Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.790
Filtrar
1.
Food Chem ; 462: 141007, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216376

RESUMO

In this study, covalent organic frameworks (COFs) were grown in situ on magnetic nitrogen-doped graphene foam (MNGF), and the resulting composite of COFs-modified MNGF (MNC) was wrapped by molecularly imprinted polymers (MNC@MIPs) for specifically capturing SAs. A magnetic solid phase extraction (MSPE) method for SAs was established using MNC@MIPs with good magnetic responsiveness. The adsorption performance of MNC@MIPs was superior to that of non-molecularly imprinted polymers (MNC@NIPs), with shorter adsorption/desorption time and higher imprinting factors. A high-efficiency SAs analytical method was developed by fusing HPLC and MNC@MIPs-based MSPE. This approach provides excellent precision, a low detection limit, and wide linearity. By analyzing fish samples, the feasibility of the approach was confirmed, with SAs recoveries and relative standard deviations in spiked samples in the ranges of 77.2-112.7 % and 2.0-7.2 %, respectively. This study demonstrated the potential use of MNC@MIPs-based MSPE for efficient extraction and quantitation of trace hazards in food.


Assuntos
Peixes , Contaminação de Alimentos , Estruturas Metalorgânicas , Polímeros Molecularmente Impressos , Extração em Fase Sólida , Sulfonamidas , Extração em Fase Sólida/métodos , Extração em Fase Sólida/instrumentação , Animais , Polímeros Molecularmente Impressos/química , Adsorção , Contaminação de Alimentos/análise , Estruturas Metalorgânicas/química , Sulfonamidas/isolamento & purificação , Sulfonamidas/química , Sulfonamidas/análise , Impressão Molecular , Polímeros/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125027, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39197209

RESUMO

A green, simple and sensitive spectrofluorometric approach for determining vonoprazan fumarate in bulk and pharmaceutical dosage form by turning off the fluorescence of sodium salicylate is developed. The addition of vonoprazan fumarate reduced linearly the fluorescence intensity of 0.4 mM sodium salicylate at λem 408 nm and at λex 330 nm. The approach was found to be linear in the 50.0-3000.0 ng/mL range. The limits of detection and quantification were 10.97 and 33.23 ng/mL, respectively. The presented method proved its suitability in determination of vonoprazan fumarate in its pure and pharmaceutical dosage form. This method employs water as the exclusive solvent and utilizes safe reagents, evaluated using the Analytical Eco Scale, Green Analytical Procedure Index (GAPI), and carbon footprint. In contrast, previous methods relied on toxic reagents and required extended heating times, resulting in higher environmental impact. The novel method not only enhances analytical efficiency but also aligns with green chemistry principles, offering a sustainable solution for routine pharmaceutical analysis.


Assuntos
Corantes Fluorescentes , Química Verde , Limite de Detecção , Pirróis , Salicilato de Sódio , Espectrometria de Fluorescência , Sulfonamidas , Sulfonamidas/análise , Sulfonamidas/química , Espectrometria de Fluorescência/métodos , Pirróis/química , Química Verde/métodos , Corantes Fluorescentes/química , Salicilato de Sódio/química , Salicilato de Sódio/análise , Reprodutibilidade dos Testes
3.
Enzymes ; 55: 143-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39222990

RESUMO

The increasing prevalence of antibiotic-resistant bacteria necessitates the exploration of novel therapeutic targets. Bacterial carbonic anhydrases (CAs) have been known for decades, but only in the past ten years they have garnered significant interest as drug targets to develop antibiotics having a diverse mechanism of action compared to the clinically used drugs. Significant progress has been made in the field in the past three years, with the validation in vivo of CAs from Neisseria gonorrhoeae, and vancomycin-resistant enterococci as antibiotic targets. This chapter compiles the state-of-the-art research on sulfonamide derivatives described as inhibitors of all known bacterial CAs. A section delves into the mechanisms of action of sulfonamide compounds with the CA classes identified in pathogenic bacteria, specifically α, ß, and γ classes. Therefore, the inhibitory profiling of the bacterial CAs with classical and clinically used sulfonamide compounds is reported and analyzed. Another section covers various other series of sulfonamide CA inhibitors studied for the development of new antibiotics. By synthesizing current research findings, this chapter highlights the potential of sulfonamide inhibitors as a novel class of antibacterial agents and paves the way for future drug design strategies.


