Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.778
Filtrar
1.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823920

RESUMO

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Assuntos
Resinas Acrílicas , Hidrogéis , Esferoides Celulares , beta-Ciclodextrinas , Esferoides Celulares/efeitos dos fármacos , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Células HeLa , Animais , Camundongos , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Metacrilatos/química , Técnicas de Cocultura , Neoplasias/patologia
2.
Cell Commun Signal ; 22(1): 301, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822356

RESUMO

BACKGROUND: Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS: Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-ß1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS: qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS: Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.


IUA is the crucial cause of infertility in women of childbearing age, and no satisfactory treatment measures have been found in the clinic. hAMSCs can effectively treat intrauterine adhesions through paracrine and transdifferentiation mechanisms. This study confirmed in vitro and in vivo that amniotic mesenchymal stem cells preferentially inhibited endometrial fibrosis and promoted epithelial repair through paracrine, thus effectively treating intrauterine adhesions. The level of fibrosis marker proteins in IUA-THESCs decreased significantly after co-culturing with hAMSCs for 2 days in vitro. However, the level of epithelial marker proteins in hAMSCs increased significantly, requiring at least 6 days of co-culture. hAMSCs-CM had the same efficacy as hAMSCs in inhibiting fibrosis and promoting endometrial repair in IUA rats, supporting the idea that hAMSCs promoted endometrial remodeling through paracrine in vivo. In addition, GFP-labeled hAMSCs continuously colonized the endometrial stroma instead of the epithelium and gradually underwent apoptosis. These findings prove that hAMSCs ameliorate endometrial fibrosis of IUA via paracrine, preferentially than transdifferentiation, providing the latest insights into the precision treatment of IUA with hAMSCs and a theoretical basis for promoting the "cell-free therapy" of MSCs.


Assuntos
Âmnio , Transdiferenciação Celular , Endométrio , Células-Tronco Mesenquimais , Comunicação Parácrina , Ratos Sprague-Dawley , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Endométrio/citologia , Endométrio/metabolismo , Animais , Âmnio/citologia , Âmnio/metabolismo , Ratos , Transplante de Células-Tronco Mesenquimais/métodos , Técnicas de Cocultura , Aderências Teciduais/patologia , Aderências Teciduais/metabolismo
3.
Neuropathol Appl Neurobiol ; 50(3): e12992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831600

RESUMO

PURPOSE: Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS: We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS: Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS: These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.


Assuntos
Lesões Encefálicas , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Piroptose/efeitos da radiação , Piroptose/fisiologia , Microglia/metabolismo , Microglia/efeitos da radiação , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Camundongos , Humanos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/etiologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos da radiação , Técnicas de Cocultura , Lesões por Radiação/patologia , Lesões por Radiação/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
4.
Nat Commun ; 15(1): 4709, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830891

RESUMO

Microbial communities often exhibit more than one possible stable composition for the same set of external conditions. In the human microbiome, these persistent changes in species composition and abundance are associated with health and disease states, but the drivers of these alternative stable states remain unclear. Here we experimentally demonstrate that a cross-kingdom community, composed of six species relevant to the respiratory tract, displays four alternative stable states each dominated by a different species. In pairwise coculture, we observe widespread bistability among species pairs, providing a natural origin for the multistability of the full community. In contrast with the common association between bistability and antagonism, experiments reveal many positive interactions within and between community members. We find that multiple species display cooperative growth, and modeling predicts that this could drive the observed multistability within the community as well as non-canonical pairwise outcomes. A biochemical screening reveals that glutamate either reduces or eliminates cooperativity in the growth of several species, and we confirm that such supplementation reduces the extent of bistability across pairs and reduces multistability in the full community. Our findings provide a mechanistic explanation of how cooperative growth rather than competitive interactions can underlie multistability in microbial communities.


Assuntos
Interações Microbianas , Microbiota , Microbiota/fisiologia , Humanos , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Ácido Glutâmico/metabolismo , Modelos Biológicos , Técnicas de Cocultura
5.
Sci Rep ; 14(1): 12728, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830934

