Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Biochem Mol Toxicol ; 35(10): e22875, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34350654

RESUMO

Kidney injury molecule-1 (KIM-1) is a membrane receptor upregulated in the proximal tubule cells following various types of kidney injuries. Notably, studies have suggested a correlation between KIM-1 expression and extracellular signal-regulated kinase (ERK) activation. In this study, we aimed to investigate the association between the kidney overexpression pattern of cytoplasmic phosphorylated-ERK (p-ERK) protein and increased urinary KIM-1 levels in rats exposed to gentamicin or lead acetate, both at the end of toxic exposure and after a 4-week recovery period. Although other proteins were evaluated, only kidney overexpression of cytoplasmic p-ERK protein correlated with increased urinary KIM-1 levels. For both toxic substances, the increased urinary KIM-1 levels corresponded with kidney inflammation. Our results suggest that KIM-1 and p-ERK share a common mechanism in kidney injury mediated by both toxic substances that induce proximal tubule damage.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/urina , Moléculas de Adesão Celular/urina , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gentamicinas/toxicidade , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo , Compostos Organometálicos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Canais de Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Histonas/metabolismo , Masculino , Fosforilação , Ratos , Ratos Wistar , Canais de Cátion TRPV/metabolismo
2.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802083

RESUMO

Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFß1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFß1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.


Assuntos
Dipeptídeos/farmacologia , Células Epiteliais , Túbulos Renais Proximais , Insuficiência Renal Crônica , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
3.
Adv Chronic Kidney Dis ; 27(5): 365-376, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33308501

RESUMO

Acute kidney injury (AKI) is common among hospitalized patients with Coronavirus Infectious Disease 2019 (COVID-19), with the occurrence of AKI ranging from 0.5% to 80%. The variability in the occurrence of AKI has been attributed to the difference in geographic locations, race/ethnicity, and severity of illness. AKI among hospitalized patients is associated with increased length of stay and in-hospital deaths. Even patients with AKI who survive to hospital discharge are at risk of developing chronic kidney disease or end-stage kidney disease. An improved knowledge of the pathophysiology of AKI in COVID-19 is crucial to mitigate and manage AKI and to improve the survival of patients who developed AKI during COVID-19. The goal of this article is to provide our current understanding of the etiology and the pathophysiology of AKI in the setting of COVID-19.


Assuntos
Injúria Renal Aguda/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Glomerulonefrite/metabolismo , Microangiopatias Trombóticas/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Antibacterianos/efeitos adversos , Antivirais/efeitos adversos , Apolipoproteína L1/genética , Ácido Ascórbico/efeitos adversos , Azotemia/metabolismo , Azotemia/patologia , Azotemia/fisiopatologia , COVID-19/patologia , COVID-19/fisiopatologia , Progressão da Doença , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/fisiopatologia , Mortalidade Hospitalar , Humanos , Túbulos Renais Proximais/lesões , Tempo de Internação , Mioglobina/metabolismo , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia , Nefrite Intersticial/fisiopatologia , Nefrose Lipoide/metabolismo , Nefrose Lipoide/patologia , Nefrose Lipoide/fisiopatologia , Insuficiência Renal Crônica , Rabdomiólise/metabolismo , SARS-CoV-2 , Índice de Gravidade de Doença , Microangiopatias Trombóticas/patologia , Microangiopatias Trombóticas/fisiopatologia , Vitaminas/efeitos adversos , Tratamento Farmacológico da COVID-19
4.
Proc Natl Acad Sci U S A ; 117(27): 15874-15883, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571916

RESUMO

After acute kidney injury (AKI), patients either recover or alternatively develop fibrosis and chronic kidney disease. Interactions between injured epithelia, stroma, and inflammatory cells determine whether kidneys repair or undergo fibrosis, but the molecular events that drive these processes are poorly understood. Here, we use single nucleus RNA sequencing of a mouse model of AKI to characterize cell states during repair from acute injury. We identify a distinct proinflammatory and profibrotic proximal tubule cell state that fails to repair. Deconvolution of bulk RNA-seq datasets indicates that this failed-repair proximal tubule cell (FR-PTC) state can be detected in other models of kidney injury, increasing during aging in rat kidney and over time in human kidney allografts. We also describe dynamic intercellular communication networks and discern transcriptional pathways driving successful vs. failed repair. Our study provides a detailed description of cellular responses after injury and suggests that the FR-PTC state may represent a therapeutic target to improve repair.