Assuntos
Antibacterianos , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Sulfonamidas , Sulfonamidas/farmacologia , Sulfonamidas/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Bactérias/enzimologia , Bactérias/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/efeitos dos fármacos
4.
Enzymes ; 55: 193-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39222991

RESUMO

Non-sulfonamide chemical moieties able to inhibit the bacterial (b) expressed Carbonic Anhydrases (CAs; EC 4.2.1.1) constitute an important alternative to the prototypic modulators discussed in Chapter 6, as give access to large and variegate chemical classes, also of the natural origin. This contribution reports the main classes of compounds profiled in vitro on the bCAs and thus may be worth developing for the validation process of this class of enzymes.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Humanos , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Sulfonamidas/farmacologia , Sulfonamidas/química
5.
Chem Biol Drug Des ; 104(3): e14614, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39301746

RESUMO

Diabetes Mellitus (DM) is linked to various factors causing cardiovascular diseases, with uncontrolled postprandial hyperglycemia being a direct contributor. α-Glucosidase inhibitors (AGIs) aid in reducing postprandial hyperglycemia, potentially mitigating cardiovascular risks. In order to synthesize novel chemical scaffolds with possible α-glucosidase inhibition activity, a series of novel soritin sulfonamide derivatives were synthesized. The soritin hydrazide was treated with various aryl sulfonyl chlorides to obtain targeted compounds (1-16). Findings suggested that all compounds have better α-glucosidase inhibition compared to standard drugs, acarbose (2187.00 ± 1.25 µM) and 1-deoxynojirimycin (334.90 ± 1.10 µM), with IC50 values ranging from 3.81 ± 1.67 µM to 265.40 ± 1.58 µM. The most potent analog was Compound 13, a trichloro phenyl substituted compound, with IC50 value of 3.81 ± 1.67 µM. Structure-activity relationship (SAR) showed that introducing an additional chlorine group into the parent nucleus increases the potency. The docking studies validated that Compound 13 established hydrogen bonds with the active site residues Asp214, Glu276, and Asp349, while being further stabilized by hydrophobic interactions, providing an explanation for its high potency.


Assuntos
Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Sulfonamidas , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/metabolismo , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo , Humanos , Domínio Catalítico , Ligação de Hidrogênio
6.
J Hazard Mater ; 479: 135767, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39255662

RESUMO

Antibiotics usually induce the hormetic effects on bacteria, featured by low-dose stimulation and high-dose inhibition, which challenges the central belief in toxicity assessment and environmental risk assessment of antibiotics. However, there are currently no ideal parameters to quantitatively characterize hormesis. In this study, an effective area in hormesis (AH) was developed to quantify the biphasic dose-responses of single antibiotics (sulfonamides (SAs), sulfonamides potentiators (SAPs), and tetracyclines (TCs)) and binary mixtures (SAs-SAPs, SAs-TCs, and SAs-SAs) to the bioluminescence of Aliivibrio fischeri. Using Ebind (the lowest interaction energy between antibiotic and target protein) and Kow (octanol-water partition coefficient) as the structural descriptors, the reliable quantitative structure-activity relationship (QSAR) models were constructed for the AH values of test antibiotics and mixtures. Furthermore, a novel method based on AH was established to judge the joint toxic actions of binary antibiotics, which mainly exhibited synergism. The results also indicated that SAPs (or TCs) contributed more than SAs in the hormetic effects of antibiotic mixtures. This study proposes a new quantitative parameter for characterizing and predicting antibiotic hormesis, and considers hormesis as an integrated whole to reveal the combined effects of antibiotics, which will promote the development of risk evaluation for antibiotics and their mixtures.