RESUMO

To clarify the impact of SETD2 on macrophage function in pediatric patients with acute suppurative osteomyelitis and to elucidate the precise underlying mechanism. To gain insights into the potential functions of SETD2, a comprehensive study was conducted utilizing a co-culture model of human bone mesenchymal stem cells (hBMSCs) and bone marrow-derived macrophages (THP-1). A range of techniques were employed, including quantitative polymerase chain reaction, western blotting, ELISA, alkaline phosphatase activity assays, alizarin red S staining, luciferase reporter gene assays, and chromatin immunoprecipitation, to unravel the intricate interactions and molecular mechanisms involving SETD2 in this system. It was observed that SETD2 expression was reduced in THP-1 cells stimulated by staphylococcal protein A (SPA). Furthermore, the downregulation of SETD2 resulted in elevated M1 macrophage polarization and glycolysis, effects that were mitigated by SPA stimulation. Notably, SPA-stimulated THP-1 cells exhibited an increase in HIF-1α expression, which exhibited an inverse correlation with SETD2 levels. Moreover, it was discovered that SETD2 functioned as a catalyst for H3K36me3 and bound to the HIF-1α gene, which, in turn, regulated HIF-1α expression. Furthermore, the suppression of HIF-1α abrogated the consequences of SETD2 downregulation on glycolysis and M1 macrophage polarization. Lastly, the study demonstrated that M1 macrophage polarization serves as a mediator for BMP4's inhibitory effect on osteogenic differentiation of hBMSCs. This research has uncovered a previously unknown role of SETD2 in macrophages during osteomyelitis, revealing its significance in the pathogenesis of this condition. These findings suggest SETD2 as a novel target for the treatment of osteomyelitis.


Assuntos
Diferenciação Celular , Histona-Lisina N-Metiltransferase , Macrófagos , Células-Tronco Mesenquimais , Osteogênese , Osteomielite , Humanos , Osteomielite/metabolismo , Osteomielite/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Células-Tronco Mesenquimais/metabolismo , Células THP-1 , Técnicas de Cocultura , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia
6.
Food Res Int ; 186: 114313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729689

RESUMO

Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.


Assuntos
Acinetobacter , Técnicas de Cocultura , Microbiologia de Alimentos , Pseudomonas , Carne Vermelha , Stenotrophomonas maltophilia , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crescimento & desenvolvimento , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/metabolismo , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Stenotrophomonas maltophilia/metabolismo , Carne Vermelha/microbiologia , Carne Vermelha/análise , Ovinos , Armazenamento de Alimentos , Temperatura Baixa , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Carneiro Doméstico/microbiologia , Proteólise
7.
PLoS One ; 19(5): e0302913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728358

RESUMO

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Assuntos
Galinhas , Hepatócitos , Lipopolissacarídeos , Poli I-C , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/metabolismo , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Fatores Imunológicos/farmacologia , Ácidos Teicoicos/farmacologia , Células Cultivadas , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Técnicas de Cocultura , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Citocinas/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia
8.
Sci Rep ; 14(1): 10446, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714777

RESUMO

This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.


Assuntos
Alelopatia , Benzoxazinas , Secale , Amaranthus/crescimento & desenvolvimento , Germinação , Técnicas de Cocultura/métodos , Plantas Daninhas , Produtos Agrícolas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
9.
Front Immunol ; 15: 1361596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690266

RESUMO

Mesenchymal stromal/stem cells (MSCs), which are distributed in many tissues including bone marrow, have been reported to play a critical role in tumor development. While bone marrow, the primary site for hematopoiesis, is important for establishing the immune system, whether MSCs in the bone marrow can promote tumor growth via influencing hematopoiesis remains unclear. We observed that the numbers of MSCs and neutrophils were increased in bone marrow in tumor-bearing mice. Moreover, co-culture assay showed that MSCs strongly protected neutrophils from apoptosis and induced their maturation. G-CSF and GM-CSF have been well-documented to be associated with neutrophil formation. We found a remarkably increased level of G-CSF, but not GM-CSF, in the supernatant of MSCs and the serum of tumor-bearing mice. The G-CSF expression can be enhanced with inflammatory cytokines (IFNγ and TNFα) stimulation. Furthermore, we found that IFNγ and TNFα-treated MSCs enhanced their capability of promoting neutrophil survival and maturation. Our results indicate that MSCs display robustly protective effects on neutrophils to contribute to tumor growth in bone niches.


Assuntos
Citocinas , Células-Tronco Mesenquimais , Neutrófilos , Animais , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de Cocultura , Fator Estimulador de Colônias de Granulócitos/metabolismo , Apoptose , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/patologia
10.
Anal Chim Acta ; 1306: 342615, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692795

RESUMO

The Caco-2 cells were used as intestinal epithelial cell model to illustrate the hyperuricemia (HUA) mechanism under the co-culture of the imbalanced intestinal microbiome in this work. The uric acid (UA) concentration in the HUA process was monitored, and could be up to 425 µmol/L at 8 h co-cultured with the imbalanced intestinal microbiome. Single-cell potentiometry based on ion-selective microelectrode was used to study extracellular calcium change, which is hypothesized to play an important role in the UA excretion. The potential signal of the calcium in the extremely limited microenvironment around single Caco-2 cell was recorded through the single-cell analysis platform. The potential signal of sharp decrease and slow increase followed within a few seconds indicates the sudden uptake and gradually excretion process of calcium through the cell membrane. Moreover, the value of the potential decrease increases with the increase of the time co-cultured with the imbalanced intestinal microbiome ranging from 0 to 8 h. The Ca2+ concentration around the cell membrane could decrease from 1.3 mM to 0.4 mM according to the potential decrease of 27.0 mV at the co-culture time of 8 h. The apoptosis ratio of the Caco-2 cells also exhibits time dependent with the co-culture of the imbalanced intestinal microbiome, and was 39.1 ± 3.6 % at the co-culture time of 8 h, which is much higher than the Caco-2 cells without any treatment (3.9 ± 2.9 %). These results firstly provide the links between the UA excretion with the apoptosis of the intestinal epithelial cell under the interaction of the imbalanced intestinal microbiome. Moreover, the apoptosis could be triggered by the calcium signaling.


Assuntos
Cálcio , Carbono , Técnicas de Cocultura , Microbioma Gastrointestinal , Microeletrodos , Potenciometria , Análise de Célula Única , Humanos , Células CACO-2 , Cálcio/metabolismo , Carbono/química , Apoptose
11.
Fluids Barriers CNS ; 21(1): 38, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693577

RESUMO

BACKGROUND: Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. METHODS: hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. RESULTS: After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. CONCLUSION: These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Malária Cerebral , Barreira Hematoencefálica/metabolismo , Humanos , Malária Cerebral/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Biológicos
12.
Transpl Int ; 37: 12468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699175

RESUMO

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Assuntos
Transplante de Rim , Rim , Organoides , Humanos , Organoides/imunologia , Animais , Rim/imunologia , Camundongos , Técnicas de Cocultura , Leucócitos Mononucleares/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Linfócitos T/imunologia , Sistema Imunitário , Antígeno B7-H1/metabolismo , Macrófagos/imunologia
13.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702808

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Assuntos
Apoptose , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Rim , Monócitos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Organoides/citologia , Organoides/metabolismo , Organoides/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Rim/citologia , Rim/metabolismo , Monócitos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Sirolimo/farmacologia , Autofagia/efeitos dos fármacos , Técnicas de Cocultura/métodos , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos
14.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702837

RESUMO

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Assuntos
Diferenciação Celular , Ácido Hialurônico , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Meios de Cultura Livres de Soro/farmacologia , Linhagem da Célula , Células Cultivadas , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura
15.
Sci Rep ; 14(1): 10345, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710795

RESUMO

Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.


Assuntos
Diferenciação Celular , Técnicas de Cocultura , Osteoblastos , Humanos , Osteoblastos/metabolismo , Osteoblastos/citologia , Microambiente Celular , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Osteogênese , Agregação Celular , Células Cultivadas
16.
J Immunol Res ; 2024: 6343757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715844

RESUMO

This study aims to explore the influence of coinfection with HCV and HIV on hepatic fibrosis. A coculture system was set up to actively replicate both viruses, incorporating CD4 T lymphocytes (Jurkat), hepatic stellate cells (LX-2), and hepatocytes (Huh7.5). LX-2 cells' susceptibility to HIV infection was assessed through measurements of HIV receptor expression, exposure to cell-free virus, and cell-to-cell contact with HIV-infected Jurkat cells. The study evaluated profibrotic parameters, including programed cell death, ROS imbalance, cytokines (IL-6, TGF-ß, and TNF-α), and extracellular matrix components (collagen, α-SMA, and MMP-9). The impact of HCV infection on LX-2/HIV-Jurkat was examined using soluble factors released from HCV-infected hepatocytes. Despite LX-2 cells being nonsusceptible to direct HIV infection, bystander effects were observed, leading to increased oxidative stress and dysregulated profibrotic cytokine release. Coculture with HIV-infected Jurkat cells intensified hepatic fibrosis, redox imbalance, expression of profibrotic cytokines, and extracellular matrix production. Conversely, HCV-infected Huh7.5 cells exhibited elevated profibrotic gene transcriptions but without measurable effects on the LX-2/HIV-Jurkat coculture. This study highlights how HIV-infected lymphocytes worsen hepatic fibrosis during HCV/HIV coinfection. They increase oxidative stress, profibrotic cytokine levels, and extracellular matrix production in hepatic stellate cells through direct contact and soluble factors. These insights offer valuable potential therapies for coinfected individuals.


Assuntos
Efeito Espectador , Técnicas de Cocultura , Coinfecção , Citocinas , Infecções por HIV , Hepacivirus , Células Estreladas do Fígado , Hepatite C , Cirrose Hepática , Humanos , Células Estreladas do Fígado/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Infecções por HIV/imunologia , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatite C/complicações , Hepatite C/imunologia , Células Jurkat , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Cirrose Hepática/etiologia , Citocinas/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , HIV/fisiologia , Estresse Oxidativo , Comunicação Celular , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Matriz Extracelular/metabolismo
17.
Am J Reprod Immunol ; 91(5): e13854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716832

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS: Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS: The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION: There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.


Assuntos
Androgênios , Líquido Folicular , Células da Granulosa , Hiperandrogenismo , Macrófagos , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/imunologia , Feminino , Células da Granulosa/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Hiperandrogenismo/metabolismo , Adulto , Líquido Folicular/metabolismo , Androgênios/metabolismo , Células Cultivadas , Ativação de Macrófagos , Microambiente Celular , Técnicas de Cocultura , Diferenciação Celular
18.
Parasit Vectors ; 17(1): 242, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812022

RESUMO

BACKGROUND: Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS: We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS: We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS: This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.


Assuntos
Acanthamoeba castellanii , Técnicas de Cocultura , Células Epiteliais , Epitélio Corneano , Peptídeo Hidrolases , Humanos , Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/genética , Células Epiteliais/parasitologia , Epitélio Corneano/parasitologia , Epitélio Corneano/enzimologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Ceratite por Acanthamoeba/parasitologia , Serina Proteases/metabolismo , Serina Proteases/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Virulência
19.
BMC Genomics ; 25(1): 520, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802796

RESUMO

BACKGROUND: Increasing evidence points to an active role of oviductal extracellular vesicles (oEVs) in the early embryo-maternal dialogue. However, it remains unclear whether oEVs contribute to the recognition of the presence of embryos and their quality in the oviduct. Hence, we examined whether the molecular cargo of oEVs secreted by bovine oviduct epithelial cells (BOEC) differs depending on the presence of good (≥ 8 cells, G) or poor (< 8 cells, P) quality embryos. In addition, differences in RNA profiles between G and P embryos were analyzed in attempt to distinguish oEVs and embryonic EVs cargos. METHODS: For this purpose, primary BOEC were co-cultured with in vitro produced embryos (IVP) 53 h post fertilization as follows: BOEC with G embryos (BGE); BOEC with P embryos (BPE); G embryos alone (GE); P embryos alone (PE); BOEC alone (B) and medium control (M). After 24 h of co-culture, conditioned media were collected from all groups and EVs were isolated and characterized. MicroRNA profiling of EVs and embryos was performed by small RNA-sequencing. RESULTS: In EVs, 84 miRNAs were identified, with 8 differentially abundant (DA) miRNAs for BGE vs. B and 4 for BPE vs. B (P-value < 0.01). In embryos, 187 miRNAs were identified, with 12 DA miRNAs for BGE vs. BPE, 3 for G vs. P, 8 for BGE vs. GE, and 11 for BPE vs. PE (P-value < 0.01). CONCLUSIONS: These results indicated that oEVs are involved in the oviductal-embryo recognition and pointed to specific miRNAs with signaling and supporting roles during early embryo development.


Assuntos
Embrião de Mamíferos , Vesículas Extracelulares , MicroRNAs , Oviductos , Animais , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Bovinos , Embrião de Mamíferos/metabolismo , Oviductos/metabolismo , Oviductos/citologia , Células Epiteliais/metabolismo , Técnicas de Cocultura , Tubas Uterinas/metabolismo , Tubas Uterinas/citologia
20.
Methods Mol Biol ; 2807: 271-283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743235

RESUMO

The blood-brain barrier (BBB) is one of several barriers between the brain and the peripheral blood system to maintain homeostasis. Understanding the interactions between infectious agents such as human immunodeficiency virus type 1 (HIV-1), which are capable of traversing the BBB and causing neuroinflammation requires modeling an authentic BBB in vitro. Such an in vitro BBB model also helps develop means of targeting viruses that reside in the brain via natural immune effectors such as antibodies. The BBB consists of human brain microvascular endothelial cells (HBMECs), astrocytes, and pericytes. Here we report in vitro methods to establish a dual-cell BBB model consisting of primary HBMECs and primary astrocytes to measure the integrity of the BBB and antibody penetration of the BBB, as well as a method to establish a single cell BBB model to study the impact of HIV-1 infected medium on the integrity of such a BBB.


Assuntos
Astrócitos , Barreira Hematoencefálica , Células Endoteliais , Infecções por HIV , HIV-1 , Barreira Hematoencefálica/virologia , Barreira Hematoencefálica/metabolismo , Humanos , Astrócitos/virologia , Astrócitos/metabolismo , Astrócitos/imunologia , Células Endoteliais/virologia , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , HIV-1/imunologia , HIV-1/fisiologia , Infecções por HIV/virologia , Infecções por HIV/imunologia , Pericitos/virologia , Pericitos/metabolismo , Pericitos/imunologia , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/imunologia , Técnicas de Cocultura/métodos , Células Cultivadas , Encéfalo/virologia , Encéfalo/imunologia , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...