Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.495
Filtrar
1.
Sci Rep ; 14(1): 15349, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961190

RESUMO

Precision-cut liver slices (PCLS) are increasingly used as a model to investigate anti-fibrotic therapies. However, many studies use PCLS from healthy animals treated with pro-fibrotic stimuli in culture, which reflects only the early stages of fibrosis. The effects of different culture conditions on PCLS from cirrhotic animals has not been well characterized and there is no consensus on optimal methods. In this study, we report a method for the collection and culture of cirrhotic PCLS and compare the effect of common culture conditions on viability, function, and gene expression. Additionally, we compared three methods of RNA isolation and identified a protocol with high yield and purity. We observed significantly increased albumin production when cultured with insulin-transferrin-selenium and dexamethasone, and when incubated on a rocking platform. Culturing with insulin-transferrin-selenium and dexamethasone maintained gene expression closer to the levels in fresh slices. However, despite stable viability and function up to 4 days, we found significant changes in expression of key genes by day 2. Interestingly, we also observed that cirrhotic PCLS maintain viability in culture longer than slices from healthy animals. Due to the influence of matrix stiffness on fibrosis and hepatocellular function, it is important to evaluate prospective anti-fibrotic therapies in a platform that preserves tissue biomechanics. PCLS from cirrhotic animals represent a promising tool for the development of treatments for chronic liver disease.


Assuntos
Dexametasona , Cirrose Hepática , Fígado , Animais , Ratos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Dexametasona/farmacologia , Masculino , RNA/isolamento & purificação , RNA/genética , RNA/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Ratos Sprague-Dawley , Selênio/farmacologia , Técnicas de Cultura de Tecidos/métodos
2.
Methods Mol Biol ; 2827: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985259

RESUMO

Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.


Assuntos
Células Vegetais , Técnicas de Cultura de Tecidos , Técnicas de Cultura de Células/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Células Vegetais/metabolismo , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos
3.
Methods Mol Biol ; 2827: 15-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985260

RESUMO

Statistics and experimental design are important tools for plant cell and tissue culture researchers and should be used when planning and conducting experiments as well as during the analysis and interpretation of experimental results. The chapter provides basic concepts important to the statistical analysis of data obtained from plant tissue culture experiments and illustrates the application of common statistical procedures to analyze binomial, count, and continuous data for experiments with different treatment factors as well as identifying trends of dosage treatment factors.


Assuntos
Células Vegetais , Técnicas de Cultura de Tecidos , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Células/métodos , Interpretação Estatística de Dados
4.
Methods Mol Biol ; 2827: 35-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985261

RESUMO

Temporary immersion systems (TIS) have been widely recognized as a promising technology for micropropagation of various plant species. The TIS provides a suitable environment for culture and allows intermittent contact of the explant with the culture medium at different immersion frequencies and aeration of the culture in each cycle. The frequency or immersion is one of the most critical parameters for the efficiency of these systems. The design, media volume, and container capacity substantially improve cultivation efficiency. Different TIS have been developed and successfully applied to micropropagation in various in vitro systems, such as sprout proliferation, microcuttings, and somatic embryos. TIS increases multiplication and conversion rates to plants and a better response during the ex vitro acclimatization phase. This article covers the use of different immersion systems and their applications in plant biotechnology, particularly in plant tissue culture, as well as its use in the massive propagation of plants of agroeconomic interest.


Assuntos
Aclimatação , Desenvolvimento Vegetal , Meios de Cultura/química , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/instrumentação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plantas , Imersão , Técnicas de Embriogênese Somática de Plantas/métodos
5.
Methods Mol Biol ; 2827: 109-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985266

RESUMO

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Assuntos
Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas/metabolismo , Plantas/efeitos dos fármacos , Lactonas/farmacologia , Lactonas/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
6.
Methods Mol Biol ; 2827: 207-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985273

RESUMO

In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.