Assuntos
Aliivibrio fischeri , Antibacterianos , Hormese , Relação Quantitativa Estrutura-Atividade , Antibacterianos/toxicidade , Antibacterianos/química , Antibacterianos/farmacologia , Hormese/efeitos dos fármacos , Aliivibrio fischeri/efeitos dos fármacos , Sulfonamidas/toxicidade , Sulfonamidas/química , Tetraciclinas/toxicidade , Tetraciclinas/química , Relação Dose-Resposta a Droga
7.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274892

RESUMO

A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3a-f and 6a-f were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7a-h were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6a-d with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3a-f and 6a-f and 1,2,3-triazole derivatives 7a-h were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3a-f were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 µM. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity.


Assuntos
Antibacterianos , Antineoplásicos , Testes de Sensibilidade Microbiana , Quinolinas , Sulfonamidas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Linhagem Celular Tumoral , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Desenho de Fármacos , Relação Estrutura-Atividade , Staphylococcus aureus/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Estrutura Molecular
8.
Eur J Med Chem ; 278: 116790, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39236497

RESUMO

New antibacterial compounds are urgently needed, especially for infections caused by the top-priority Gram-negative bacteria that are increasingly difficult to treat. Lipid A is a key component of the Gram-negative outer membrane and the LpxH enzyme plays an important role in its biosynthesis, making it a promising antibacterial target. Inspired by previously reported ortho-N-methyl-sulfonamidobenzamide-based LpxH inhibitors, novel benzamide substitutions were explored in this work to assess their in vitro activity. Our findings reveal that maintaining wild-type antibacterial activity necessitates removal of the N-methyl group when shifting the ortho-N-methyl-sulfonamide to the meta-position. This discovery led to the synthesis of meta-sulfonamidobenzamide analogs with potent antibacterial activity and enzyme inhibition. Moreover, we demonstrate that modifying the benzamide scaffold can alter blocking of the cardiac voltage-gated potassium ion channel hERG. Furthermore, two LpxH-bound X-ray structures show how the enzyme-ligand interactions of the meta-sulfonamidobenzamide analogs differ from those of the previously reported ortho analogs. Overall, our study has identified meta-sulfonamidobenzamide derivatives as promising LpxH inhibitors with the potential for optimization in future antibacterial hit-to-lead programs.


Assuntos
Antibacterianos , Benzamidas , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/síntese química , Relação Estrutura-Atividade , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Relação Dose-Resposta a Droga , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Modelos Moleculares
9.
Nat Commun ; 15(1): 8077, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277642

RESUMO

Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination. Here, we reveal that stabilization of PYL dimer can relieve ABA-induced inhibition of seed germination using chemical genetic approaches. Di-nitrobensulfamide (DBSA), a computationally designed chemical probe, yields around ten-fold improvement in receptor affinity relative to ABA. DBSA reverses ABA-induced inhibition of seed germination mainly through dimeric receptors and recovers the expression of ABA-responsive genes. DBSA maintains PYR1 in dimeric state during protein oligomeric state experiment. X-ray crystallography shows that DBSA targets a pocket in PYL dimer interface and may stabilize PYL dimer by forming hydrogen networks. Our results illustrate the potential of PYL dimer stabilization in preventing ABA-induced seed germination inhibition.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Germinação , Sementes , Germinação/efeitos dos fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Cristalografia por Raios X , Sulfonamidas/farmacologia , Sulfonamidas/química , Proteínas de Membrana Transportadoras
10.
Drug Dev Res ; 85(6): e22255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233391

RESUMO

Overexpression of matrix metalloproteinase-2 (MMP-2) possesses a correlation with leukemia especially chronic myeloid leukemia (CML). However, no such MMP-2 inhibitor has come out in the market to date for treating leukemia. In this study, synthesis, biological evaluation, and molecular modeling studies of a set of biphenylsulfonamide derivatives as promising MMP-2 inhibitors were performed, focusing on their potential applications as antileukemic therapeutics. Compounds DH-18 and DH-19 exerted the most effective MMP-2 inhibition (IC50 of 139.45 nM and 115.16 nM, respectively) with potent antileukemic efficacy against the CML cell line K562 (IC50 of 0.338 µM and 0.398 µM, respectively). The lead molecules DH-18 and DH-19 reduced the MMP-2 expression by 21.3% and 17.8%, respectively with effective apoptotic induction (45.4% and 39.8%, respectively) in the K562 cell line. Moreover, both these compounds significantly arrested different phases of the cell cycle. Again, both these molecules depicted promising antiangiogenic efficacy in the ACHN cell line. Nevertheless, the molecular docking and molecular dynamics (MD) simulation studies revealed that DH-18 formed strong bidentate chelation with the catalytic Zn2+ ion through the hydroxamate zinc binding group (ZBG). Apart from that, the MD simulation study also disclosed stable binding interactions of DH-18 and MMP-2 along with crucial interactions with active site amino acid residues namely His120, Glu121, His124, His130, Pro140, and Tyr142. In a nutshell, this study highlighted the importance of biphenylsulfonamide-based novel and promising MMP-2 inhibitors to open up a new avenue for potential therapy against CML.


Assuntos
Antineoplásicos , Metaloproteinase 2 da Matriz , Inibidores de Metaloproteinases de Matriz , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Metaloproteinase 2 da Matriz/metabolismo , Células K562 , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade
11.
PLoS One ; 19(8): e0306124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39141629

RESUMO

Multidrug resistance (MDR) mechanisms in cancer cells are greatly influenced by glutathione transferase P1-1 (hGSTP1-1). The use of synthetic or natural compounds as hGSTP1-1 inhibitors is considered an effective approach to overcome MDR. Nine compounds consisting of coumarin-6-sulfonamide linked to chalcone derivatives were synthesized and evaluated for their ability to inhibit hGSTP1-1. Among the synthetic derivatives, compounds 5g, 5f, and 5a displayed the most potent inhibitory effect, with IC50 values of 12.2 ± 0.5 µΜ, 12.7 ± 0.7 and 16.3 ± 0.6, respectively. Kinetic inhibition analysis of the most potent molecule, 5g, showed that it behaves as a mixed-type inhibitor of the target enzyme. An in vitro cytotoxicity assessment of 5a, 5f, and 5g against the human prostate cancer cell lines DU-145 and PC3, as well as the breast cancer cell line MCF-7, demonstrated that compound 5g exhibited the most pronounced cytotoxic effect on all tested cell lines. Molecular docking studies were performed to predict the structural and molecular determinants of 5g, 5f, and 5a binding to hGSTP1-1. In agreement with the experimental data, the results revealed that 5g exhibited the lowest docking score among the three studied inhibitors as a consequence of shape complementarity, governed by van der Waals, hydrogen bonds and a π-π stacking interaction. These findings suggest that coumarin-chalcone hybrids offer new perspectives for the development of safe and efficient natural product-based sensitizers that can target hGSTP1-1 for anticancer purposes.


Assuntos
Cumarínicos , Glutationa S-Transferase pi , Simulação de Acoplamento Molecular , Sulfonamidas , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa S-Transferase pi/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Chalcona/química , Chalcona/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Chalconas/química , Chalconas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Células MCF-7
12.
Arch Biochem Biophys ; 759: 110111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111614

RESUMO

Chikungunya virus (CHIKV), transmitted by mosquitoes, poses a significant global health threat. Presently, no effective treatment options are available to reduce the disease burden. The lack of approved therapeutics against CHIKV and the complex spectrum of chronic musculoskeletal and neurological manifestations raise significant concerns, and repurposing drugs could offer swift avenues in the development of effective treatment strategies. RNA capping is a crucial step meditated by non-structural protein 1 (nsP1) in CHIKV replication. In this study, FDA-approved antivirals targeting CHIKV nsP1 methyltransferase (MTase) have been identified by structure-based virtual screening. Berbamine Hydrochloride (BH), ABT199/Venetoclax (ABT), and Ponatinib (PT) were the top-hits, which exhibited robust binding energies. Tryptophan fluorescence spectroscopy-based assay confirmed binding of BH-, ABT-, and PT to purified nsP1 with KD values ∼5.45 µM, ∼161.3 µM, and ∼3.83 µM, respectively. In a capillary electrophoresis-based assay, a decrease in CHIKV nsP1 MTase activity was observed in a dose-dependent manner. Treatment with BH, ABT, and PT lead to a dose-dependent reduction in the virus titer with IC50 < 100, ∼6.75, and <3.9 nM, respectively, and reduced viral mRNA levels. The nsP1 MTases are highly conserved among alphaviruses; therefore, BH, ABT, and PT, as expected, inhibited replication machinery in Sindbis virus (SINV) replicon assay with IC50 ∼1.94, ∼0.23, and >1.25 µM, respectively. These results highlight the potential of repurposing drugs as rapid and effective antiviral therapeutics against CHIKV.


Assuntos
Antivirais , Vírus Chikungunya , Metiltransferases , Antivirais/farmacologia , Antivirais/química , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Vírus Chikungunya/efeitos dos fármacos , Animais , Sulfonamidas/farmacologia , Sulfonamidas/química , Humanos , Piridazinas/farmacologia , Piridazinas/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Replicação Viral/efeitos dos fármacos , Imidazóis/farmacologia , Imidazóis/química , Benzilisoquinolinas
13.
Bull Environ Contam Toxicol ; 113(2): 25, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126524

RESUMO

Considering the environmental impact of triafamone and ethoxysulfuron, it is crucial to investigate their leaching behaviour under different geographical conditions. The present study evaluates the effects of application rate, soil properties and rainfall conditions on leaching of these herbicides and their metabolites. Ethoxysulfuron leached up to 50-60 cm with 82.95 to 89.23% detected in leachates while triafamone leached only to 10-20 cm and was < 0.01 µg mL-1 in leachates. Highest leachability was observed in loamy sand followed by sandy loam and clay loam soil. M1 metabolite (N-(2-((4,6-dimethoxy-1,3,5-triazin-2-yl) (hydroxy) methyl) -6-fluorophenyl) -1,1-difluoro-N-methyl methane sulfonamide) was majorly present in 0 to 10 cm soil depth. With increase in rainfall, downward mobility of both parent and M1 increased. Amendment of loamy sand soil with farmyard manure reduced the leachability indicating it could mitigate groundwater pollution. However, the effect of different exogenous OM amendments on leaching behaviour of herbicides needs to be evaluated.


Assuntos
Monitoramento Ambiental , Herbicidas , Chuva , Poluentes do Solo , Solo , Herbicidas/análise , Poluentes do Solo/análise , Solo/química , Chuva/química , Triazinas/análise , Poluentes Químicos da Água/análise , Sulfonamidas/análise , Sulfonamidas/química
14.
Int J Biol Macromol ; 277(Pt 4): 134048, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116983

RESUMO

4-Fluoro-N-(thiazol-2-yl)benzenesulfonamide (3) is a novel fluorinated compound, containing various biological activities. Therefore, absorption spectroscopy, fluorescence quenching, molecular docking, and molecular simulation were employed to investigate the interaction between 3 and human serum albumin (HSA). Firstly, compound 3 meets all criteria for drug-likeness prediction. UV absorption spectra revealed the interaction of 3 with HSA altered the microenvironment of protein, as well as circular dichroism spectroscopic analysis indicated slightly conformational changes and a reduction in α-helical content. The binding parameters of the HSA-3 complex suggested that fluorescence quenching is driven by combined static and dynamic processes. Additionally, the stability of the complex is attributed to conventional hydrogen and hydrophobic bonding interactions. Furthermore, esterase-like activity indicated that the binding of 3 might disrupt HSA's bond networks, leading to structural alterations. Consequently, the strong binding constant (Ka ≈ 1.204 × 106 M-1) aligns with the predicted unbound fraction (0.28) in serum, indicating that thiazole 3 has good bioavailability in plasma and can be effectively transported to target sites, thereby exerting its pharmaceutical effects. However, careful dosage management is essential to prevent potential adverse effects. Overall, these findings highlight the potential of 3 as a therapeutic agent, emphasizing the need for further research to optimize its uses.


Assuntos
Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana , Sulfonamidas , Tiazóis , Humanos , Tiazóis/química , Tiazóis/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Sítios de Ligação , Halogenação , Simulação de Dinâmica Molecular , Interações Hidrofóbicas e Hidrofílicas , Análise Espectral , Ligação de Hidrogênio , Simulação por Computador , Espectrometria de Fluorescência
15.
J Inorg Biochem ; 260: 112689, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39121601

RESUMO

In the search of new cymantrenyl- and ferrocenyl-sulfonamides as potencial inhibitors of human carbonic anhydrases (hCAs), four compounds based on N-ethyl or N-methyl benzenesulfonamide units have been obtained. These cymantrenyl (1a-b) and ferrocenyl (2a-b) derivatives were prepared by the reaction between aminobenzene sulfonamides ([NH2-(CH2)n-(C6H4)-SO2-NH2)], where n = 1, 2) with cymantrenyl sulfonyl chloride (P1) or ferrocenyl sulfonyl chloride (P2), respectively. All compounds were characterized by conventional spectroscopic techniques and cyclic voltammetry. In the solid state, the molecular structures of compounds 1a, 1b, and 2b were determined by single-crystal X-ray diffraction. Biological evaluation as carbonic anhydrases inhibitors were carried out and showed derivatives 1b y 2b present a higher inhibition than the drug control for the Human Carbonic Anhydrase (hCA) II and IX isoforms (KI = 7.3 nM and 5.8 nM, respectively) and behave as selective inhibition for hCA II isoform. Finally, the docking studies confirmed they share the same binding site and interactions as the known inhibitors acetazolamide (AAZ) and agree with biological studies.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Simulação de Acoplamento Molecular , Sulfonamidas , Humanos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Anidrase Carbônica II/química , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/química , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Benzenossulfonamidas , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Cristalografia por Raios X
16.
Bioorg Chem ; 152: 107728, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39178704

RESUMO

In the current study, a new series of benzenesulfonamides 6a-r was designed and synthesized as dual VEGFR-2 and FGFR1 kinase inhibitors with anti-cancer activity. The 4-trifluoromethyl benzenesulfonamide 6l exhibited the highest dual VEGFR-2/FGFR1 inhibitory activity with IC50 values of 0.025 and 0.026 µM, respectively. It showed a higher activity than sorafenib and staurosporine by 1.8- and 1.3-fold, respectively. Furthermore, compound 6l was further tested on EGFR and PDGFR-ß kinases showing IC50 values of 0.106 and 0.077 µM, respectively. The target compounds were tested for their anticancer activity against NCI-60 panel of cancer cell lines at 10 µM concentration, where compound 6l displayed the highest mean growth inhibition percent % (GI%) of 60.38%. Compounds 6a, 6b, 6e, 6f, 6h-l, and 6n-r revealed promising GI% on breast cancer cell lines (MCF-7, T-47D, and MDA-MB-231), and were subjected to IC50 determination on these cell lines. The tested compounds showed a higher activity on T-47D and MCF-7 cell lines over MDA-MB-231 cell line compared to the used reference standard; sorafenib. Compounds 6e, 6h-j, 6l and 6o revealed IC50 values ≤ 20 µM against T-47D cell line, furthermore, they were found to be non-cytotoxic on Vero normal cell line. Furthermore, the effect of the most active compounds 6i, and 6l in T-47D cells on cell cycle analysis progression, cell apoptosis, and apoptosis markers was investigated. Both compounds arrested cell cycle progression at G1 phase, furthermore, they enhanced early and late apoptosis, as well as necrosis. The capability of compounds 6i, and 6l to induce apoptosis was further confirmed by their ability to raise BAX/BCl-2 ratio and caspase-3 level in the treated cells. Cell migration assay revealed that both compounds 6i and 6l have anti-migratory effects compared to control T-47D cells after 24, and 48 h. Molecular docking studies for compounds 6a-r on VEGFR-2 and FGFR1 binding sites showed that they exhibit an analogous binding mode in both target kinases which agrees with that of type II kinase inhibitors.


Assuntos
Antineoplásicos , Benzenossulfonamidas , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Sulfonamidas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Animais , Feminino
17.
Bioorg Chem ; 152: 107715, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39180864

RESUMO

Twelve new sulphonamide (Cys-Gly) dipeptide carboxamide derivatives 17a-17l were designed, prepared and characterized through spectroscopic techniques and their pharmacological properties investigated. The molecular docking analyses revealed good interactions of the derivatives with the desired amino residues active pockets. In vitro antimicrobial, in vivo antimalarial, haematological and other related tests (liver and kidney) were also conducted. Compounds 17b exhibited good minimum inhibitory concentration (MIC) results (0.9-11) mg/mL for the studied organisms when compared with ciprofloxacin and fluconazole. Derivatives 17a -17l showed parasitaemia inhibition in the range (31.11-67.78) % on the fourth day after treating the animals with 40 mg/kg of the compounds. Derivative 17b also displayed the highest parasitaemia inhibition (67.78 %) comparable with the standard (Lumenfantrine) 75.27 %. The prepared derivatives showed promising pharmacological properties with regards to hematological, liver and kidney function tests.


Assuntos
Dipeptídeos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Dipeptídeos/farmacologia , Dipeptídeos/química , Dipeptídeos/síntese química , Relação Dose-Resposta a Droga , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química
18.
Food Chem ; 461: 140857, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151346

RESUMO

The thermal-responsive magnetic molecularly imprinted polymer (TrMMIP) sorbent was synthesized by surface imprinting method, and then used for magnetic solid-phase extraction (MSPE) and subsequent integrated into the ion source for elution and ionization. The shrinking-strength states change of the thermal-responsive polymer chain on TrMMIP alters the wettability of the sorbent when the working temperature crosses the lower critical solution temperature (LCST) of the polymer, and thus affects its behavior of in the extraction and clean-up process. The targeted analytes could be effectively extracted due to the high selectivity of MIPs and well dispersibility of polymer chain under the open state. Additionally, a hydrophilic polymer chain wrapped on the sorbent surface further protected target substances from co-elution during cleanup. Analytical methods for sulfonamide antibiotics (SAs) detection in complex food samples (milk, honey, fish) were developed, demonstrating potential for rapid and sensitive SAs analysis in diverse food and biological samples.


Assuntos
Antibacterianos , Contaminação de Alimentos , Mel , Interações Hidrofóbicas e Hidrofílicas , Leite , Polímeros Molecularmente Impressos , Extração em Fase Sólida , Sulfonamidas , Contaminação de Alimentos/análise , Antibacterianos/análise , Antibacterianos/química , Polímeros Molecularmente Impressos/química , Leite/química , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos , Animais , Mel/análise , Sulfonamidas/química , Sulfonamidas/análise , Impressão Molecular , Peixes , Polímeros/química , Adsorção , Espectrometria de Massas
19.
Int J Pharm ; 664: 124566, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39154918

RESUMO

Glaucoma is caused by high intraocular pressure, which can causes blindness. Combinations of timolol and dorzolamide are used for its treatment with a requirement of multiple dosing with dosing being twice or four times a day. Conventional eye drops have poor pre-corneal retention and is thus less available for action. This study utilizes principles of Quality by Design for formulation of injectable liposomes coloaded with timolol maleate and dorzolamide HCl, which overcomes limitations of conventional eye drops. For implementation of Quality by Design principles a systematic approach involving defining Quality Target Product Profile, identification of Critical Quality Attributes, mapping Critical Quality Attributes to Critical Process Parameters and Critical Material Attributes, Failure Mode and Effect Analysis based risk assessment, Taguchi screening, and 32 full factorial Design of Experiments design were utilized. A robust model for formulation of coloaded liposomes was successfully developed. Design of Experiments approach allowed to obtain optimized batch having particle size of 116.1 nm, encapsulation efficiency of dorzolamide HCl of 72.12 % and encapsulation efficiency of timolol maleate of 71.94 %. In-vitro drug release showed a sustained release for 4 days. The prepared formulation was in the desired osmolarity range. Biosafety was proved using histopathological characterization. In-vivo studies for assessing the Intra Ocular Pressure reduction showed that there was no significant difference in Intra Ocular Pressure reduction between prepared liposomes and marketed formulation but were superior than marketed formulation because of less fluctuations in Intra Ocular Pressure. Prepared coloaded injectable liposomes lays the foundation for further research in the area and can be translated from to bench side for commercial clinical use.


Assuntos
Liberação Controlada de Fármacos , Pressão Intraocular , Lipossomos , Sulfonamidas , Tiofenos , Timolol , Timolol/administração & dosagem , Timolol/química , Timolol/farmacocinética , Sulfonamidas/administração & dosagem , Sulfonamidas/química , Sulfonamidas/farmacocinética , Tiofenos/administração & dosagem , Tiofenos/química , Animais , Pressão Intraocular/efeitos dos fármacos , Composição de Medicamentos/métodos , Tamanho da Partícula , Coelhos , Masculino , Combinação de Medicamentos , Química Farmacêutica/métodos , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Glaucoma/tratamento farmacológico
20.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125005

RESUMO

Polarization and charge-transfer interactions play an important role in ligand-receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA II)-an important druggable target containing a Zn2+ ion in the active site-as a case study to predict the binding free energy in metalloprotein-ligand complexes and designed specialized computational methods that combine the ab initio fragment molecular orbital (FMO) method and GRID approach. To reproduce the experimental binding free energy in these systems, we adopted a machine-learning approach, here named formula generator (FG), considering different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP. The main advantage of the FG approach is that it can find nonlinear relations between the energy terms used to predict the binding free energy, explicitly showing their mathematical relation. This work showed the effectiveness of the FG approach, and therefore, it might represent an important tool for the development of new scoring functions. Indeed, our scoring function showed a high correlation with the experimental binding free energy (R2 = 0.76-0.95, RMSE = 0.34-0.18), revealing a nonlinear relation between energy terms and highlighting the relevant role played by hydrophobic contacts. These results, along with the FMO characterization of ligand-receptor interactions, represent important information to support the design of new and potent hCA II inhibitors.


Assuntos
Anidrase Carbônica II , Inibidores da Anidrase Carbônica , Ligação Proteica , Ligantes , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Humanos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Termodinâmica , Interações Hidrofóbicas e Hidrofílicas , Sulfonamidas/química , Sulfonamidas/farmacologia , Metaloproteínas/química , Metaloproteínas/antagonistas & inibidores , Metaloproteínas/metabolismo , Modelos Moleculares , Aprendizado de Máquina , Benzenossulfonamidas , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA