 days. Additionally, an in vitro infection model utilizing mouse alveolar macrophages (MH-S cells) was employed to validate the proposed mechanism. RESULTS: Quercetin exhibited a downregulatory effect on glycolysis and tricarboxylic acid (TCA) cycle metabolism in RSV-infected AMs. However, it increased itaconic acid production, a metabolite derived from citrate through activating immune responsive gene 1 (IRG1), and further inhibiting succinate dehydrogenase (SDH) activity. While the suppression of SDH activity orchestrated a cascading downregulation of Hif-1α/NLRP3 signaling, ultimately causing AMs polarization from M1 to M2 phenotypes. CONCLUSION: Our study demonstrated quercetin stimulated IRG1-mediated itaconic acid anabolism and further inhibited SDH/Hif-1α/NLRP3 signaling pathway, which led to M1 to M2 polarization of AMs so as to ameliorate RSV-induced lung inflammation.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Macrófagos Alveolares , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quercetina , Infecções por Vírus Respiratório Sincicial , Succinatos , Animais , Succinatos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Quercetina/farmacologia , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Succinato Desidrogenase/metabolismo , Glicólise/efeitos dos fármacos , Feminino , Transdução de Sinais/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Hidroliases
6.
Bioorg Med Chem Lett ; 108: 129813, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788964

RESUMO

Succinate dehydrogenase inhibitors are essential fungicides used in agriculture. To explore new pyrazole-carboxamides with high fungicidal activity, a series of N-substitutedphenyl-3-di/trifluoromethyl-1-methyl-1H-pyrazole-4-carboxamides bearing a branched alkyl ether moiety were designed and synthesized. The in vitro bioassay indicated that some target compounds displayed appreciable fungicidal activity. For example, compounds 5d and 5e showed high efficacy against S. sclerotiorum with EC50 values of 3.26 and 1.52 µg/mL respectively, and also exhibited excellent efficacy against R. solani with EC50 values of 0.27 and 0.06 µg/mL respectively, which were comparable or superior to penflufen. The further in vivo bioassay on cucumber leaves demonstrated that 5e provided strong protective activity of 94.3 % against S. sclerotiorum at 100 µg/mL, comparable to penflufen (99.1 %). Cytotoxicity assessment against human renal cell lines (239A cell) revealed that 5e had low cytotoxicity within the median effective concentrations. Docking study of 5e with succinate dehydrogenase illustrated that R-5e formed one hydrogen bond and two π-π stacking interactions with amino acid residues of target enzyme, while S-5e formed only one π-π stacking interaction with amino acid residue. This study provides a valuable reference for the design of new succinate dehydrogenase inhibitor.


Assuntos
Fungicidas Industriais , Simulação de Acoplamento Molecular , Pirazóis , Succinato Desidrogenase , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Humanos , Relação Estrutura-Atividade , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ascomicetos/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Éteres/química , Éteres/farmacologia , Éteres/síntese química , Rhizoctonia
7.
J Agric Food Chem ; 72(21): 11938-11948, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752540

RESUMO

The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 µg/mL), 6ae (0.32 µg/mL), and 6ah (0.48 µg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 µg/mL). Furthermore, compounds 4ak (0.88 µg/mL), 6ae (0.61 µg/mL), 6ah (0.65 µg/mL), and 6ak (1.11 µg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 µg/mL) and the broad-spectrum fungicide carbendazim (2.15 µg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.


Assuntos
Cumarínicos , Fungicidas Industriais , Relação Quantitativa Estrutura-Atividade , Rhizoctonia , Succinato Desidrogenase , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Rhizoctonia/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Colletotrichum/efeitos dos fármacos , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrazinas/química , Hidrazinas/farmacologia , Hidrazinas/síntese química , Simulação de Acoplamento Molecular , Halogenação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química
8.
Insect Biochem Mol Biol ; 170: 104127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657708

