Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.724
Filtrar
1.
Mol Cancer ; 23(1): 142, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987766

RESUMO

BACKGROUND: Breast cancer (BC) is the most common cancer in women, with triple negative BC (TNBC) accounting for 20% of cases. While early detection and targeted therapies have improved overall life expectancy, TNBC remains resistant to current treatments. Although parity reduces the lifetime risk of developing BC, pregnancy increases the risk of developing TNBC for years after childbirth. Although numerous gene mutations have been associated with BC, no single gene alteration has been identified as a universal driver. RRAS2 is a RAS-related GTPase rarely found mutated in cancer. METHODS: Conditional knock-in mice were generated to overexpress wild type human RRAS2 in mammary epithelial cells. A human sample cohort was analyzed by RT-qPCR to measure RRAS2 transcriptional expression and to determine the frequency of both a single-nucleotide polymorphism (SNP rs8570) in the 3'UTR region of RRAS2 and of genomic DNA amplification in tumoral and non-tumoral human BC samples. RESULTS: Here we show that overexpression of wild-type RRAS2 in mice is sufficient to develop TNBC in 100% of females in a pregnancy-dependent manner. In human BC, wild-type RRAS2 is overexpressed in 68% of tumors across grade, location, and molecular type, surpassing the prevalence of any previously implicated alteration. Still, RRAS2 overexpression is notably higher and more frequent in TNBC and young parous patients. The increased prevalence of the alternate C allele at the SNP position in tumor samples, along with frequent RRAS2 gene amplification in both tumors and blood of BC patients, suggests a cause-and-effect relationship between RRAS2 overexpression and breast cancer. CONCLUSIONS: Higher than normal expression of RRAS2 not bearing activating mutations is a key driver in the majority of breast cancers, especially those of the triple-negative type and those linked to pregnancy.


Assuntos
Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Animais , Humanos , Camundongos , Gravidez , Oncogenes , Polimorfismo de Nucleotídeo Único , Período Pós-Parto/genética , Mutação , Regulação Neoplásica da Expressão Gênica , Técnicas de Introdução de Genes , Proteínas ras/genética , Proteínas ras/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Proteínas de Membrana , Proteínas Monoméricas de Ligação ao GTP
2.
PLoS Genet ; 20(6): e1011298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870088

RESUMO

Tardigrades are small aquatic invertebrates known for their remarkable tolerance to diverse extreme stresses. To elucidate the in vivo mechanisms underlying this extraordinary resilience, methods for genetically manipulating tardigrades have long been desired. Despite our prior success in somatic cell gene editing by microinjecting Cas9 ribonucleoproteins (RNPs) into the body cavity of tardigrades, the generation of gene-edited individuals remained elusive. In this study, employing an extremotolerant parthenogenetic tardigrade species, Ramazzottius varieornatus, we established conditions that led to the generation of gene-edited tardigrade individuals. Drawing inspiration from the direct parental CRISPR (DIPA-CRISPR) technique employed in several insects, we simply injected a concentrated Cas9 RNP solution into the body cavity of parental females shortly before their initial oviposition. This approach yielded gene-edited G0 progeny. Notably, only a single allele was predominantly detected at the target locus for each G0 individual, indicative of homozygous mutations. By co-injecting single-stranded oligodeoxynucleotides (ssODNs) with Cas9 RNPs, we achieved the generation of homozygously knocked-in G0 progeny, and these edited alleles were inherited by G1/G2 progeny. This is the first example of heritable gene editing in the entire phylum of Tardigrada. This establishment of a straightforward method for generating homozygous knockout/knock-in individuals not only facilitates in vivo analyses of the molecular mechanisms underpinning extreme tolerance, but also opens up avenues for exploring various topics, including Evo-Devo, in tardigrades.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Homozigoto , Partenogênese , Tardígrados , Animais , Tardígrados/genética , Edição de Genes/métodos , Partenogênese/genética , Feminino , Técnicas de Introdução de Genes/métodos , Técnicas de Inativação de Genes , Alelos
3.
Elife ; 122024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869243

RESUMO

An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.