Assuntos
Passiflora , Técnicas de Embriogênese Somática de Plantas , Técnicas de Cultura de Tecidos , Passiflora/genética , Passiflora/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Técnicas de Cultura de Tecidos/métodos , Transformação Genética , MicroRNAs/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas
7.
Methods Mol Biol ; 2827: 189-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985271

RESUMO

The aquatic monocot, Aponogeton ulvaceus Baker, is endemic to Madagascar and is a commercially valuable ornamental aquarium plant. Members of the genus Aponogeton contain a spectrum of phytochemicals associated with a broad range of biological activities. However, much remains to be known about this genus, and the A. ulvaceus population is declining due to anthropogenic activities and climate change. To address these challenges, adopting plant tissue culture technology will be a viable solution for the sustainable production of pest- and pathogen-free plants to meet the demands of the ornamental aquatic plant trade, for conservation and research purposes. A simple micropropagation protocol for A. ulvaceus is described here, starting with seeds to establish sterile stock plants, from which immature tubers were acquired as explants for indirect organogenesis.


Assuntos
Tubérculos , Técnicas de Cultura de Tecidos , Tubérculos/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Sementes/crescimento & desenvolvimento , Aclimatação
8.
Methods Mol Biol ; 2827: 223-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985274

RESUMO

Over the years, our team has dedicated significant efforts to studying a unique natural dye-producing species, annatto (Bixa orellana L.). We have amassed knowledge and established foundations that support the applications of gene expression analysis in comprehending in vitro morphogenic regeneration processes, phase transition aspects, and bixin biosynthesis. Additionally, we have conducted gene editing associated with these processes. The advancements in this field are expected to enhance breeding practices and contribute to the overall improvement of this significant woody species. Here, we present a step-by-step protocol based on somatic embryogenesis and an optimized transformation protocol utilizing Agrobacterium tumefaciens.


Assuntos
Agrobacterium tumefaciens , Bixaceae , Transformação Genética , Agrobacterium tumefaciens/genética , Bixaceae/genética , Bixaceae/metabolismo , Técnicas de Cultura de Tecidos/métodos , Técnicas de Embriogênese Somática de Plantas/métodos , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
9.
Methods Mol Biol ; 2827: 243-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985275

RESUMO

Doubled haploid (DH) techniques remain valuable tools for wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) genetic improvement, and DH populations are used extensively in breeding and research endeavors. Several techniques are available for DH production in wheat and barley. Here, we describe two simple, robust anther culture methods used to produce more than 15,000 DH wheat and barley lines annually in Australia.


Assuntos
Flores , Haploidia , Hordeum , Melhoramento Vegetal , Triticum , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/genética , Melhoramento Vegetal/métodos , Flores/crescimento & desenvolvimento , Flores/genética , Técnicas de Cultura de Tecidos/métodos
10.
Methods Mol Biol ; 2827: 323-350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985280

RESUMO

This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samples of commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA test to construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.


Assuntos
Metilação de DNA , Ensaio de Imunoadsorção Enzimática , Epigênese Genética , Ensaio de Imunoadsorção Enzimática/métodos , DNA de Plantas/genética , Cocos/genética , Técnicas de Cultura de Tecidos/métodos , Técnicas de Embriogênese Somática de Plantas/métodos
11.
Methods Mol Biol ; 2827: 405-416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985285

RESUMO

The engineering of plant cell cultures to produce high-value natural products is suggested to be a safe, low-cost, and environmentally friendly route to produce a wide range of chemicals. Given that the expression of heterologous biosynthetic pathways in plant tissue culture is limited by a lack of detailed protocols, the biosynthesis of high-value metabolites in plant cell culture is constrained compared with that in microbes. However, both Arabidopsis thaliana and Nicotiana benthamiana can be efficiently transformed with multigene constructs to produce high-value natural products in stable plant cell cultures. This chapter provides a detailed protocol as to how to engineer the plant cell culture as bio-factories for metabolite biosynthesis.


Assuntos
Arabidopsis , Produtos Biológicos , Nicotiana , Produtos Biológicos/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Técnicas de Cultura de Tecidos/métodos , Células Vegetais/metabolismo , Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/genética , Metaboloma , Vias Biossintéticas , Metabolômica/métodos , Técnicas de Cultura de Células/métodos
12.
Methods Mol Biol ; 2805: 89-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008175

RESUMO

Engineered heart tissues (EHTs) have been shown to be a valuable platform for disease investigation and therapeutic testing by increasing human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturity and better recreating the native cardiac environment. The protocol detailed in this chapter describes the generation of miniaturized EHTs (mEHTs) incorporating hiPSC-CMs and human stromal cells in a fibrin hydrogel. This platform utilizes an array of silicone posts designed to fit in a standard 96-well tissue culture plate. Stromal cells and hiPSC-CMs are cast in a fibrin matrix suspended between two silicone posts, forming an mEHT that produces synchronous muscle contractions. The platform presented here has the potential to be used for high throughput characterization and screening of disease phenotypes and novel therapeutics through measurements of the myocardial function, including contractile force and calcium handling, and its compatibility with immunostaining.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Hidrogéis/química , Diferenciação Celular , Fibrina/metabolismo , Células Cultivadas , Técnicas de Cultura de Células/métodos , Células Estromais/citologia , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/instrumentação
13.
J Neurosci Methods ; 408: 110181, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823594

RESUMO

BACKGROUND: Ex vivo cultures of retinal explants are appropriate models for translational research. However, one of the difficult problems of retinal explants ex vivo culture is that their nutrient supply needs cannot be constantly met. NEW METHOD: This study evaluated the effect of perfused culture on the survival of retinal explants, addressing the challenge of insufficient nutrition in static culture. Furthermore, exosomes secreted from retinal organoids (RO-Exos) were stained with PKH26 to track their uptake in retinal explants to mimic the efficacy of exosomal drugs in vivo. RESULTS: We found that the retinal explants cultured with perfusion exhibited significantly higher viability, increased NeuN+ cells, and reduced apoptosis compared to the static culture group at Days Ex Vivo (DEV) 4, 7, and 14. The perfusion-cultured retinal explants exhibited reduced mRNA markers for gliosis and microglial activation, along with lower expression of GFAP and Iba1, as revealed by immunostaining. Additionally, RNA-sequencing analysis showed that perfusion culture mainly upregulated genes associated with visual perception and photoreceptor cell maintenance while downregulating the immune system process and immune response. RO-Exos promoted the uptake of PKH26-labelled exosomes and the growth of retinal explants in perfusion culture. COMPARISON WITH EXISTING METHODS: Our perfusion culture system can provide a continuous supply of culture medium to achieve steady-state equilibrium in retinal explant culture. Compared to traditional static culture, it better preserves the vitality, provides better neuroprotection, and reduces glial activation. CONCLUSIONS: This study provides a promising ex vivo model for further studies on degenerative retinal diseases and drug screening.


Assuntos
Exossomos , Organoides , Retina , Animais , Organoides/metabolismo , Retina/citologia , Retina/metabolismo , Exossomos/metabolismo , Perfusão/métodos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Tecidos/métodos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos
14.
Physiol Plant ; 176(4): e14400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945697

RESUMO

Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.


Assuntos
Biotecnologia , Plantas Medicinais , Metabolismo Secundário , Técnicas de Cultura de Tecidos , Plantas Medicinais/metabolismo , Plantas Medicinais/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Biotecnologia/métodos
15.
Methods Mol Biol ; 2813: 117-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888774

RESUMO

The emergence of zoonotic viruses like severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have significantly impacted global health and economy. The discovery of other viruses in wildlife reservoir species present a threat for future emergence in humans and animals. Therefore, assays that are less reliant on virus-specific information, such as neutralization assays, are crucial to rapidly develop diagnostics, understand virus replication and pathogenicity, and assess the efficacy of therapeutics against newly emerging viruses. Here, we describe the discontinuous median tissue culture infectious dose 50 (TCID50) assay to quantitatively determine the titer of any virus that can produce a visible cytopathic effect in infected cells.


Assuntos
Efeito Citopatogênico Viral , Animais , Humanos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Chlorocebus aethiops , COVID-19/virologia , Células Vero , Replicação Viral , Técnicas de Cultura de Tecidos/métodos
16.
PLoS One ; 19(5): e0298299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722945

RESUMO

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Assuntos
Agrobacterium tumefaciens , Helianthus , Plantas Geneticamente Modificadas , Transformação Genética , Helianthus/genética , Helianthus/microbiologia , Helianthus/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Plantas Geneticamente Modificadas/genética , Técnicas de Cultura de Tecidos/métodos , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento
17.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791362

RESUMO

In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models.