RESUMO

Mitochondrial electron transfer inhibitors at complex II (METI-II), also referred to as succinate dehydrogenase inhibitors (SDHI), represent a recently developed class of acaricides encompassing cyflumetofen, cyenopyrafen, pyflubumide and cyetpyrafen. Despite their novelty, resistance has already developed in the target pest, Tetranychus urticae. In this study a new mutation, H146Q in a highly conserved region of subunit B of complex II, was identified in a T. urticae population resistant to all METI-IIs. In contrast to previously described mutations, H146Q is located outside the ubiquinone binding site of complex II. Marker-assisted backcrossing of this mutation in a susceptible genetic background validated its association with resistance to cyflumetofen and pyflubumide, but not cyenopyrafen or cyetpyrafen. Biochemical assays and the construction of inhibition curves with isolated mitochondria corroborated this selectivity. In addition, phenotypic effects of H146Q, together with the previously described H258L, were further examined via CRISPR/Cas9 gene editing. Although both mutations were successfully introduced into a susceptible T. urticae population, the H146Q gene editing event was only recovered in individuals already harboring the I260V mutation, known to confer resistance towards cyflumetofen. The combination of H146Q + I260V conferred high resistance levels to all METI-II acaricides with LC50 values over 5000 mg a.i./L for cyflumetofen and pyflubumide. Similarly, the introduction of H258L via gene editing resulted in high resistance levels to all tested acaricides, with extreme LC50 values (>5000 mg a.i./L) for cyenopyrafen and cyetpyrafen, but lower resistance levels for pyflubumide and cyflumetofen. Together, these findings indicate that different mutations result in a different cross-resistance spectrum, probably also reflecting subtle differences in the binding mode of complex II acaricides.


Assuntos
Acaricidas , Tetranychidae , Animais , Tetranychidae/genética , Tetranychidae/efeitos dos fármacos , Acaricidas/farmacologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Mutação , Sítios de Ligação , Ubiquinona/análogos & derivados , Resistência a Medicamentos/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino , Propionatos/farmacologia
9.
Am J Physiol Cell Physiol ; 326(6): C1669-C1682, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646781

RESUMO

We previously showed that the transaminase inhibitor, aminooxyacetic acid, reduced respiration energized at complex II (succinate dehydrogenase, SDH) in mitochondria isolated from mouse hindlimb muscle. The effect required a reduction in membrane potential with resultant accumulation of oxaloacetate (OAA), a potent inhibitor of SDH. To specifically assess the effect of the mitochondrial transaminase, glutamic oxaloacetic transaminase (GOT2) on complex II respiration, and to determine the effect in intact cells as well as isolated mitochondria, we performed respiratory and metabolic studies in wildtype (WT) and CRISPR-generated GOT2 knockdown (KD) C2C12 myocytes. Intact cell respiration by GOT2KD cells versus WT was reduced by adding carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) to lower potential. In mitochondria of C2C12 KD cells, respiration at low potential generated by 1 µM FCCP and energized at complex II by 10 mM succinate + 0.5 mM glutamate (but not by complex I substrates) was reduced versus WT mitochondria. Although we could not detect OAA, metabolite data suggested that OAA inhibition of SDH may have contributed to the FCCP effect. C2C12 mitochondria differed from skeletal muscle mitochondria in that the effect of FCCP on complex II respiration was not evident with ADP addition. We also observed that C2C12 cells, unlike skeletal muscle, expressed glutamate dehydrogenase, which competes with GOT2 for glutamate metabolism. In summary, GOT2 KD reduced C2C12 respiration in intact cells at low potential. From differential substrate effects, this occurred largely at complex II. Moreover, C2C12 versus muscle mitochondria differ in complex II sensitivity to ADP and differ markedly in expression of glutamate dehydrogenase.NEW & NOTEWORTHY Impairment of the mitochondrial transaminase, GOT2, reduces complex II (succinate dehydrogenase, SDH)-energized respiration in C2C12 myocytes. This occurs only at low inner membrane potential and is consistent with inhibition of SDH. Incidentally, we observed that C2C12 mitochondria compared with muscle tissue mitochondria differ in sensitivity of complex II respiration to ADP and in the expression of glutamate dehydrogenase.


Assuntos
Respiração Celular , Potencial da Membrana Mitocondrial , Mitocôndrias Musculares , Animais , Camundongos , Aspartato Aminotransferase Mitocondrial/metabolismo , Aspartato Aminotransferase Mitocondrial/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Consumo de Oxigênio/efeitos dos fármacos , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
10.
Int J Biol Macromol ; 267(Pt 1): 131407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582463

RESUMO

Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.