Assuntos
Edição de Genes , Proteína Huntingtina , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Doença de Huntington/genética , Doença de Huntington/terapia , Animais , Edição de Genes/métodos , Camundongos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Modelos Animais de Doenças , Humanos , Mutação , Técnicas de Introdução de Genes
4.
Nat Commun ; 15(1): 5489, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942786

RESUMO

Lipid droplets (LDs) are dynamic lipid storage organelles. They are tightly linked to metabolism and can exert protective functions, making them important players in health and disease. Most LD studies in vivo rely on staining methods, providing only a snapshot. We therefore developed a LD-reporter mouse by labelling the endogenous LD coat protein perilipin 2 (PLIN2) with tdTomato, enabling staining-free fluorescent LD visualisation in living and fixed tissues and cells. Here we validate this model under standard and high-fat diet conditions and demonstrate that LDs are highly abundant in various cell types in the healthy brain, including neurons, astrocytes, ependymal cells, neural stem/progenitor cells and microglia. Furthermore, we also show that LDs are abundant during brain development and can be visualized using live imaging of embryonic slices. Taken together, our tdTom-Plin2 mouse serves as a novel tool to study LDs and their dynamics under both physiological and diseased conditions in all tissues expressing Plin2.


Assuntos
Encéfalo , Gotículas Lipídicas , Perilipina-2 , Animais , Perilipina-2/metabolismo , Perilipina-2/genética , Gotículas Lipídicas/metabolismo , Encéfalo/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Introdução de Genes , Camundongos Transgênicos , Feminino , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Masculino , Astrócitos/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Microglia/metabolismo
5.
Platelets ; 35(1): 2369766, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38904212

RESUMO

Receptor-induced tyrosine phosphorylation of spleen tyrosine kinase (Syk) has been studied extensively in hematopoietic cells. Metabolic mapping and high-resolution mass spectrometry, however, indicate that one of the most frequently detected phosphorylation sites encompassed S297 (S291 in mice) located within the linker B region of Syk. It has been reported that Protein kinase C (PKC) phosphorylates Syk S297, thus influencing Syk activity. However, conflicting studies suggest that this phosphorylation enhances as well as reduces Syk activity. To clarify the function of this site, we generated Syk S291A knock-in mice. We used platelets as a model system as they possess Glycoprotein VI (GPVI), a receptor containing an immunoreceptor tyrosine-based activation motif (ITAM) which transduces signals through Syk. Our analysis of the homozygous mice indicated that the knock-in platelets express only one isoform of Syk, while the wild-type expresses two isoforms at 69 and 66 kDa. When the GPVI receptor was activated with collagen-related peptide (CRP), we observed an increase in functional responses and phosphorylations in Syk S291A platelets. This potentiation did not occur with AYPGKF or 2-MeSADP, although they also activate PKC isoforms. Although there was potentiation of platelet functional responses, there was no difference in tail bleeding times. However, the time to occlusion in the FeCl3 injury model was enhanced. These data indicate that the effects of Syk S291 phosphorylation represent a significant outcome on platelet activation and signaling in vitro but also reveals its multifaceted nature demonstrated by the differential effects on physiological responses in vivo.


What is the context Spleen tyrosine kinase (Syk) is present a number of cells and important in controlling the functions of various cells and organs.Syk is known to exist in two isoforms Syk L (long form or Syk A) and Syk S (short form or Syk B).It is known that phosphorylation events regulate Syk activation and activity.In several inflammatory disease conditions, Syk mutants are known to play a role.Phosphorylation of the Syk residue Serine 291 is known to occur, but its function in the regulation of Syk activation or activity is not known.What is new In this study, we generated a mutant mouse Syk S291A, which cannot be phosphorylated on serine residue. We evaluated the function of platelets isolated from these mice and compared them to platelets isolated from wild type littermates.We observed that the mutation in Syk L unexpectedly caused Syk S to disappear from a number of tissues.Platelet functions are enhanced in mutant mouse platelets compared to those from wild-type mice.What is the impact These studies enhance our understanding of the impact of Serine 291 phosphorylation on the function of Syk in platelets.


Assuntos
Plaquetas , Transdução de Sinais , Quinase Syk , Animais , Quinase Syk/metabolismo , Plaquetas/metabolismo , Camundongos , Fosforilação , Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Técnicas de Introdução de Genes , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ativação Plaquetária
6.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930955

RESUMO

The CRISPR-Cas9 system has emerged as the most prevalent gene editing technology due to its simplicity, high efficiency, and low cost. However, the homology-directed repair (HDR)-mediated gene knock-in in this system suffers from low efficiency, which limits its application in animal model preparation, gene therapy, and agricultural genetic improvement. Here, we report the design and optimization of a simple and efficient reporter-based assay to visualize and quantify HDR efficiency. Through random screening of a small molecule compound library, two groups of compounds, including the topoisomerase inhibitors and PIM1 kinase inhibitors, have been identified to promote HDR. Two representative compounds, etoposide and quercetagetin, also significantly enhance the efficiency of CRISPR-Cas9 and HDR-mediated gene knock-in in mouse embryos. Our study not only provides an assay to screen compounds that may facilitate HDR but also identifies useful tool compounds to facilitate the construction of genetically modified animal models with the CRISPR-Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Edição de Genes/métodos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores da Topoisomerase/farmacologia , Humanos , Reparo de DNA por Recombinação/efeitos dos fármacos , Técnicas de Introdução de Genes
7.
Yi Chuan ; 46(6): 466-477, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38886150

RESUMO

Gene knock-in in mammalian cells usually uses homology-directed repair (HDR) mechanism to integrate exogenous DNA template into the target genome site. However, HDR efficiency is often low, and the co-localization of exogenous DNA template and target genome site is one of the key limiting factors. To improve the efficiency of HDR mediated by CRISPR/Cas9 system, our team and previous studies fused different adaptor proteins with SpCas9 protein and expressed them. By using their characteristics of binding to specific DNA sequences, many different CRISPR/SpCas9 donor adapter gene editing systems were constructed. In this study, we used them to knock-in eGFP gene at the 3'-end of the terminal exon of GAPDH and ACTB genes in HEK293T cells to facilitate a comparison and optimization of these systems. We utilized an optimized donor DNA template design method, validated the knock-in accuracy via PCR and Sanger sequencing, and assessed the efficiency using flow cytometry. The results showed that the fusion of yGal4BD, hGal4BD, hLacI, hTHAP11 as well as N57 and other adaptor proteins with the C-terminus of SpCas9 protein had no significant effect on its activity. At the GAPDH site, the donor adapter systems of SpCas9 fused with yGal4BD, hGal4BD, hLacI and hTHAP11 significantly improved the knock-in efficiency. At the ACTB site, SpCas9 fused with yGal4BD and hGal4BD significantly improved the knock-in efficiency. Furthermore, increasing the number of BS in the donor DNA template was beneficial to enhance the knock-in efficiency mediated by SpCas9-hTHAP11 system. In conclusion, this study compares and optimizes multiple CRISPR/Cas9 donor adapter gene editing systems, providing valuable insights for future gene editing applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Células HEK293 , Técnicas de Introdução de Genes/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
8.
Nat Commun ; 15(1): 4756, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834544

RESUMO

Given the absence of approved treatments for pathogenic variants in Peripherin-2 (PRPH2), it is imperative to identify a universally effective therapeutic target for PRPH2 pathogenic variants. To test the hypothesis that formation of the elongated discs in presence of PRPH2 pathogenic variants is due to the presence of the full complement of rhodopsin in absence of the required amounts of functional PRPH2. Here we demonstrate the therapeutic potential of reducing rhodopsin levels in ameliorating disease phenotype in knockin models for p.Lys154del (c.458-460del) and p.Tyr141Cys (c.422 A > G) in PRPH2. Reducing rhodopsin levels improves physiological function, mitigates the severity of disc abnormalities, and decreases retinal gliosis. Additionally, intravitreal injections of a rhodopsin-specific antisense oligonucleotide successfully enhance the physiological function of photoreceptors and improves the ultrastructure of discs in mutant mice. Presented findings shows that reducing rhodopsin levels is an effective therapeutic strategy for the treatment of inherited retinal degeneration associated with PRPH2 pathogenic variants.


Assuntos
Periferinas , Rodopsina , Periferinas/genética , Periferinas/metabolismo , Animais , Rodopsina/genética , Rodopsina/metabolismo , Camundongos , Humanos , Modelos Animais de Doenças , Regulação para Baixo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/terapia , Oligonucleotídeos Antissenso/genética , Retina/metabolismo , Retina/patologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Doenças Retinianas/terapia , Camundongos Endogâmicos C57BL , Mutação , Feminino , Técnicas de Introdução de Genes , Masculino
9.
Pestic Biochem Physiol ; 202: 105953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879307

RESUMO

The brown planthopper (Nilaparvata lugens) is a major destructive rice pest in Asia. High levels of insecticide resistance have been frequently reported, and the G932C mutation in the chitin synthase 1 (CHS1) gene has been found to mediate buprofezin resistance. However, there has been no direct evidence to confirm the functional significance of the single G932C substitution mutation leading to buprofezin resistance in N. lugens. Here, we successfully constructed a knock-in homozygous strain (Nl-G932C) of N. lugens using CRISPR/Cas9 coupled with homology-directed repair (HDR). Compared with the background strain susceptible to buprofezin (Nl-SS), the knock-in strain (Nl-G932C) showed a 94.9-fold resistance to buprofezin. Furthermore, resistant strains (Nl-932C) isolated from the field exhibited a 2078.8-fold resistance to buprofezin, indicating that there are other mechanisms contributing to buprofezin resistance in the field. Inheritance analysis showed that the resistance trait is incomplete dominance. In addition, the Nl-G932C strain had a relative fitness of 0.33 with a substantially decreased survival rate, emergence rate, and fecundity. This study provided in vivo functional evidence for the causality of G932C substitution mutation of CHS1 with buprofezin resistance and valuable information for facilitating the development of resistance management strategies in N. lugens. This is the first example of using CRISPR/Cas9 gene-editing technology in a hemipteran insect to directly confirm the role of a candidate target site mutation in insecticide resistance.


Assuntos
Sistemas CRISPR-Cas , Quitina Sintase , Hemípteros , Resistência a Inseticidas , Inseticidas , Tiadiazinas , Animais , Hemípteros/genética , Resistência a Inseticidas/genética , Tiadiazinas/farmacologia , Quitina Sintase/genética , Inseticidas/farmacologia , Mutação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Técnicas de Introdução de Genes , Feminino , Masculino
10.
Cell Host Microbe ; 32(5): 632-634, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723601

RESUMO

Inducing HIV-1 broadly neutralizing antibodies (bnAbs) through vaccination poses exceptional challenges. In this issue of Cell Host & Microbe, Wiehe and colleagues report the elicitation of affinity-matured bnAbs in knock-in mice through boosting immunogen vaccination, which selects for key improbable mutations.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Desenvolvimento de Vacinas , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/genética , HIV-1/imunologia , HIV-1/genética , Animais , Camundongos , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/imunologia , Humanos , Técnicas de Introdução de Genes , Imunização Secundária , Vacinação
11.
Front Immunol ; 15: 1383612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742107

RESUMO

Introduction: SARS-CoV-2, the cause of the COVID pandemic, is an RNA virus with a high propensity to mutate. Successive virus variants, including variants of concern (VOC), have emerged with increased transmission or immune escape. The original pandemic virus and early variants replicated poorly, if at all, in mice at least partly due to a mismatch between the receptor binding domain on the viral spike protein and the murine angiotensin converting enzyme 2 (ACE2). Omicron VOC emerged in late 2021 harboring > 50 new mutations, 35 of them in the spike protein. This variant resulted in a very large wave of infections, even in the face of prior immunity, albeit being inherently less severe than earlier variants. Reflecting the lower severity reported in humans, Omicron displayed attenuated infection in hamsters and also in the K18-hACE2 mouse model. K18-hACE2 mice express both the human ACE2 as well as the endogenous mouse ACE2. Methods: Here we infected hACE2 knock-in mice that express only human ACE2 and no murine ACE2, or C57BL/6 wildtype mice with SARS-CoV-2 D614G (first-wave isolate), Delta or Omicron BA.1 variants and assessed infectivity and downstream innate immune responses. Results: While replication of SARS-CoV-2 Omicron was lower in the lungs of hACE2 knock-in mice compared with SARS-CoV-2 D614G and VOC Delta, it replicated more efficiently than the earlier variants in C57BL/6 wildtype mice. This opens the opportunity to test the effect of host genetics on SARS-CoV-2 infections in wildtype mice. As a proof of principle, we tested Omicron infection in mice lacking expression of the interferon-alpha receptor-1 (IFNAR1). In these mice we found that loss of type I IFN receptor signaling resulted in higher viral loads in the lungs were detected. Finally, using a chimeric virus of first wave SARS-CoV-2 harboring the Omicron spike protein, we show that Omicron spike increase infection of C57BL/6 wildtype mice, but non-spike genes of Omicron confer attenuation of viral replication. Discussion: Since this chimeric virus efficiently infected C57BL/6 wildtype mice, and replicated in their lungs, our findings illustrate a pathway for genetic mapping of virushost interactions during SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Replicação Viral , Animais , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos Transgênicos
12.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731886

RESUMO

The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood-brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 (Slco1a4) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26LSL-EYFP Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells.


Assuntos
Encéfalo , Células Endoteliais , Integrases , Animais , Camundongos , Células Endoteliais/metabolismo , Integrases/metabolismo , Integrases/genética , Encéfalo/metabolismo , Técnicas de Introdução de Genes , Camundongos Transgênicos , Barreira Hematoencefálica/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Tamoxifeno/farmacologia , Proteína Vermelha Fluorescente
13.
Toxicol Lett ; 397: 48-54, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734221

RESUMO

The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.


Assuntos
Grânulos Citoplasmáticos , DNA Helicases , Proteínas de Fluorescência Verde , Queratinócitos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Humanos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Arsenitos/toxicidade , Pele/efeitos dos fármacos , Pele/metabolismo , Técnicas de Introdução de Genes , Genes Reporter/efeitos dos fármacos , Fenóis/toxicidade , Células HaCaT , Fosforilação , Compostos Benzidrílicos/toxicidade , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Testes de Toxicidade/métodos
14.
Science ; 384(6701): 1220-1227, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38753766

RESUMO

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier. BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40 to 50 times greater reporter expression in the CNS of human TFRC knockin mice. The enhanced tropism was CNS-specific and absent in wild-type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared with AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.


Assuntos
Antígenos CD , Encéfalo , Capsídeo , Técnicas de Transferência de Genes , Vetores Genéticos , Glucosilceramidase , Receptores da Transferrina , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus , Células Endoteliais/metabolismo , Técnicas de Introdução de Genes , Terapia Genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Glucosilceramidase/genética , Doença de Gaucher/genética , Doença de Gaucher/terapia , Doença de Parkinson/genética , Doença de Parkinson/terapia
15.
Stem Cell Res ; 78: 103445, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820864

RESUMO

Forkhead box protein J1 (FOXJ1), a member of the forkhead family, is an important transcription factor regulating multiciliated cell differentiation and motile ciliogenic program. Here, we established a FOXJ1- EGFP knock-in human embryonic stem cell (hESC) line by inserting a P2A-EGFP gene cassette of FOXJ1 using CRISPR/Cas9 system. The reporter cell line retained a normal karyotype, expressed comparable pluripotent marker genes, and maintained differentiation potential. This reporter cell line enables live identification of multiciliated cells during the general lung differentiation and will be a valuable tool for studying the multiciliated cell differentiation, ciliogenesis and mechanism of related pulmonary diseases.


Assuntos
Sistemas CRISPR-Cas , Fatores de Transcrição Forkhead , Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Linhagem Celular , Diferenciação Celular , Técnicas de Introdução de Genes/métodos , Marcação de Genes/métodos , Genes Reporter
16.
Matrix Biol ; 131: 17-29, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759902

RESUMO

Amelogenin (AMELX), the predominant matrix protein in enamel formation, contains a singular phosphorylation site at Serine 16 (S16) that greatly enhances AMELX's capacity to stabilize amorphous calcium phosphate (ACP) and inhibit its transformation to apatitic enamel crystals. To explore the potential role of AMELX phosphorylation in vivo, we developed a knock-in (KI) mouse model in which AMELX phosphorylation is prevented by substituting S16 with Ala (A). As anticipated, AMELXS16A KI mice displayed a severe phenotype characterized by weak hypoplastic enamel, absence of enamel rods, extensive ectopic calcifications, a greater rate of ACP transformation to apatitic crystals, and progressive cell pathology in enamel-forming cells (ameloblasts). In the present investigation, our focus was on understanding the mechanisms of action of phosphorylated AMELX in amelogenesis. We have hypothesized that the absence of AMELX phosphorylation would result in a loss of controlled mineralization during the secretory stage of amelogenesis, leading to an enhanced rate of enamel mineralization that causes enamel acidification due to excessive proton release. To test these hypotheses, we employed microcomputed tomography (µCT), colorimetric pH assessment, and Fourier Transform Infrared (FTIR) microspectroscopy of apical portions of mandibular incisors from 8-week old wildtype (WT) and KI mice. As hypothesized, µCT analyses demonstrated significantly higher rates of enamel mineral densification in KI mice during the secretory stage compared to the WT. Despite a greater rate of enamel densification, maximal KI enamel thickness increased at a significantly lower rate than that of the WT during the secretory stage of amelogenesis, reaching a thickness in mid-maturation that is approximately half that of the WT. pH assessments revealed a lower pH in secretory enamel in KI compared to WT mice, as hypothesized. FTIR findings further demonstrated that KI enamel is comprised of significantly greater amounts of acid phosphate compared to the WT, consistent with our pH assessments. Furthermore, FTIR microspectroscopy indicated a significantly higher mineral-to-organic ratio in KI enamel, as supported by µCT findings. Collectively, our current findings demonstrate that phosphorylated AMELX plays crucial mechanistic roles in regulating the rate of enamel mineral formation, and in maintaining physico-chemical homeostasis and the enamel growth pattern during early stages of amelogenesis.


Assuntos
Ameloblastos , Amelogênese , Amelogenina , Esmalte Dentário , Microtomografia por Raio-X , Animais , Amelogenina/metabolismo , Amelogenina/genética , Fosforilação , Esmalte Dentário/metabolismo , Esmalte Dentário/crescimento & desenvolvimento , Camundongos , Amelogênese/genética , Ameloblastos/metabolismo , Técnicas de Introdução de Genes , Fosfatos de Cálcio/metabolismo , Concentração de Íons de Hidrogênio
17.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743626

RESUMO

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Rodopsina , Animais , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Camundongos , Rodopsina/genética , Rodopsina/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/genética , Miopia/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Escuridão , Transducina/genética , Transducina/metabolismo , Técnicas de Introdução de Genes , Modelos Animais de Doenças
18.
Genesis ; 62(3): e23601, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38703044

RESUMO

HAND2 is a basic helix-loop-helix transcription factor with diverse functions during development. To facilitate the investigation of genetic and functional diversity among Hand2-expressing cells in the mouse, we have generated Hand2Dre, a knock-in allele expressing Dre recombinase. To avoid disrupting Hand2 function, the Dre cDNA is inserted at the 3' end of the Hand2 coding sequence following a viral 2A peptide. Hand2Dre homozygotes can therefore be used in complex crosses to increase the proportion of useful genotypes among offspring. Dre expression in mid-gestation Hand2Dre embryos is indistinguishable from wild-type Hand2 expression, and HandDre efficiently recombines rox target sites in vivo. In combination with existing Cre and Flp mouse lines, Hand2Dre will therefore extend the ability to perform genetic intersectional labeling, fate mapping, and functional manipulation of subpopulations of cells characterized by developmental expression of Hand2.


Assuntos
Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Técnicas de Introdução de Genes , Animais , Feminino , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Técnicas de Introdução de Genes/métodos , Integrases/genética , Integrases/metabolismo , Masculino
19.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758779

RESUMO

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Assuntos
Senescência Celular , Mitocôndrias , Hepatopatia Gordurosa não Alcoólica , Estearoil-CoA Dessaturase , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Camundongos , Senescência Celular/genética , Acetilação , Mitocôndrias/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Masculino , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Técnicas de Introdução de Genes , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Modelos Animais de Doenças , Coenzima A Ligases , Ácido Graxo Sintase Tipo I
20.
Histochem Cell Biol ; 162(1-2): 41-52, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762823

RESUMO

During development and differentiation, histone modifications dynamically change locally and globally, associated with transcriptional regulation, DNA replication and repair, and chromosome condensation. The level of histone H4 Lys20 monomethylation (H4K20me1) increases during the G2 to M phases of the cell cycle and is enriched in facultative heterochromatin, such as inactive X chromosomes in cycling cells. To track the dynamic changes of H4K20me1 in living cells, we have developed a genetically encoded modification-specific intracellular antibody (mintbody) probe that specifically binds to the modification. Here, we report the generation of knock-in mice in which the coding sequence of the mCherry-tagged version of the H4K20me1-mintbody is inserted into the Rosa26 locus. The knock-in mice, which ubiquitously expressed the H4K20me1-mintbody, developed normally and were fertile, indicating that the expression of the probe does not disturb the cell growth, development, or differentiation. Various tissues isolated from the knock-in mice exhibited nuclear fluorescence without the need for fixation. The H4K20me1-mintbody was enriched in inactive X chromosomes in developing embryos and in XY bodies during spermatogenesis. The knock-in mice will be useful for the histochemical analysis of H4K20me1 in any cell types.


Assuntos
Técnicas de Introdução de Genes , Histonas , Proteínas Luminescentes , Animais , Camundongos , Histonas/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Anticorpos/metabolismo , Proteína Vermelha Fluorescente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...