Assuntos
Osseointegração , Técnicas de Cultura de Tecidos , Titânio , Humanos , Técnicas de Cultura de Tecidos/métodos , Microtomografia por Raio-X , Osso e Ossos/citologia , Materiais Biocompatíveis , Próteses e Implantes , Osso Esponjoso/citologia
18.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1309-1322, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783799

RESUMO

In recent years, organoids have become a crucial model for studying the physiopathological processes in tissues and organs. The emergence of organoids has promoted the research on the mechanisms of the occurrence and clinical translation of diseases. Among these organoid models, colorectal organoid models are increasingly mature. Colorectal cancer is a common gastrointestinal malignant tumor worldwide, posing a serious threat to human health. Colorectal organoids provide a new model for studying the pathophysiology, drug sensitivity, and precision medicine of colorectal cancer. The conventional culture systems of colorectal organoids focus more on the role of biochemical factors, neglecting the fact that the gut is also influenced by biophysical signals in vivo. Therefore, in this review, we discuss the theories related to colorectal organoids and biomechanics and expound the effects of biomechanics on colorectal organoid culture.


Assuntos
Neoplasias Colorretais , Organoides , Organoides/citologia , Humanos , Fenômenos Biomecânicos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Colo/citologia , Técnicas de Cultura de Células/métodos , Reto/citologia , Técnicas de Cultura de Tecidos/métodos
19.
Adv Biochem Eng Biotechnol ; 188: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38796640

RESUMO

Plant tissue culture has evolved in the last decades with several types of cultures being developed to promote a more sustainable food production system. Moreover, these cultures can be applied for the production of relevant metabolites with medicinal potential, thus contributing to nutrition and healthcare. Importantly, plant micropropagation has enabled agricultural expansion and tissue culture has emerged as a promising production alternative for several plants and their metabolites in the food, cosmetic, and pharmaceutical industries. Plant tissue cultures present several advantages over conventional propagation techniques as they are season independent, enabling a continuous supply of the plants/compounds of interest, with the guarantee of high phytosanitary quality. In addition, genetic uniformity is generally maintained, thus reducing chemical variability that can compromise safety and efficacy. Nevertheless, despite their undeniable potential, with many researchers focusing on new strategies to improve production yield in cell cultures, such as with the use of elicitors or resorting to metabolomics engineering, an effective and lucrative large-scale production has yet to be obtained. Indeed, only a few compounds with market value are produced in this regard and several limitations such as contaminations, low culture yield and production costs still need to be overcome in order to take advantage of the full potential of these techniques.


Assuntos
Técnicas de Cultura de Tecidos , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/tendências , Plantas/metabolismo
20.
Methods Mol Biol ; 2803: 61-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676885

RESUMO

Testing drugs in vivo and in vitro have been essential elements for the discovery of new therapeutics. Due to the recent advances in in vitro cell culture models, such as human-induced pluripotent stem cell-derived cardiomyocytes and 3D multicell type organoid culture methods, the detection of adverse cardiac events prior to human clinical trials has improved. However, there are still numerous therapeutics whose adverse cardiac effects are not detected until human trials due to the inability of these cell cultures to fully model the complex multicellular organization of an intact human myocardium. Cardiac tissue slices are a possible alternative solution. Myocardial slices are a 300-micron thin snapshot of the myocardium, capturing a section of the adult heart in a 1 × 1 cm section. Using a culture method that incorporates essential nutrients and electrical stimulation, tissue slices can be maintained in culture for 6 days with full viability and functionality. With the addition of mechanical stimulation and humoral cues, tissue slices can be cultured for 12 days. Here we provide detailed methods for how to culture cardiac tissue slices under continuous mechanical stimulation in the cardiac tissue culture model (CTCM) device. The CTCM incorporates four essential factors for maintaining tissue slices in culture for 12 days: mechanical stimulation, electrical stimulation, nutrients, and humoral cues. The CTCM can also be used to model disease conditions, such as overstretch-induced cardiac hypertrophy. The versatility of the CTCM illustrates its potential to be a medium-throughput screening platform for personalized drug testing.


Assuntos
Miocárdio , Miócitos Cardíacos , Técnicas de Cultura de Tecidos , Humanos , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Tecidos/métodos , Animais , Coração/fisiologia , Estimulação Elétrica , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...