Assuntos
Antioxidantes , Quitosana , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Bases de Schiff , Succinato Desidrogenase , Quitosana/química , Quitosana/farmacologia , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/química , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Glicina/química , Glicina/análogos & derivados , Glicina/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Fusarium/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Técnicas de Química Sintética
11.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673951

RESUMO

Succinate dehydrogenase inhibition with malonate during initial reperfusion reduces myocardial infarct size in both isolated mouse hearts subjected to global ischemia and in in situ pig hearts subjected to transient coronary ligature. However, the long-term effects of acute malonate treatment are unknown. Here, we investigated whether the protective effects of succinate dehydrogenase inhibition extend to a reduction in scar size and adverse left ventricular remodeling 28 days after myocardial infarction. Initially, ten wild-type mice were subjected to 45 min of left anterior descending coronary artery (LAD) occlusion, followed by 24 h of reperfusion, and were infused during the first 15 min of reperfusion with saline with or without disodium malonate (10 mg/kg/min, 120 µL/kg/min). Malonate-treated mice depicted a significant reduction in infarct size (15.47 ± 3.40% of area at risk vs. 29.34 ± 4.44% in control animals, p < 0.05), assessed using triphenyltetrazolium chloride. Additional animals were then subjected to a 45 min LAD ligature, followed by 28 days of reperfusion. Treatment with a single dose of malonate during the first 15 min of reperfusion induced a significant reduction in scar area, measured using Picrosirius Red staining (11.94 ± 1.70% of left ventricular area (n = 5) vs. 23.25 ± 2.67% (n = 9), p < 0.05), an effect associated with improved ejection fraction 28 days after infarction, as determined using echocardiography, and an attenuated enhancement in expression of the pro-inflammatory and fibrotic markers NF-κB and Smad2/3 in remote myocardium. In conclusion, a reversible inhibition of succinate dehydrogenase with a single dose of malonate at the onset of reperfusion has long-term protective effects in mice subjected to transient coronary occlusion.


Assuntos
Malonatos , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Succinato Desidrogenase , Remodelação Ventricular , Animais , Malonatos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Camundongos , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Masculino , Remodelação Ventricular/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Cicatriz/patologia , Cicatriz/tratamento farmacológico , Camundongos Endogâmicos C57BL
12.
J Agric Food Chem ; 72(18): 10314-10327, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661317

RESUMO

Succinate dehydrogenase (SDH) is an integral component of the tricarboxylic acid cycle (TCA) and respiratory electron transport chain (ETC), targeted by succinate dehydrogenase inhibitors (SDHIs). Fusarium asiaticum is a prominent phytopathogen causing Fusarium head blight (FHB) on wheat. Here, we characterized the functions of the FaSdhA, FaSdhB, FaSdhC1, FaSdhC2, and FaSdhD subunits. Deletion of FaSdhA, FaSdhB, or FaSdhD resulted in significant growth defects in F. asiaticum. The FaSdhC1 or FaSdhC2 deletion mutants exhibited substantial reductions in fungal growth, conidiation, virulence, and reactive oxygen species (ROS). The FaSdhC1 expression was significantly induced by pydiflumetofen (PYD). The ΔFaSdhC1 mutant displayed hypersensitivity to SDHIs, whereas the ΔFaSdhC2 mutant exhibited resistance against most SDHIs. The transmembrane domains of FaSdhC1 are essential for regulating mycelial growth, virulence, and sensitivity to SDHIs. These findings provided valuable insights into how the two SdhC paralogues regulated the functional integrity of SDH, ROS homeostasis, and the sensitivity to SDHIs in phytopathogenic fungi.


Assuntos
Proteínas Fúngicas , Fungicidas Industriais , Fusarium , Homeostase , Espécies Reativas de Oxigênio , Succinato Desidrogenase , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/enzimologia , Fusarium/genética , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Triticum/microbiologia , Virulência/genética
13.
Redox Biol ; 72: 103161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677214

RESUMO

Ischaemia-reperfusion (IR) injury is the paradoxical consequence of the rapid restoration of blood flow to an ischaemic organ. Although reperfusion is essential for tissue survival in conditions such as myocardial infarction and stroke, the excessive production of mitochondrial reactive oxygen species (ROS) upon reperfusion initiates the oxidative damage that underlies IR injury, by causing cell death and inflammation. This ROS production is caused by an accumulation of the mitochondrial metabolite succinate during ischaemia, followed by its rapid oxidation upon reperfusion by succinate dehydrogenase (SDH), driving superoxide production at complex I by reverse electron transport. Inhibitors of SDH, such as malonate, show therapeutic potential by decreasing succinate oxidation and superoxide production upon reperfusion. To better understand the mechanism of mitochondrial ROS production upon reperfusion and to assess potential therapies, we set up an in vitro model of IR injury. For this, isolated mitochondria were incubated anoxically with succinate to mimic ischaemia and then rapidly reoxygenated to replicate reperfusion, driving a burst of ROS formation. Using this system, we assess the factors that contribute to the magnitude of mitochondrial ROS production in heart, brain, and kidney mitochondria, as well as screening for inhibitors of succinate oxidation with therapeutic potential.


Assuntos
Mitocôndrias , Traumatismo por Reperfusão , Superóxidos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Superóxidos/metabolismo , Mitocôndrias/metabolismo , Ácido Succínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Oxirredução , Malonatos/farmacologia , Malonatos/metabolismo , Masculino , Ratos , Camundongos
14.
Chemosphere ; 358: 142122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663675

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 µM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 µM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 µM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.


Assuntos
Succinato Desidrogenase , Humanos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Inibidores Enzimáticos/farmacologia , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores
15.
Chem Biol Interact ; 395: 111026, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679115

RESUMO

In the pursuit of novel antioxidant therapies for the prevention and treatment of neurodegenerative diseases, three new arylpiperazine derivatives (LQFM181, LQFM276, and LQFM277) were synthesized through a molecular hybridization approach involving piribedil and butylated hydroxytoluene lead compounds. To evaluate the antioxidant and neuroprotective activities of the arylpiperazine derivatives, we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (neurotoxicity induced by 3-nitropropionic acid in Swiss mice) models. In the in vitro tests, LQFM181 showed the most promising antioxidant activity at the neuronal membrane and cytoplasmic levels, and significant neuroprotective activity against the neurotoxicity induced by 3-nitropropionic acid. Hence, this compound was further subjected to in vivo evaluation, which demonstrated remarkable antioxidant capacity such as reduction of MDA and carbonyl protein levels, increased activities of succinate dehydrogenase, catalase, and superoxide dismutase. Interestingly, using the same in vivo model, LQFM181 also reduced locomotor behavior and memory dysfunction through its ability to decrease cholinesterase activity. Consequently, LQFM181 emerges as a promising candidate for further investigation into its neuroprotective potential, positioning it as a new therapeutic agent for neuroprotection.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Nitrocompostos , Piperazinas , Propionatos , Animais , Propionatos/toxicidade , Nitrocompostos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Camundongos , Piperazinas/farmacologia , Piperazinas/química , Humanos , Linhagem Celular Tumoral , Antioxidantes/farmacologia , Masculino , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos
16.
Phytomedicine ; 129: 155570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579645

RESUMO

BACKGROUND: Energy deficiency and oxidative stress are interconnected during ischemia/reperfusion (I/R) and serve as potential targets for the treatment of cerebral ischemic stroke. Baicalin is a neuroprotective antioxidant, but the underlying mechanisms are not fully revealed. PURPOSE: This study explored whether and how baicalin rescued neurons against ischemia/reperfusion (I/R) attack by focusing on the regulation of neuronal pyruvate dehydrogenase kinase 2 (PDK2)-pyruvate dehydrogenase (PDH) axis implicated with succinate dehydrogenase (SDH)-mediated oxidative stress. STUDY DESIGN: The effect of the tested drug was explored in vitro and in vivo with the model of oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion/reperfusion (MCAO/R), respectively. METHODS: Neuronal damage was evaluated according to cell viability, infarct area, and Nissl staining. Protein levels were measured by western blotting and immunofluorescence. Gene expression was investigated by RT-qPCR. Mitochondrial status was also estimated by fluorescence probe labeling. RESULTS: SDH activation-induced excessive production of reactive oxygen species (ROS) changed the protein expression of Lon protease 1 (LonP1) and hypoxia-inducible factor-1ɑ (HIF-1ɑ) in the early stage of I/R, leading to an upregulation of PDK2 and a decrease in PDH activity in neurons and cerebral cortices. Treatment with baicalin prevented these alterations and ameliorated neuronal ATP production and survival. CONCLUSION: Baicalin improves the function of the neuronal PDK2-PDH axis via suppression of SDH-mediated oxidative stress, revealing a new signaling pathway as a promising target under I/R conditions and the potential role of baicalin in the treatment of acute ischemic stroke.


Assuntos
Flavonoides , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Traumatismo por Reperfusão , Flavonoides/farmacologia , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fármacos Neuroprotetores/farmacologia , Succinato Desidrogenase/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ratos Sprague-Dawley , Sobrevivência Celular/efeitos dos fármacos , Ratos , Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
17.
Sci Adv ; 10(14): eadl0389, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569044

RESUMO

The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.


Assuntos
Insulinas , Succinato Desidrogenase , Animais , Humanos , Masculino , Camundongos , Insulinas/metabolismo , Lipídeos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Succinato Desidrogenase/metabolismo
18.
Bioorg Chem ; 147: 107333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599055

RESUMO

To promote the development and exploitation of novel antifungal agents, a series of thiazol-2-ylbenzamide derivatives (3A-3V) and thiazole-2-ylbenzimidoyl chloride derivatives (4A-4V) were designed and selective synthesis. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activities against five plant pathogenic fungi (Valsa mali, Sclerotinia scleotiorum, Botrytis cinerea, Rhizoctonia solani and Trichoderma viride). The antifungal effects of compounds 3B (EC50 = 0.72 mg/L) and 4B (EC50 = 0.65 mg/L) against S. scleotiorum were comparable to succinate dehydrogenase inhibitors (SDHIs) thifluzamide (EC50 = 1.08 mg/L) and boscalid (EC50 = 0.78 mg/L). Especially, compounds 3B (EC50 = 0.87 mg/L) and 4B (EC50 = 1.08 mg/L) showed higher activity against R. solani than boscalid (EC50 = 2.25 mg/L). In vivo experiments in rice leaves revealed that compounds 3B (86.8 %) and 4B (85.3 %) exhibited excellent protective activities against R. solani comparable to thifluzamide (88.5 %). Scanning electron microscopy (SEM) results exhibited that compounds 3B and 4B dramatically disrupted the typical structure and morphology of R. solani mycelium. Molecular docking demonstrated that compounds 3B and 4B had significant interactions with succinate dehydrogenase (SDH). Meanwhile, SDH inhibition assay results further proved their potential as SDHIs. In addition, acute oral toxicity tests on A. mellifera L. showed only low toxicity for compounds 3B and 4B to A. mellifera L. populations. These results suggested that these two series of compounds had merit for further investigation as potential low-risk agricultural SDHI fungicides.


Assuntos
Antifúngicos , Benzamidas , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Tiazóis , Relação Estrutura-Atividade , Benzamidas/farmacologia , Benzamidas/síntese química , Benzamidas/química , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Animais , Ascomicetos/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Botrytis
19.
J Agric Food Chem ; 72(17): 9599-9610, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646697

RESUMO

In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 µg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 µg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 µg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 µg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 µM), which was obviously more potent than those of boscalid (IC50 = 7.92 µM) and fluxapyroxad (IC50 = 6.15 µM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.


Assuntos
Botrytis , Fungicidas Industriais , Oximas , Doenças das Plantas , Pirazóis , Rhizoctonia , Succinato Desidrogenase , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Pirazóis/farmacologia , Pirazóis/química , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Oximas/química , Oximas/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
20.
Ecotoxicol Environ Saf ; 276: 116261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574644

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these agrochemicals, the interactions of 15 SDHIs with expression and activity of human cytochrome P-450 3A4 (CYP3A4), a major hepatic drug metabolizing enzyme, were investigated in vitro. 12/15 SDHIs, i.e., bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, penflufen, penthiopyrad, pydiflumetofen and sedaxane, were found to enhance CYP3A4 mRNA expression in human hepatic HepaRG cells and primary human hepatocytes exposed for 48 h to 10 µM SDHIs, whereas 3/15 SDHIs, i.e., benzovindiflupyr, carboxin and thifluzamide, were without effect. The inducing effects were concentrations-dependent for boscalid (EC50=22.5 µM), fluopyram (EC50=4.8 µM) and flutolanil (EC50=53.6 µM). They were fully prevented by SPA70, an antagonist of the Pregnane X Receptor, thus underlining the implication of this xenobiotic-sensing receptor. Increase in CYP3A4 mRNA in response to SDHIs paralleled enhanced CYP3A4 protein expression for most of SDHIs. With respect to CYP3A4 activity, it was directly inhibited by some SDHIs, including bixafen, fluopyram, fluxapyroxad, isofetamid, isopyrazam, penthiopyrad and sedaxane, which therefore appears as dual regulators of CYP3A4, being both inducer of its expression and inhibitor of its activity. The inducing effect nevertheless predominates for these SDHIs, except for isopyrazam and sedaxane, whereas boscalid and flutolanil were pure inducers of CYP3A4 expression and activity. Most of SDHIs appear therefore as in vitro inducers of CYP3A4 expression in cultured hepatic cells, when, however, used at concentrations rather higher than those expected in humans in response to environmental or dietary exposure to these agrochemicals.


Assuntos
Citocromo P-450 CYP3A , Hepatócitos , Succinato Desidrogenase , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Hepatócitos/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/toxicidade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...