Assuntos
Injúria Renal Aguda/metabolismo , Túbulos Renais Proximais/metabolismo , Rim/metabolismo , Transcriptoma , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Aloenxertos , Animais , Modelos Animais de Doenças , Fibrose , Redes Reguladoras de Genes , Humanos , Rim/lesões , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Análise de Sequência de RNA , Células Estromais/metabolismo , Células Estromais/patologia
5.
Sci Rep ; 9(1): 16705, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723194

RESUMO

Chiral separation has revealed enantio-specific changes in blood and urinary levels of amino acids in kidney diseases. Blood D-/L-serine ratio has been identified to have a correlation with creatinine-based kidney function. However, the mechanism of distinctive behavior in serine enantiomers is not well understood. This study was performed to investigate the role of renal tubules in derangement of serine enantiomers using a mouse model of cisplatin-induced tubular injury. Cisplatin treatment resulted in tubular damage histologically restricted to the proximal tubules and showed a significant increase of serum D-/L-serine ratio with positive correlations to serum creatinine and blood urine nitrogen (BUN). The increased D-/L-serine ratio did not associate with activity of a D-serine degrading enzyme, D-amino acid oxidase, in the kidney. Screening transcriptions of neutral amino acid transporters revealed that Asc-1, found in renal tubules and collecting ducts, was significantly increased after cisplatin-treatment, which correlates with serum D-serine increase. In vitro study using a kidney cell line showed that Asc-1 is induced by cisplatin and mediated influx of D-serine preferably to L-serine. Collectively, these results suggest that cisplatin-induced damage of proximal tubules accompanies Asc-1 induction in tubules and collecting ducts and leads to serum D-serine accumulation.


Assuntos
Cisplatino/toxicidade , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Serina/sangue , Sistema y+ de Transporte de Aminoácidos , Animais , Antineoplásicos/toxicidade , D-Aminoácido Oxidase/metabolismo , Nefropatias/sangue , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serina/urina , Estereoisomerismo
6.
J Clin Invest ; 129(11): 4797-4816, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589169

RESUMO

Maladaptive proximal tubule (PT) repair has been implicated in kidney fibrosis through induction of cell-cycle arrest at G2/M. We explored the relative importance of the PT DNA damage response (DDR) in kidney fibrosis by genetically inactivating ataxia telangiectasia and Rad3-related (ATR), which is a sensor and upstream initiator of the DDR. In human chronic kidney disease, ATR expression inversely correlates with DNA damage. ATR was upregulated in approximately 70% of Lotus tetragonolobus lectin-positive (LTL+) PT cells in cisplatin-exposed human kidney organoids. Inhibition of ATR resulted in greater PT cell injury in organoids and cultured PT cells. PT-specific Atr-knockout (ATRRPTC-/-) mice exhibited greater kidney function impairment, DNA damage, and fibrosis than did WT mice in response to kidney injury induced by either cisplatin, bilateral ischemia-reperfusion, or unilateral ureteral obstruction. ATRRPTC-/- mice had more cells in the G2/M phase after injury than did WT mice after similar treatments. In conclusion, PT ATR activation is a key component of the DDR, which confers a protective effect mitigating the maladaptive repair and consequent fibrosis that follow kidney injury.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Reparo do DNA , Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Nefropatias/etiologia , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Knockout , Organoides/metabolismo , Organoides/patologia
7.
PLoS One ; 14(4): e0215871, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002704

RESUMO

Tubule-interstitial injury (TII) is a critical step in the progression of renal disease. It has been proposed that changes in proximal tubule (PT) albumin endocytosis plays an important role in the development of TII. Some reports have shown protective effects of lithium on kidney injury animal models that was correlated to proteinuria. We tested the hypothesis that lithium treatment ameliorates the development of TII due to changes in albumin endocytosis. Two experimental models were used: (1) TII induced by albumin overload in an animal model; (2) LLC-PK1 cells, a PT cell line. Lithium treatment ameliorates TII induced by albumin overload measured by (1) proteinuria; (2) collagen deposition; (3) area of tubule-interstitial space, and (4) macrophage infiltration. Lithium treatment increased mTORC2 activity leading to the phosphorylation of protein kinase B (PKB) at Ser473 and its activation. This mechanism enhanced albumin endocytosis in PT cells, which decreased the proteinuria observed in TII induced by albumin overload. This effect did not involve changes in the expression of megalin, a PT albumin receptor. In addition, activation of this pathway decreased apoptosis in LLC-PK1 cells, a PT cell line, induced by higher albumin concentration, similar to that found in pathophysiologic conditions. Our results indicate that the protective role of lithium treatment on TII induced by albumin overload involves an increase in PT albumin endocytosis due to activation of the mTORC2/PKB pathway. These results open new possibilities in understanding the effects of lithium on the progression of renal disease.


Assuntos
Túbulos Renais Proximais/efeitos dos fármacos , Carbonato de Lítio/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Substâncias Protetoras/farmacologia , Proteinúria/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/genética , Albuminas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/agonistas , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Biomed Pharmacother ; 112: 108679, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798133

RESUMO

The p-cresyl sulfate accumulates in kidney disease and may be involved in renal injury. α-Lipoic acid (α-LA) acts as an antioxidant in cell injury. We investigated the effects of α-LA treatment on p-cresyl sulfate-induced renal tubular injury. p-Cresyl sulfate induced cell death, and increased Bax/Bcl-2, cleaved caspase-3, Beclin-1, and LC3BII/LC3BI in human renal proximal tubular epithelial (HK-2) cells, which was counteracted by α-LA treatment. p-Cresyl sulfate-induced apoptosis was reduced by autophagy inhibitor 3-methyladenine, and p-cresyl sulfate induced autophagy was reduced by pan-caspase inhibitor Z-VAD-FMK. Moreover, p-cresyl sulfate treatment increased the expression of ER stress proteins and decreased the expression of baculoviral IAP repeat-containing proteins 6; these effects were prevented by α-LA treatment. Apoptosis and autophagy were associated with the phosphorylation of mitogen-activated protein kinase and nuclear translocation of the nuclear factor-κB p65 subunit. Pretreatment inhibitors of p38 and JNK, and knockdown of ATF4 gene reduced apoptosis- and autophagy-related protein expressions in p-cresyl sulfate treated HK-2 cells. These results demonstrate that α-lipoic acid attenuated p-cresyl sulfate-induced cell death by suppression of apoptosis and autophagy via regulation of ER stress in HK-2 cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cresóis/toxicidade , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Ésteres do Ácido Sulfúrico/toxicidade , Ácido Tióctico/farmacologia , Antioxidantes/farmacologia , Apoptose/fisiologia , Autofagia/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo
9.
J Am Soc Nephrol ; 29(5): 1383-1396, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29444905

RESUMO

BACKGROUND: The kidney is considered to be a structurally stable organ with limited baseline cellular turnover. Nevertheless, single cells must be constantly replaced to conserve the functional integrity of the organ. PDGF chain B (PDGF-BB) signaling through fibroblast PDGF receptor-ß (PDGFRß) contributes to interstitial-epithelial cell communication and facilitates regenerative functions in several organs. However, the potential role of interstitial cells in renal tubular regeneration has not been examined. METHODS: In mice with fluorescent protein expression in renal tubular cells and PDGFRß-positive interstitial cells, we ablated single tubular cells by high laser exposure. We then used serial intravital multiphoton microscopy with subsequent three-dimensional reconstruction and ex vivo histology to evaluate the cellular and molecular processes involved in tubular regeneration. RESULTS: Single-tubular cell ablation caused the migration and division of dedifferentiated tubular epithelial cells that preceded tubular regeneration. Moreover, tubular cell ablation caused immediate calcium responses in adjacent PDGFRß-positive interstitial cells and the rapid migration thereof toward the injury. These PDGFRß-positive cells enclosed the injured epithelium before the onset of tubular cell dedifferentiation, and the later withdrawal of these PDGFRß-positive cells correlated with signs of tubular cell redifferentiation. Intraperitoneal administration of trapidil to block PDGFRß impeded PDGFRß-positive cell migration to the tubular injury site and compromised the recovery of tubular function. CONCLUSIONS: Ablated tubular cells are exclusively replaced by resident tubular cell proliferation in a process dependent on PDGFRß-mediated communication between the renal interstitium and the tubular system.


Assuntos
Desdiferenciação Celular , Células Epiteliais/fisiologia , Túbulos Renais Proximais/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Regeneração , Urotélio/fisiologia , Animais , Cálcio/metabolismo , Comunicação Celular , Movimento Celular/efeitos dos fármacos , Feminino , Microscopia Intravital , Rim/citologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/lesões , Linfocinas/metabolismo , Masculino , Camundongos , Inibidores de Fosfodiesterase/farmacologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Recuperação de Função Fisiológica , Trapidil/farmacologia , Urotélio/lesões
10.
Biomed Pharmacother ; 99: 422-430, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29367111

RESUMO

Diabetes affects a large proportion of population wide across the world and kidney is a main target organ of diabetic complications. Zingerone is a stable active component derived from dry ginger rhizome. We investigated the effect of zingerone on diabetic nephropathy and explored the possible mechanisms. We showed that zingerone decreased the levels of serum insulin, C-peptide and glycosylated hemoglobin A1c. The levels of blood urea nitrogen (BUN), serum creatinine, urinary albumin content and albumin/creatinine ratio (ACR) were reduced by zingerone. Moreover, zingerone attenuated the pathological injuries of kidneys, reduced the surface area of Bowman's capsule, Bowman's space, glomerular tuft, and decreased the expression of collagen IV and fibronectin in kidneys in db/db mice. The high levels of triglyceride and cholesterol, and high expression of TNFɑ and IL-6 were decreased by zingerone. Furthermore, zingerone decreased the level of MDA and increased the content of glutathione (GSH). NADPH oxidase 4 (NOX4) expression was significantly increased in kidneys of db/db mice and in HK-2 cells after exposure to high glucose. Zingerone significantly decreased the expression of NOX4 in vivo and in vitro. Upregualtion of NOX4 significantly inhibited zingerone-induced protective effects against the cytotoxicity of high glucose. Downregulation of NOX4 was responsible for zingerone-exhibited pharmacological activities and reduction of diabetic nephropathy. Overall, zingerone is a promising therapeutic treatment to attenuate diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/enzimologia , Guaiacol/análogos & derivados , NADPH Oxidase 4/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Colágeno Tipo IV/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo/efeitos dos fármacos , Fibronectinas/metabolismo , Glucose/metabolismo , Glucose/toxicidade , Guaiacol/química , Guaiacol/farmacologia , Guaiacol/uso terapêutico , Humanos , Inflamação/patologia , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/patologia , Lipídeos , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Regulação para Cima/efeitos dos fármacos
11.
Nephrol Dial Transplant ; 32(12): 2132-2141, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045706

RESUMO

BACKGROUND: Kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are promising biomarkers for monitoring delayed graft function (DGF) after kidney transplantation. Here we investigated localization and distribution of KIM-1 and NGAL staining in renal allograft biopsies and studied their association with histological features, functional DGF (fDGF) and the tubular function slope (TFS), a functioning proximal tubular epithelial cell (PTEC) marker. METHODS: Day 10 protocol biopsies of 64 donation after circulatory death recipients were stained for KIM-1 and NGAL and the positive area was quantified using ImageJ software. Biopsies were scored according to Banff and acute tubular necrosis (ATN) criteria. A 99mtechnetium-mercaptoacetyltriglycine (99mTc-MAG3)-renography was performed to calculate TFS. RESULTS: KIM-1 staining was located on the brush border of tubular epithelial cells (TECs) and correlated with denudation, while NGAL was present more focally in a cytoplasmic distribution. KIM-1 and NGAL staining were not correlated and no co-localization was observed. Quantitative stainings were not associated with fDGF, but KIM-1 tended to be higher in patients with prolonged fDGF (≥21 days; P = 0.062). No correlation was observed between the quantitative tissue stainings and urinary KIM-1 or NGAL. Quantitative KIM-1 staining was inversely correlated with the TFS (Spearman's ρ = -0.53; P < 0.001), whereas NGAL was not. The latter finding might be because cortical NGAL staining is dependent on filtration and subsequent reabsorption by functioning PTECs. Staining of NGAL was indeed restricted to PTECs, as shown by co-localization with a PTEC-specific lectin. CONCLUSIONS: KIM-1 and NGAL staining showed different localization and distribution. Quantitative KIM-1 staining was inversely correlated with functioning PTECs.


Assuntos
Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Função Retardada do Enxerto/diagnóstico , Células Epiteliais/patologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Transplante de Rim/efeitos adversos , Túbulos Renais Proximais/patologia , Idoso , Animais , Biópsia , Função Retardada do Enxerto/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo , Lipocalina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos Lew , Coloração e Rotulagem , Transplante Homólogo
12.
PLoS One ; 12(7): e0180553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28672023

RESUMO

Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation.


Assuntos
Temperatura Baixa , Túbulos Renais Proximais/lesões , Reaquecimento , Animais , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley
13.
Anticancer Res ; 37(8): 4075-4079, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739690

RESUMO

BACKGROUND/AIM: We have shown that either chronic nicotine (NIC) exposure or 5-aza-cytidine (AZA) augments oxidative stress-dependent injury through stimulating p66shc in renal cells. Hence, NIC could exacerbate adverse effects of AZA while antioxidants such as resveratrol (RES) could prevent it. MATERIALS AND METHODS: Renal proximal tubule cells (NRK52E) were treated with 20 µM RES prior to 200 µM NIC plus 100 nM AZA and cell injury (LDH release) was determined. Reporter luciferase assays determined p66shc activation and RES-induced antioxidant responses. Genetic manipulations identified the mechanism of RES action. RESULTS: NIC exacerbated AZA-dependent injury via augmenting p66shc transcription. While RES suppressed NIC+AZA-mediated injury, -surprisingly-it further enhanced activity of the p66shc promoter. RES protected cells via the cytoplasmic p66shc/Nrf2/heme oxygenase-1 (HO-1) axis. CONCLUSION: RES can protect the kidney from adverse effects of NIC in patients undergoing anticancer therapy.


Assuntos
Túbulos Renais Proximais/efeitos dos fármacos , Neoplasias/complicações , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/biossíntese , Estilbenos/administração & dosagem , Antioxidantes/administração & dosagem , Azacitidina/efeitos adversos , Linhagem Celular , Heme Oxigenase-1/genética , Humanos , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/patologia , Fator 2 Relacionado a NF-E2/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nicotina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
14.
In Vivo ; 31(4): 551-555, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652419

RESUMO

BACKGROUND/AIM: Nicotine (NIC) exposure - via smoking and the increasingly popular E-cigarettes- increases oxidative stress and hence, renal risk in smokers. Resveratrol (RES) may help ameliorate this risk by mounting anti-oxidant responses in the kidney. MATERIALS AND METHODS: Renal proximal tubule cells (NRK52E) were treated with vehicle or 20 µM RES prior to treatment with 200 µM NIC and generation of reactive oxygen species (ROS) as well as cell viability was determined. RES-induced antioxidant responses were determined in reporter luciferase assays. Gene silencing was used to determine mechanism of RES action. RESULTS: RES protected NRK52E cells from NIC-induced oxidative injury. RES activated the promoter of the anti-oxidant manganese superoxide dismutase (MnSOD) gene via activation of the forkhead box O (FoxO3a) transcription factor. Silencing of MnSOD abolished the protective effects of RES on NIC-associated oxidative injury. CONCLUSION: RES may provide protection to the kidney from the adverse effects of NIC in smokers.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Túbulos Renais Proximais/efeitos dos fármacos , Estilbenos/administração & dosagem , Superóxido Dismutase/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/fisiopatologia , Antioxidantes/administração & dosagem , Humanos , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Nicotina/toxicidade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio , Resveratrol , Fumar/efeitos adversos
15.
Cell Physiol Biochem ; 42(2): 797-807, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28628921

RESUMO

BACKGROUND/AIMS: The activation of NOD-like receptor family, pyrin domain containing3 (NLRP3) inflammasome has been shown to be positively correlated with the severity of proteinuria in chronic kidney disease (CKD) patients. Prostaglandin E2 (PGE2), an important inflammatory mediator, is also involved in various kidney injuries. The aim of the present study was to investigate the involvement of NLRP3 inflammasome and PGE2 synthetic pathway in albumin-induced renal tubular injury. METHODS: Murine proximal tubular cells (mPTCs) were treated with albumin to induce cell injury. NLRP3 siRNA and specific COX-2 inhibitor NS398 were used to define their roles in mediating albumin-induced mPTC injury or the activation of COX-2/mPGES-1/PGE2 cascade. RESULTS: In mPCTs, inhibition of NLRP3 by a small interfering RNA (siRNA) blocked albumin-induced kidney injury molecule 1 (KIM-1) upregulation, inflammatory response, and cell apoptosis. Albumin markedly activated cyclooxygenase-2 (COX-2)/ microsomal prostaglandin E synthase-1 (mPGES-1)/PGE2 pathway in this cell line, an effect largely abolished by NLRP3 silencing at both mRNA and protein levels. More interestingly, blockade of COX-2 using a specific COX-2 inhibitor NS398 markedly inhibited the upregulation of KIM-1 and inflammatory cytokines, and attenuated cell apoptosis in line with blunted PGE2 release following albumin treatment. CONCLUSIONS: The findings suggest that COX-2/mPGES-1/PGE2 axis could be activated by albumin in the proximal tubular cells via a NLRP3 inflammasome-mediated mechanism and could thus contribute to proteinuria-related renal tubular cell injury.


Assuntos
Ciclo-Oxigenase 2/genética , Dinoprostona/genética , Túbulos Renais Proximais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Prostaglandina-E Sintases/genética , Proteinúria/genética , Albuminas/administração & dosagem , Animais , Apoptose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/patologia , Camundongos , Nitrobenzenos/administração & dosagem , Proteinúria/metabolismo , Proteinúria/patologia , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Sulfonamidas/administração & dosagem
16.
Kidney Blood Press Res ; 41(5): 535-544, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27561821

RESUMO

BACKGROUND/AIMS: Hyponatremia associated with high urinary fractional excretion of uric acid which persists after serum sodium is corrected is the cardinal feature of salt losing nephropathy (SLN). We hypothesize that low grade proximal tubular injury is present in SLN because the proximal tubule is the main site of uric acid and sodium transport. METHODS: Five subjects with SLN were compared to four subjects with recurrent hyponatremia and three healthy individuals. Urinary NGAL (neutrophil gelatinase associated lipocalin, a marker of tubular injury) and fasting urinary fructose levels (a marker of proximal tubular injury) were measured. RESULTS: Subjects with SLN (n=5) showed elevated fractional uric acid excretion (22 ± 6 vs 4 ± 2 percent, p<0.0001), elevated urinary NGAL levels (62 ± 37 vs 9 ± 7 ng/mg creatinine, p=0.001) and fasting urinary fructose levels compared with the 7 controls (383 ± 465 vs 60 ± 34µmole/µg creatinine, p <0.001). A strong correlation between urinary NGAL levels and urinary fructose levels was observed (r =0.87, p<0.001). CONCLUSION: High urinary fractional excretion of uric acid in SLN is associated with elevated NGAL and fasting urinary fructose levels suggesting that SLN may involve tubular injury.


Assuntos
Hiponatremia/urina , Túbulos Renais Proximais/lesões , Ácido Úrico/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Frutose/urina , Humanos , Nefropatias , Lipocalina-2/urina , Masculino , Pessoa de Meia-Idade , Sódio/sangue , Adulto Jovem
17.
Nephrol Dial Transplant ; 31(9): 1460-70, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27270293

RESUMO

BACKGROUND: The primary biomarkers used to define CKD are serum creatinine and albuminuria. These biomarkers have directed focus on the filtration and barrier functions of the kidney glomerulus even though albuminuria results from tubule dysfunction as well. Given that proximal tubules make up ∼90% of kidney cortical mass, we evaluated whether a sensitive and specific marker of proximal tubule injury, urinary kidney injury molecule-1 (KIM-1), is elevated in individuals with CKD or with risk factors for CKD. METHODS: We measured urinary KIM-1 in participants of five cohort studies from the USA and Sweden. Participants had a wide range of kidney function and were racially and ethnically diverse. Multivariable linear regression models were used to test the association of urinary KIM-1 with demographic, clinical and laboratory values. RESULTS: In pooled, multivariable-adjusted analyses, log-transformed, creatinine-normalized urinary KIM-1 levels were higher in those with lower eGFR {ß = -0.03 per 10 mL/min/1.73 m(2) [95% confidence interval (CI) -0.05 to -0.02]} and greater albuminuria [ß = 0.16 per unit of log albumin:creatinine ratio (95% CI 0.15-0.17)]. Urinary KIM-1 levels were higher in current smokers, lower in blacks than nonblacks and lower in users versus nonusers of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. CONCLUSION: Proximal tubule injury appears to be an integral and measurable element of multiple stages of CKD.


Assuntos
Albuminúria/urina , Biomarcadores/urina , Receptor Celular 1 do Vírus da Hepatite A/análise , Túbulos Renais Proximais/metabolismo , Insuficiência Renal Crônica/urina , Adulto , Idoso , Feminino , Humanos , Túbulos Renais Proximais/lesões , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Insuficiência Renal Crônica/diagnóstico , Fatores de Risco , Suécia , Adulto Jovem
18.
J Clin Invest ; 126(5): 1911-25, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27088797

RESUMO

Physiochemical stress induces tissue injury as a result of the detection of abnormal molecular patterns by sensory molecules of the innate immune system. Here, we have described how the recently discovered C-type lectin collectin-11 (CL-11, also known as CL-K1 and encoded by COLEC11) recognizes an abnormal pattern of L-fucose on postischemic renal tubule cells and activates a destructive inflammatory response. We found that intrarenal expression of CL-11 rapidly increases in the postischemic period and colocalizes with complement deposited along the basolateral surface of the proximal renal tubule in association with L-fucose, the potential binding ligand for CL-11. Mice with either generalized or kidney-specific deficiency of CL-11 were strongly protected against loss of renal function and tubule injury due to reduced complement deposition. Ex vivo renal tubule cells showed a marked capacity for CL-11 binding that was induced by cell stress under hypoxic or hypothermic conditions and prevented by specific removal of L-fucose. Further analysis revealed that cell-bound CL-11 required the lectin complement pathway-associated protease MASP-2 to trigger complement deposition. Given these results, we conclude that lectin complement pathway activation triggered by ligand-CL-11 interaction in postischemic tissue is a potent source of acute kidney injury and is amenable to sugar-specific blockade.


Assuntos
Injúria Renal Aguda/metabolismo , Colectinas/metabolismo , Lectina de Ligação a Manose da Via do Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Fucose/toxicidade , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Colectinas/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Proteínas do Sistema Complemento/genética , Túbulos Renais Proximais/patologia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Camundongos , Camundongos Knockout
19.
Eur J Histochem ; 60(1): 2567, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26972712

RESUMO

The cellular source for tubular regeneration following kidney injury is a matter of dispute, with reports suggesting a stem or progenitor cells as the regeneration source while linage tracing studies in mice seemingly favor the classical theory, where regeneration is performed by randomly surviving cells. We, and others have previously described a scattered cell population localized to the tubules of human kidney, which increases in number following injury. Here we have characterized the species distribution of these proximal tubular progenitor cells (PTPCs) in kidney tissue from chimpanzee, pig, rat and mouse using a set of human PTPC markers. We detected PTPCs in chimpanzee and pig kidneys, but not in mouse tissue. Also, subjecting mice to the unilateral urethral obstruction model, caused clear signs of tubular injury, but failed to induce the PTPC phenotype in renal tubules.


Assuntos
Túbulos Renais Proximais/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/patologia , Camundongos , Pan troglodytes , Ratos , Especificidade da Espécie , Células-Tronco/patologia , Suínos
20.
Biochem Biophys Res Commun ; 470(3): 539-545, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26802469

RESUMO

Dipeptidyl peptidase (DPP)-4 inhibitors, a new class of antidiabetic agent, have recently been suggested to exert pleiotropic effects beyond glucose lowering. Renal prognosis in patients with diabetic nephropathy depends on the severity of tubulointerstitial injury induced by massive proteinuria. We thus examined the renoprotective effect of DPP-4 inhibitors on inflammation in cultured mouse proximal tubular cells stimulated with free fatty acid (FFA)-bound albumin. Linagliptin and higher concentrations of sitagliptin, vildagliptin, and alogliptin all inhibited FFA-bound albumin-induced increases in mRNA expression of MCP-1 in cultured mouse proximal tubular cells. Furthermore, linagliptin significantly inhibited tubulointerstitial injury induced by peritoneal injection of FFA-bound albumin, such as inflammation, fibrosis, and apoptosis, in mice without altering systemic characteristics including body weight, fasting blood glucose, and food intake. These results indicate that DPP-4 inhibitors pleiotropically exert a direct renoprotective effect, and may serve as an additional therapeutic strategy to protect proximal tubular cells against proteinuria in patients with diabetic nephropathy.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/metabolismo , Albuminas , Animais , Células Cultivadas , Citoproteção/efeitos dos fármacos , Dipeptidil Peptidase 4 , Relação Dose-Resposta a Droga , Ácidos Graxos não Esterificados , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA