Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
1.
J Med Virol ; 96(6): e29688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847316

RESUMO

To meet the screening goal of WHO's 90-70-90 strategy aimed at eliminating cervical cancer (CC) by 2030, clinical validation of human papillomavirus (HPV) assays is essential to provide accurate and valid results through fulfilling three criteria of the international validation guidelines (IVGs). Previously, the clinical accuracy of the AmpFire® HPV Screening 16/18/HR assay (AmpFire assay) was reported but reproducibility data are lacking. Here, we aim to evaluate the intra- and inter-laboratory reproducibility of the AmpFire assay. The reproducibility of the isothermal AmpFire assay was assessed using 556 cervical cell samples collected from women attending CC screening and biobanked in a Belgian HPV national reference center. This assay detects HPV16, HPV18, and 12 other high-risk HPV (hrHPV) types (31/33/35/39/45/51/52/56/58/59/66/68) in aggregate. Lower 95% confidence interval bound around the assay's reproducibility should exceed 87%, with κ ≥ 0.50. Additionally, a literature review of the assay's clinical performance was performed. The AmpFire assay showed an excellent intralaboratory (96.4%, 95% CI:94.5-97.8%, κ = 0.920) and interlaboratory (95.3%, 95% CI:93.2-96.9%, κ = 0.897) reproducibility. One study demonstrated noninferior sensitivity of a prototype AmpFire assay targeting 15 hrHPV types (including HPV53) to detect CIN2+. However, clinical specificity became similar to the comparator after removing HPV53 from analyses. The low-cost and easy-to-use AmpFire assay presents excellent reproducibility and-after removing HPV53 from the targeted types-fulfills also clinical accuracy requirements. Inclusion of HPV53, which is not recognized as carcinogenic, comprises clinical specificity of screening assays.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Reprodutibilidade dos Testes , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Feminino , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/virologia , Papillomaviridae/isolamento & purificação , Bélgica , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/normas , Adulto , Sensibilidade e Especificidade , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular/normas , Técnicas de Diagnóstico Molecular/métodos , Colo do Útero/virologia
2.
J Clin Virol ; 173: 105693, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820916

RESUMO

BACKGROUND: Viral respiratory Infections pose a health risk, especially to vulnerable patient populations. Effective testing programs can detect and differentiate these infections at an early stage, which is particularly important for high-risk clinical departments. The objective of this study was to develop and validate a multiplex PCR-panel for 16 different respiratory viruses on a fully-automated high-throughput platform. METHODS: Three multiplex-PCR assays were designed to run on the cobas5800/6800/8800 systems, consolidating 16 viral targets: RESP1: SARS-CoV-2, influenza-A/B, RSV; RESP2: hMPV, hBoV, hAdV, rhino-/ENV; RESP3: HPIV-1-4, hCoV-229E, hCoV-NL63, hCoV-OC43, hCoV-HKU1. Analytic performance was evaluated using digital-PCR based standards and international reference material. Clinical performance was determined by comparing results from clinical samples with reference assays. RESULTS: Analytical sensitivity (i.e. lower limit of detection (LoD), 95 % probability of detection) was determined as follows: SARS-CoV-2: 29.3 IU/ml, influenza-A: 179.9 cp/ml, influenza-B: 333.9 cp/ml and RSV: 283.1 cp/ml. LoDs of other pathogens ranged between 9.4 cp/ml (hCoV-NL63) and 21,419 cp/ml (HPIV-2). Linearity was verified over 4-7 log-steps with pooled standard differentials (SD) ranging between 0.18-0.70ct. Inter-/intra-run variability (precision) was assessed for all targets over 3 days. SDs ranged between 0.13-0.74ct. Positive agreement in clinical samples was 99.4 % and 95 % for SARS-CoV-2 and influenza-A respectively. Other targets were in the 80-100 % range. Negative agreement varied between 96.3-100 %. DISCUSSION: Lab-developed tests are a key factor for effective clinical diagnostics. The multiplex panel presented in this study demonstrated high performance and provides an easily scalable high-throughput solution for respiratory virus testing, e.g. for testing in high-risk patient populations.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Infecções Respiratórias , Sensibilidade e Especificidade , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções Respiratórias/virologia , Infecções Respiratórias/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , Vírus/isolamento & purificação , Vírus/genética , Vírus/classificação , Viroses/diagnóstico , Viroses/virologia , Automação Laboratorial/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas
3.
J Clin Microbiol ; 62(6): e0015824, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38690882

RESUMO

Candida auris is a multidrug-resistant opportunistic fungal pathogen capable of causing serious infections and healthcare-associated outbreaks. Screening for colonization with C. auris has become routine and is recommended in many hospitals and healthcare facilities as an infection control and prevention strategy. Subsequently, and since there are currently no FDA-approved tests for this purpose, clinical microbiology laboratories have become responsible for developing protocols to detect C. auris using axial and inguinal screening swabs. In a College of American Pathologists-accredited large academic healthcare center setting, we implemented a laboratory-developed nucleic-acid amplification test for the detection of C. auris DNA. Our test validation evaluated the performance of the DiaSorin C. auris primer set used in a real-time qualitative PCR assay on the LIAISON MDX thermocycler with the Simplexa Universal Disc. The assay was highly sensitive and specific, with a limit of detection of 1-2 CFU/reaction, with no observed cross-reactivity with other Candida spp., bacterial skin commensal organisms or commonly encountered viruses. When run in parallel with a culture-based detection method, the PCR assay was 100% sensitive and specific. The assay was precise, with low variability between replicates within and between runs. Lastly, pre-analytical factors, including swab storage time, temperature, and transport media, were assessed and found to have no significant effect on the detection of C. auris at variable concentrations. Taken together, this study expands the available options for nucleic acid detection of C. auris and characterizes pre-analytical factors for implementation in both high- and low-volume laboratory settings. IMPORTANCE: This study overviews the validation and implementation of a molecular screening tool for the detection of Candida auris in a College of American Pathologist-accredited clinical laboratory. This molecular laboratory-developed test is both highly sensitive and specific and has significant health-system cost-savings associated with significantly reduced turn-around-time compared to traditional standard-of-care culture-based work up. This method and workflow is of interest to support clinical microbiology diagnostics and to help aid in hospital inpatient, and infection prevention control screening.


Assuntos
Candida auris , Candidíase , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Candidíase/diagnóstico , Candidíase/microbiologia , Candida auris/genética , Programas de Rastreamento/métodos , Pacientes Internados , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Hospitais , Candida/genética , Candida/isolamento & purificação , DNA Fúngico/genética
4.
J Clin Microbiol ; 62(6): e0034524, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38757981

RESUMO

Viral enrichment by probe hybridization has been reported to significantly increase the sensitivity of viral metagenomics. This study compares the analytical performance of two targeted metagenomic virus capture probe-based methods: (i) SeqCap EZ HyperCap by Roche (ViroCap) and (ii) Twist Comprehensive Viral Research Panel workflow, for diagnostic use. Sensitivity, specificity, and limit of detection were analyzed using 25 synthetic viral sequences spiked in increasing proportions of human background DNA, eight clinical samples, and American Type Culture Collection (ATCC) Virome Virus Mix. Sensitivity and specificity were 95% and higher for both methods using the synthetic and reference controls as gold standard. Combining thresholds for viral sequence read counts and genome coverage [respectively 500 reads per million (RPM) and 10% coverage] resulted in optimal prediction of true positive results. Limits of detection were approximately 50-500 copies/mL for both methods as determined by ddPCR. Increasing proportions of spike-in cell-free human background sequences up to 99.999% (50 ng/mL) did not negatively affect viral detection, suggesting effective capture of viral sequences. These data show analytical performances in ranges applicable to clinical samples, for both probe hybridization metagenomic approaches. This study supports further steps toward more widespread use of viral metagenomics for pathogen detection, in clinical and surveillance settings using low biomass samples. IMPORTANCE: Viral metagenomics has been gradually applied for broad-spectrum pathogen detection of infectious diseases, surveillance of emerging diseases, and pathogen discovery. Viral enrichment by probe hybridization methods has been reported to significantly increase the sensitivity of viral metagenomics. During the past years, a specific hybridization panel distributed by Roche has been adopted in a broad range of different clinical and zoonotic settings. Recently, Twist Bioscience has released a new hybridization panel targeting human and animal viruses. This is the first report comparing the performance of viral metagenomic hybridization panels.


Assuntos
Metagenômica , Sensibilidade e Especificidade , Vírus , Humanos , Metagenômica/métodos , Metagenômica/normas , Vírus/genética , Vírus/isolamento & purificação , Vírus/classificação , Viroses/diagnóstico , Viroses/virologia , Padrões de Referência , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Limite de Detecção , Hibridização de Ácido Nucleico/métodos , Viroma
5.
J Clin Microbiol ; 62(6): e0060024, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785448

RESUMO

The COVID-19 pandemic highlighted the necessity of fast, sensitive, and efficient methods to test large populations for respiratory viruses. The "gold standard" molecular assays for detecting respiratory viruses, such as quantitative polymerase chain reaction (qPCR) and reverse transcription qPCR (RT-qPCR), rely on invasive swab samples and require time-consuming and labor-intensive extraction processes. Moreover, the turnaround time for RT-qPCR-based assays is too lengthy for rapid screening. Extraction-free saliva-based methods provide a non-invasive sampling process with a fast turnaround time and are suitable for high-throughput applications. However, when used with a standard RT-qPCR system, the absence of extraction significantly reduces the assays' sensitivity. Here, using a novel optical modulation biosensing (OMB) platform, we developed a rapid and highly sensitive extraction-free saliva-based molecular assay. We blindly tested 364 paired nasopharyngeal swabs and saliva samples from suspected SARS-CoV-2 cases in Israel. Compared with the gold standard swab-based RT-qPCR assay, the sensitivity of the extraction-free saliva-based OMB assay is 90.7%, much higher than the sensitivity of extraction-free saliva-based RT-qPCR assay (77.8%) with similar specificity (95.3% and 97.6%, respectively). Moreover, out of 12 samples identified by the OMB-based assay as positive, 8 samples were collected from hospitalized patients in a COVID-19 ward and were verified to be SARS-CoV-2-positive upon admission, indicating that the actual clinical sensitivity and specificity of the OMB assay are higher. Considering its user-friendly saliva-based protocol, short and cost-effective extraction-free process, and high clinical accuracy, the OMB-based molecular assay is very suitable for high-throughput testing of large populations for respiratory viruses. IMPORTANCE: Three years after the SARS-CoV-2 outbreak, there are no molecular tests that combine low-cost and straightforward sample preparation, effective sample handling, minimal reagent and disposable requirements, high sensitivity, and high throughput required for mass screening. Existing rapid molecular techniques typically sacrifice certain requirements to meet others. Yet, localized outbreaks of novel viral diseases happen daily in different parts of the world. In this context, respiratory diseases are of specific importance, as they are frequently airborne and highly contagious, with the potential for a rapid global spread. The widely accepted opinion is that another pandemic is just a question of time. To ensure that the containment efforts for the upcoming "disease X" are successful, introducing rapid, high-throughput, and highly sensitive diagnostic methods for detecting and identifying pathogens is critical. A few months into the pandemic, saliva was suggested as a diagnostic matrix for SARS-CoV-2 detection. The collection of saliva does not require swabs and is minimally invasive. In particular, extraction-free saliva-based assays require fewer reagents and disposables, and therefore are faster and cheaper, offering an appealing alternative for low-income countries. Unfortunately, current extraction-free saliva-based detection methods, such as direct RT-qPCR or isothermal amplification, have either low sensitivity or low throughput. Therefore, we believe that the presented highly sensitive ht-OMBi platform and the extraction-free saliva-based molecular assay can become an essential tool in the infectious disease monitoring toolbox.


Assuntos
COVID-19 , Nasofaringe , SARS-CoV-2 , Saliva , Sensibilidade e Especificidade , Humanos , Saliva/virologia , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Nasofaringe/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Teste de Ácido Nucleico para COVID-19/métodos , Adulto , Manejo de Espécimes/métodos , Pessoa de Meia-Idade , Israel , Idoso , Feminino , Masculino
6.
Mol Aspects Med ; 97: 101275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772082

RESUMO

Diagnostic tests were heralded as crucial during the Coronavirus disease (COVID-19) pandemic with most of the key methods using bioanalytical approaches that detected larger molecules (RNA, protein antigens or antibodies) rather than conventional clinical biochemical techniques. Nucleic Acid Amplification Tests (NAATs), like the Polymerase Chain Reaction (PCR), and other molecular methods, like sequencing (that often work in combination with NAATs), were essential to the diagnosis and management during COVID-19. This was exemplified both early in the pandemic but also later on, following the emergence of new genetic SARS-CoV-2 variants. The 100 day mission to respond to future pandemic threats highlights the need for effective diagnostics, therapeutics and vaccines. Of the three, diagnostics represents the first opportunity to manage infectious diseases while also being the most poorly supported in terms of the infrastructure needed to demonstrate effectiveness. Where performance targets exist, they are not well served by consensus on how to demonstrate they are being met; this includes analytical factors such as limit of detection (LOD) false positive results as well as how to approach clinical evaluation. The selection of gold standards or use of epidemiological factors such as predictive value, reference ranges or clinical thresholds are seldom correctly considered. The attention placed on molecular diagnostic tests during COVID-19 illustrates important considerations and assumptions on the use of these methods for infectious disease diagnosis and beyond. In this manuscript, we discuss state-of-the-art approaches to diagnostic evaluation and explore how they may be better tailored to diagnostic techniques like NAATs to maximise the impact of these highly versatile bioanalytical tools, both generally and during future outbreaks.


Assuntos
COVID-19 , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , COVID-19/diagnóstico , COVID-19/virologia , COVID-19/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Pandemias , Teste de Ácido Nucleico para COVID-19/métodos , Sensibilidade e Especificidade , Teste para COVID-19/métodos , RNA Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Doenças Transmissíveis/diagnóstico
7.
Expert Rev Mol Diagn ; 24(5): 423-438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747017

RESUMO

INTRODUCTION: Diagnostics are an essential, undervalued part of the health-care system. For many diseases, molecular diagnostics are the gold standard, but are not easy to implement in Low- and Middle-Income Countries (LMIC). Sample-to-result (S2R) platforms combining all procedures in a closed system could offer a solution. In this paper, we investigated their suitability for implementation in LMIC. AREAS COVERED: A scorecard was used to evaluate different platforms on a range of parameters. Most platforms scored fairly on the platform itself, ease-of-use and test consumables; however, shortcomings were identified in cost, distribution and test panels tailored to LMIC needs. The diagnostic coverage for common infectious diseases was found to have a wider coverage in high-income countries (HIC) than LMIC. A literature study showed that in LMIC, these platforms are mainly used as diagnostic tools or evaluation of diagnostic performance, with a minority assessing the operational characteristics or the clinical utility. In this narrative review, we identified various points for adaptation of S2R platforms to LMIC conditions. EXPERT OPINION: For S2R platforms to be suitable for implementation in LMIC some modifications by the manufacturers could be considered. Furthermore, strengthening health systems and digitalization are vital; as are smaller, cheaper, faster, and sustainable technologies.


Assuntos
Doenças Transmissíveis , Países em Desenvolvimento , Técnicas de Diagnóstico Molecular , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Técnicas de Diagnóstico Molecular/economia , Doenças Transmissíveis/diagnóstico
8.
Expert Rev Mol Diagn ; 24(5): 393-408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752560

RESUMO

INTRODUCTION: Advances in precision medicine have expanded access to targeted therapies and demand for molecular profiling of cholangiocarcinoma (CCA) patients in routine clinical practice. However, pathologists face challenges in establishing a definitive intrahepatic CCA (iCCA) diagnosis while preserving sufficient tissue for molecular profiling. Additionally, they frequently face challenges in optimal tissue handling to preserve nucleic acid integrity. AREAS COVERED: This article first identifies the challenges in establishing a definitive diagnosis of iCCA in a lesional liver biopsy while preserving sufficient tissue for molecular profiling. Then, the authors explore the clinical value of molecular profiling, the basic principles of single gene and next-generation sequencing (NGS) techniques, and the challenges in tissue sampling for genomic testing. They also propose an algorithm for best practice in tissue management for molecular profiling of CCA. EXPERT OPINION: Several practical challenges face pathologists during tissue sampling and processing for molecular profiling. Optimized tissue processing, careful tissue handling, and selection of appropriate approaches to molecular testing are essential to ensure that the highest possible quality of diagnostic information is provided in the greatest proportion of cases.


Assuntos
Neoplasias dos Ductos Biliares , Biomarcadores Tumorais , Colangiocarcinoma , Sequenciamento de Nucleotídeos em Larga Escala , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biomarcadores Tumorais/genética , Técnicas de Diagnóstico Molecular/normas , Técnicas de Diagnóstico Molecular/métodos , Perfilação da Expressão Gênica/métodos , Medicina de Precisão/métodos , Biópsia
9.
Diagn Microbiol Infect Dis ; 109(4): 116357, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776663

RESUMO

We aimed to compare the NeuMoDx HBV Assay with the artus HBV Assay using residual plasma samples and to evaluate the discordant results. The study included 200 patient samples analyzed with the NMD assay and stored at -80 °C. Samples were analyzed by artus in 2023. Discordant results were evaluated by cobas 6800 HBV DNA Test. Excellent agreement was found between both tests. Of the 100 samples that were HBV DNA negative by NMD, 93 were negative and 7 were positive by artus. With the Cobas test, 5 samples were positive. Of the100 HBV DNA positive samples detected by NMD, 99 were positive with the artus assay. This sample was also HBV DNA negative by the Cobas test. The sensitivity and specificity of NeuMoDx were found 93 % and 99 %, respectively. There was excellent qualitative agreement and strong quantitative correlation between the NeuMoDx and artus assays for HBV DNA detection and quantitation.


Assuntos
DNA Viral , Vírus da Hepatite B , Hepatite B , Sensibilidade e Especificidade , Humanos , DNA Viral/sangue , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B/diagnóstico , Hepatite B/virologia , Hepatite B/sangue , Carga Viral/métodos , Kit de Reagentes para Diagnóstico/normas , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Plasma/virologia
10.
J Clin Virol ; 173: 105680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38728796

RESUMO

BACKGROUND: Epstein-Barr Virus (EBV) viral loads in hematopoietic stem cell transplant (HSCT) recipients are typically monitored using quantitative molecular assays. The Cobas EBV test (Roche Molecular, Pleasanton, CA) has recently been FDA-cleared for the monitoring of EBV viral loads in plasma samples of transplant patients. In this study, we compared the viral loads obtained by a laboratory-developed test (EBV LDT) using Altona Analyte specific reagents (ASR) to those obtained on the Cobas EBV test. METHODS: The analytical performance of the assay was established using the EBV verification panel from Exact Diagnostics and the EBV ATCC strain B95-8. The clinical evaluation was performed using 343 plasma samples initially tested on the EBV LDT. RESULTS: The analytical sensitivity (<18.8 IU/mL), precision (SD < 0.17 log) and linear range (35.0 IU/mL to 1E + 08 IU/mL) of the Cobas EBV assay established by the manufacturers were confirmed. The strength of the qualitative agreement was substantial between the cobas EBV and the EBV LDT (85.6 %; κ = 0.71) and almost perfect when discordant results were resolved (96.4 %; κ = 0.93). The quantitative agreement was moderate (82.9 %; κ = 0.53) with the viral load obtained on the Cobas EBV test being lower across the linear range of the two tests (mean log difference of 1.0). While the absolute values of the viral loads were markedly different, the overall trends observed in patients with multiple consecutive results were similar between the two tests. CONCLUSIONS: The Cobas EBV test provides an accurate and valid, in vitro diagnostic (IVD) option for monitoring of EBV viral loads in transplant patients and should provide an opportunity for increased standardization and commutability of tests results across laboratories.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Sensibilidade e Especificidade , Centros de Atenção Terciária , Carga Viral , Humanos , Carga Viral/métodos , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/isolamento & purificação , Herpesvirus Humano 4/genética , Pessoa de Meia-Idade , Feminino , Adulto , Masculino , Idoso , Adulto Jovem , Adolescente , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Transplante de Células-Tronco Hematopoéticas , Criança , Pré-Escolar , DNA Viral/sangue , Kit de Reagentes para Diagnóstico/normas
11.
Diagn Microbiol Infect Dis ; 109(3): 116301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723453

RESUMO

Accurate detection and quantification of cytomegalovirus (CMV) is crucial to preventing adverse outcomes in immunocompromised individuals. Current assays were developed for use with plasma specimens, but CMV may be present in bronchoalveolar lavage (BAL) fluid and cerebrospinal fluid (CSF). We evaluated the performance of the Abbott Alinity m CMV assay compared to the Abbott RealTime CMV assay for quantification of CMV in plasma, BAL, and CSF specimens. To evaluate clinical performance, 190 plasma, 78 BAL, and 20 CSF specimens were tested with the Alinity m assay and compared to the RealTime assay. The Alinity m CMV assay showed high precision (SD <0.01 to 0.13) for all 3 specimen types. Clincal plasma and BAL specimens with quantifiable CMV DNA demonstrated strong correlation to RealTime CMV assay results (r2 = 0.9779 for plasma, r2 = 0.9373 for BAL). The Alinity m CMV assay may be useful for quantification of CMV in plasma, BAL, and CSF specimens.


Assuntos
Líquido da Lavagem Broncoalveolar , Líquido Cefalorraquidiano , Infecções por Citomegalovirus , Citomegalovirus , Humanos , Líquido da Lavagem Broncoalveolar/virologia , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/líquido cefalorraquidiano , Infecções por Citomegalovirus/virologia , Citomegalovirus/isolamento & purificação , Citomegalovirus/genética , Líquido Cefalorraquidiano/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Sensibilidade e Especificidade , Carga Viral , Plasma/virologia , DNA Viral/líquido cefalorraquidiano
12.
Lancet Microbe ; 5(6): e520-e528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608680

RESUMO

BACKGROUND: Xpert MTB/RIF Ultra (Ultra) is an automated molecular test for the detection of Mycobacterium tuberculosis in sputum. We compared the sensitivity of Ultra to that of mycobacterial growth indicator tube (MGIT) liquid culture, considered the most sensitive assay in routine clinical use. METHODS: In this prospective, multicentre, cross-sectional diagnostic accuracy study, we used a non-inferiority design to assess whether the sensitivity of a single Ultra test was non-inferior to that of a single liquid culture for detection of M tuberculosis in sputum. We enrolled adults (age ≥18 years) with pulmonary tuberculosis symptoms in 11 countries and each adult provided three sputum specimens with a minimum volume of 2 mL over 2 days. Ultra was done directly on sputum 1, and Ultra and MGIT liquid culture were done on resuspended pellet from sputum 2. Results of MGIT and solid media cultures done on sputum 3 were considered the reference standard. The pre-defined non-inferiority margin was 5·0%. FINDINGS: Between Feb 18, 2016, and Dec 4, 2019, we enrolled 2906 participants. 2600 (89%) participants were analysed, including 639 (25%) of 2600 who were positive for tuberculosis by the reference standard. Of the 2357 included in the non-inferiority analysis, 877 (37%) were HIV-positive and 984 (42%) were female. Sensitivity of Ultra performed directly on sputum 1 was non-inferior to that of sputum 2 MGIT culture (MGIT 91·1% vs Ultra 91·9%; difference -0·8 percentage points; 95% CI -2·8 to 1·1). Sensitivity of Ultra performed on sputum 2 pellet was also non-inferior to that of sputum 2 MGIT (MGIT 91·1% vs Ultra 91·9%; difference -0·8 percentage points; -2·7 to 1·0). INTERPRETATION: For the detection of M tuberculosis in sputum from adults with respiratory symptoms, there was no difference in sensitivity of a single Ultra test to that of a single MGIT culture. Highly sensitive, rapid molecular approaches for M tuberculosis detection, combined with advances in genotypic methods for drug resistance detection, have potential to replace culture. FUNDING: US National Institute of Allergy and Infectious Diseases.


Assuntos
Mycobacterium tuberculosis , Escarro , Tuberculose Pulmonar , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Escarro/microbiologia , Adulto , Feminino , Masculino , Estudos Transversais , Estudos Prospectivos , Pessoa de Meia-Idade , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Adulto Jovem , Idoso
13.
Diagn Microbiol Infect Dis ; 109(3): 116277, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677052

RESUMO

OBJECTIVES: To evaluate the performance of GeneXpert MTB/RIF (Xpert) for tuberculous meningitis (TBM) and to identify additional indicators to improve diagnostic accuracy. METHODS: An accuracy study was conducted. During 2011-2019, 243 TBM with 140 non-TBM in three TB-designated facilities in China were enrolled. Microbiological evidence of M tuberculosis (Mtb) in CSF was used as the reference. Additional indicators were identified by Boosted-Classification and Regression Tree (CART), the improvement of diagnostic performance was evaluated by ROC. RESULTS: The diagnostic sensitivity of Xpert was 71.1 % for definite TBM, and 5.5 % for probable/possible TBM. The positive rate of Xpert was improved with cerebrospinal fluid (CSF) increasing volume and was associated with CSF color (yellow). The additional indicators obtained by CART were CSF lactate and glucose and increased the sensitivity to 96.1 % (definite TBM) and 84.6 % (probable/possible TBM). CONCLUSIONS: The diagnostic performance of Xpert was satisfactory in definite TBM and would significantly be improved by the additional use of CSF lactate and glucose.


Assuntos
Mycobacterium tuberculosis , Sensibilidade e Especificidade , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/microbiologia , Tuberculose Meníngea/líquido cefalorraquidiano , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , China , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Adulto Jovem , Líquido Cefalorraquidiano/microbiologia , Adolescente , Idoso , Ácido Láctico/líquido cefalorraquidiano
14.
J Virol Methods ; 327: 114937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614281

RESUMO

Quantification of hepatitis C virus (HCV)-RNA in serum or plasma samples is an essential parameter in HCV diagnostics. Here, the NeuMoDx™Molecular System (Qiagen) was tested for the most common HCV genotypes and compared to the cobas c6800 system (Roche). HCV-RNA from 131 plasma/serum samples from chronically infected patients was determined in parallel on the NeuMoDx and c6800 systems. Linearity was analysed using the four most common HCV genotypes (1-4) in our cohort. The coefficient of variation (CV) within (intra-assay) and between (inter-assay) runs was calculated based on HCV-RNA concentration. Quantitative HCV-RNA results were highly correlated on both test systems (R2 = 0.7947; y = 0.94 x + 0.37). On average, the NeuMoDx and c6800 HCV RNA levels showed a mean difference of only 0.05 log10 IU/mL but with a broad distribution (±1.2 2 x SD). The NeuMoDx demonstrated very good linearity across all HCV genotypes tested at concentrations between 1.7 and 6.2 log10 IU/mL (R2 range: 0.9257-0.9991) with the highest mean coefficient of determination for genotype 1 (R2 = 0.9909). The mean intra- and inter-assay CV for both serum and plasma samples was <5 %. The NeuMoDx HCV-RNA Assay demonstrates high subtype-independent comparability, linearity, and reproducibility for the quantification of HCV-RNA in serum and plasma samples from chronically infected patients.


Assuntos
Genótipo , Hepacivirus , RNA Viral , Carga Viral , Humanos , Hepacivirus/genética , Hepacivirus/isolamento & purificação , RNA Viral/sangue , RNA Viral/genética , Carga Viral/métodos , Reprodutibilidade dos Testes , Hepatite C Crônica/virologia , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/sangue , Sensibilidade e Especificidade , Hepatite C/diagnóstico , Hepatite C/virologia , Hepatite C/sangue , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Kit de Reagentes para Diagnóstico/normas
15.
J Clin Microbiol ; 62(5): e0024324, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38629844

RESUMO

Detection of bacterial RNA by nucleic acid amplification tests (NAATs), such as reverse transcription PCR (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP), offers distinct advantages over DNA-based methods. However, such assays also present challenges in ascertaining positive and internal control material that can reliably monitor success over all phases of testing (bacterial lysis, nucleic acid recovery, reverse transcription, amplification, and signal detection): since they are unable to distinguish between amplification of bacterial RNA transcripts and the DNA templates that encode them, using intact organisms as controls can inform cell lysis but not successful detection of RNA. We developed a control strategy for RNA-based bacterial NAATs that allows ready discrimination of RNA from DNA templates using self-splicing bacterial introns, such that those nucleic acids ultimately encode different sequences. We engineered two vectors encoding synthetic transgenes based on this principle, one that is active in the Gram-negative bacterium Escherichia coli and one that functions in both E. coli and the Gram-positive organism Staphylococcus aureus. We subsequently designed RT-LAMP assays that either target RNA and DNA from transgenic organisms or target RNA exclusively and demonstrated the specificity of amplification using purified nucleic acids. Using multiplex fluorescent RT-LAMP of heat-lysed specimens, we showed the practicality of deploying such transgenic organisms as an internal control to ascertain sample integrity and assay performance during clinical diagnostic testing. Our approach has broad utility for RNA-based bacterial NAATs, especially point-of-care assays and other applications where nucleic acids are nonspecifically liberated for testing.


Assuntos
Escherichia coli , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Bacteriano , Transcrição Reversa , Staphylococcus aureus , Técnicas de Amplificação de Ácido Nucleico/métodos , Escherichia coli/genética , RNA Bacteriano/genética , Staphylococcus aureus/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Humanos , Sensibilidade e Especificidade , Padrões de Referência
16.
Clin Microbiol Infect ; 30(6): 810-815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460820

RESUMO

OBJECTIVES: We aimed to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform for the rapid detection of chikungunya virus (CHIKV) in both patient and mosquito samples from Brazil. METHODS: We optimized an RT-LAMP assay and then evaluated the specificity and sensitivity using visual detection. In comparison with the RT-qPCR reference method, we validated the utility of this assay as a molecular diagnostic test in a reference laboratory for arbovirus diagnostics using 100 serum samples collected from suspected CHIKV cases. RESULTS: Our RT-LAMP assay specifically detected CHIKV without cross-reactivity against other arboviruses. The limit of detection of our RT-LAMP was estimated in -1.18 PFU (confidence interval [CI] ranging from -2.08 to 0.45), resulting in a similar analytical sensitivity when directly compared with the reference standard RT-qPCR assay. Then, we demonstrate the ability of our RT-LAMP assay to detect the virus in different human specimens (serum, urine, and saliva), and crude lysate of Aedes aegypti mosquitoes in as little as 20-30 minutes and without a separate RNA isolation step. Lastly, we showed that our RT-LAMP assay could be lyophilized and reactivated by adding water, indicating potential for room-temperature storage. Our RT-LAMP had a clinical sensitivity of 100% (95% CI, 90.97-100.00%), clinical specificity of 96.72% (95% CI, 88.65-99.60%), and overall accuracy of 98.00% (95% CI, 92.96-99.76%). DISCUSSION: Taken together, these findings indicate that the RT-LAMP assay reported here solves important practical drawbacks to the deployment of molecular diagnostics in the field and can be used to improve testing capacity, particularly in low- and middle-income countries.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Humanos , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/normas , Animais , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Aedes/virologia , Brasil , RNA Viral/genética , RNA Viral/isolamento & purificação , Transcrição Reversa
17.
Diagn Microbiol Infect Dis ; 109(2): 116250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479092

RESUMO

In ICU settings, screening patients upon admission for potential multiresistant bacteria (BMR) carriers is crucial. Traditionally, clinical decisions relied on delayed culture results, but a rapid PCR molecular test called RealCycler-Rezero-U/G (Progenie-molecular©), emerged as an alternative. This study aimed to validate its effectiveness in detecting gram-negative BMR in rectal swabs at ICU admission. Over 24 months, an observational study was conducted on 1,234 admitted patients, with 217 meeting isolation criteria and undergoing both PCR and culture tests. Results showed a 17.5 % positive rate for screening. The PCR test exhibited impressive accuracy at 98.6 % and a strong negative predictive value of 99.4 %. The area under the ROC curve (AUC) was 0.98, indicating high reliability. Notably, PCR results were available 44.5 h earlier than culture. In conclusion, PCR-based molecular testing for gram-negative BMR offers excellent diagnostic performance and a valuable negative predictive value, making it a suitable screening tool for ICU admissions.


Assuntos
Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Unidades de Terapia Intensiva , Técnicas de Diagnóstico Molecular , Reto , Humanos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Reto/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Idoso , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Adulto , Reprodutibilidade dos Testes , Valor Preditivo dos Testes
18.
J Clin Virol ; 172: 105671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518504

RESUMO

To suit the needs of the human papillomaviruses (HPV) community comprehensively, a range of commercial HPV tests with different performance characteristics are required. Four periodic inventories of commercial HPV molecular tests present in the global market were published previously in 2010, 2012, 2015 and 2020. For the fifth inventory, data were retrieved from internal files and a detailed search using the main bibliographic databases as well as general internet search without period or language restrictions was performed in December 2023. At least 264 distinct HPV tests (and 511 test variants) were available globally in December 2023. A small 2020-2023 net increase in total numbers was observed, but with a strong introduction/withdrawal dynamic: 86 new distinct HPV tests (and 141 variants) were introduced and 76 tests (and 55 variants) were withdrawn from the market in the last four years. Although quality improvement of some tests was recorded, half of all HPV tests are still without a single peer-reviewed publication, and 79 % of tests are without published evidence that demonstrate performance characteristics are in line with requirements agreed in the HPV community. Only a relatively small pool of tests fulfill the operational/performance characteristics required to meet the global cervical cancer screening challenge. Although clinical and analytical performance characteristics of many commercial HPV tests are largely unknown, such tests are used worldwide in daily clinical practice and research, with potentially deleterious consequences. Due to this long-lasting unfavorable situation, significant scope for improvement persists for both manufacturers of HPV tests and the HPV community.


Assuntos
Técnicas de Diagnóstico Molecular , Papillomaviridae , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Papillomaviridae/genética , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Feminino , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/virologia , Saúde Global , Kit de Reagentes para Diagnóstico/normas , Papillomavirus Humano
19.
Indian J Med Microbiol ; 48: 100575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537871

RESUMO

PURPOSE: Quantitative LAMP (qLAMP) assay is one of the recent and emerging diagnostic tests for infectious diseases. Only a few studies exist comparing this assay with quantitative real-time PCR (qPCR) for the diagnosis of invasive pneumococcal disease (IPD). AIM: To compare the diagnostic performance of qLAMP assay with qPCR targeting autolysin gene for the diagnosis of invasive pneumococcal disease. METHODS: Ninety six blood samples and 73 CSF samples from patients clinically suspected with community acquired pneumonia and acute meningitis were tested by qPCR and qLAMP assays using previously published primers and protocols. The qPCR was considered as the gold standard test and the diagnostic performance was assessed by calculating sensitivity, specificity, positive and negative predictive values, and kappa coefficient for the level of agreement between the tests. Chi-squared/Fisher exact test was used to compare categorical variables (positive/negative). RESULTS: Thirty two blood samples and 22 CSF samples were positive by qPCR while 24 and 20 samples were positive by qLAMP assay respectively. The sensitivity of qLAMP assay was only 86.4% and 75% when tested on CSF and blood samples respectively. However, the qLAMP assay was in substantial to almost perfect agreement when compared with qPCR. The results were statistically significant in both sample types (P < 0.001). CONCLUSIONS: The performance of qLAMP assay can vary based on the specimen type. It has very high specificity and had substantial to almost perfect agreement, and thus may be an alternative to qPCR for the diagnosis of IPD.


Assuntos
Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Streptococcus pneumoniae , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Infecções Pneumocócicas/diagnóstico , Infecções Pneumocócicas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Criança , Adulto Jovem , Adolescente , N-Acetil-Muramil-L-Alanina Amidase/genética , Pré-Escolar
20.
Clin Infect Dis ; 78(5): 1313-1320, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306491

RESUMO

BACKGROUND: Sputum-based testing is a barrier to increasing access to molecular diagnostics for tuberculosis (TB). Many people with TB are unable to produce sputum, and sputum processing increases assay complexity and cost. Tongue swabs are emerging as an alternative to sputum, but performance limits are uncertain. METHODS: From June 2022 to July 2023, we enrolled 397 consecutive adults with cough >2 weeks at 2 health centers in Kampala, Uganda. We collected demographic and clinical information, sputum for TB testing (Xpert MTB/RIF Ultra and 2 liquid cultures), and tongue swabs for same-day quantitative polymerase chain reaction (qPCR) testing. We evaluated tongue swab qPCR diagnostic accuracy versus sputum TB test results, quantified TB targets per swab, assessed the impact of serial swabbing, and compared 2 swab types (Copan FLOQSWAB and Steripack spun polyester). RESULTS: Among 397 participants, 43.1% were female, median age was 33 years, 23.5% were diagnosed with human immunodeficiency virus, and 32.0% had confirmed TB. Sputum Xpert Ultra and tongue swab qPCR results were concordant for 98.2% (95% confidence interval [CI]: 96.2-99.1) of participants. Tongue swab qPCR sensitivity was 92.6% (95% CI: 86.5 to 96.0) and specificity was 99.1% (95% CI: 96.9 to 99.8) versus microbiological reference standard. A single tongue swab recovered a 7-log range of TB copies, with a decreasing recovery trend among 4 serial swabs. Swab types performed equivalently. CONCLUSIONS: Tongue swabs are a promising alternative to sputum for molecular diagnosis of TB, with sensitivity approaching sputum-based molecular tests. Our results provide valuable insights for developing successful tongue swab-based TB diagnostics.


Assuntos
Mycobacterium tuberculosis , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Manejo de Espécimes , Escarro , Língua , Humanos , Feminino , Escarro/microbiologia , Masculino , Uganda , Adulto , Língua/microbiologia , Manejo de Espécimes/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Tuberculose/diagnóstico , Tuberculose/microbiologia , Pessoa de Meia-Idade , Adulto Jovem , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...