Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 132024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963418

RESUMO

Tiny animals known as tardigrades use a combination of DNA repair machinery and a novel protein to mend their genome after intense ionizing radiation.


Assuntos
Reparo do DNA , Animais , Tardígrados/fisiologia , Tardígrados/efeitos da radiação , Radiação Ionizante , Dano ao DNA/efeitos da radiação
2.
PLoS One ; 13(12): e0208617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586374

RESUMO

Together with nematodes and rotifers, tardigrade belong to micrometazoans that can cope with environmental extremes such as UV and solar radiations, dehydration, supercooling or overheating. Tardigrade can resist the harshest conditions by turning to cryptobiosis, an anhydrobiotic state that results from almost complete dehydration and is characterized by an ametabolic status. Although reports have challenged the molecular basis of the mechanisms underlying genomic injury resistance, little is yet known regarding the possible involvement of other tardigrade macromolecules in injury during a stress experience. In this report, we show that the tardigrade Hypsibius exemplaris can accumulate molecular damages by means of in situ detection of carbonyls. Furthermore, we demonstrate that living tardigrade can accumulate carbonylation. Finally, we reveal that anhydrobiotic tardigrade can be constitutively affected by carbonylation that marks aging in other metazoans.


Assuntos
Aldeídos/metabolismo , Cetonas/metabolismo , Tardígrados/química , Aldeídos/química , Animais , Cetonas/química , Microscopia Confocal , Tardígrados/crescimento & desenvolvimento , Tardígrados/efeitos da radiação , Fatores de Tempo , Raios Ultravioleta
3.
Astrobiology ; 17(2): 163-167, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28206820

RESUMO

The aim of this study was to analyze tolerance to heavy ions in desiccated animals of the eutardigrade Richtersius coronifer and the bdelloid rotifer Mniobia russeola within the STARLIFE project. Both species were exposed to iron (Fe) and helium (He) ions at the Heavy Ion Medical Accelerator in Chiba (HIMAC) in Chiba, Japan, and to X-rays at the German Aerospace Center (DLR) in Cologne, Germany. Results show no effect of Fe and He on viability up to 7 days post-rehydration in both R. coronifer and M. russeola, while X-rays tended to reduce viability in R. coronifer at the highest doses. Mean egg production rate tended to decline with higher doses in R. coronifer for all radiation types, but the pattern was not statistically confirmed. In M. russeola, there was no such tendency for a dose response in egg production rate. These results confirm the previously reported high tolerance to high linear energy transfer (LET) radiation in tardigrades and show for the first time that bdelloid rotifers are also very tolerant to high-LET radiation. These animal phyla represent the most desiccation- and radiation-tolerant animals on Earth and provide excellent eukaryotic models for astrobiological research. Key Words: Tardigrada-Rotifera-Radiation tolerance-Heavy ions-X-rays. Astrobiology 17, 163-167.


Assuntos
Íons Pesados , Hélio/química , Ferro/química , Rotíferos/efeitos da radiação , Tardígrados/efeitos da radiação , Animais , Óvulo/efeitos da radiação , Raios X
4.
PLoS One ; 10(7): e0133658, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208275

RESUMO

Tardigrades are highly tolerant to desiccation and ionizing radiation but the mechanisms of this tolerance are not well understood. In this paper, we report studies on dose responses of adults and eggs of the tardigrade Hypsibius dujardini exposed to gamma radiation. In adults the LD50/48h for survival was estimated at ~ 4200 Gy, and doses higher than 100 Gy reduced both fertility and hatchability of laid eggs drastically. We also evaluated the effect of radiation (doses 50 Gy, 200 Gy, 500 Gy) on eggs in the early and late embryonic stage of development, and observed a reduced hatchability in the early stage, while no effect was found in the late stage of development. Survival of juveniles from irradiated eggs was highly affected by a 500 Gy dose, both in the early and the late stage. Juveniles hatched from eggs irradiated at 50 Gy and 200 Gy developed into adults and produced offspring, but their fertility was reduced compared to the controls. Finally we measured the effect of low temperature during irradiation at 4000 Gy and 4500 Gy on survival in adult tardigrades, and observed a slight delay in the expressed mortality when tardigrades were irradiated on ice. Since H. dujardini is a freshwater tardigrade with lower tolerance to desiccation compared to limno-terrestrial tardigrades, the high radiation tolerance in adults, similar to limno-terrestrial tardigrades, is unexpected and seems to challenge the idea that desiccation and radiation tolerance rely on the same molecular mechanisms. We suggest that the higher radiation tolerance in adults and late stage embryos of H. dujardini (and in other studied tardigrades) compared to early stage embryos may partly be due to limited mitotic activity, since tardigrades have a low degree of somatic cell division (eutely), and dividing cells are known to be more sensitive to radiation.


Assuntos
Raios gama , Tolerância a Radiação , Tardígrados/efeitos da radiação , Animais , Proliferação de Células , Relação Dose-Resposta à Radiação , Fertilidade/efeitos da radiação , Reprodução/efeitos da radiação , Temperatura
5.
PLoS One ; 8(9): e72098, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039737

RESUMO

Tardigrades represent one of the most desiccation and radiation tolerant animals on Earth, and several studies have documented their tolerance in the adult stage. Studies on tolerance during embryological stages are rare, but differential effects of desiccation and freezing on different developmental stages have been reported, as well as dose-dependent effect of gamma irradiation on tardigrade embryos. Here, we report a study evaluating the tolerance of eggs from the eutardigrade Milnesium cf. tardigradum to three doses of gamma radiation (50, 200 and 500 Gy) at the early, middle, and late stage of development. We found that embryos of the middle and late developmental stages were tolerant to all doses, while eggs in the early developmental stage were tolerant only to a dose of 50 Gy, and showed a declining survival with higher dose. We also observed a delay in development of irradiated eggs, suggesting that periods of DNA repair might have taken place after irradiation induced damage. The delay was independent of dose for eggs irradiated in the middle and late stage, possibly indicating a fixed developmental schedule for repair after induced damage. These results show that the tolerance to radiation in tardigrade eggs changes in the course of their development. The mechanisms behind this pattern are unknown, but may relate to changes in mitotic activities over the embryogenesis and/or to activation of response mechanisms to damaged DNA in the course of development.


Assuntos
Embrião não Mamífero/efeitos da radiação , Raios gama , Tardígrados/efeitos da radiação , Animais , Óvulo/efeitos da radiação , Tolerância a Radiação , Tardígrados/citologia , Tardígrados/embriologia
6.
PLoS One ; 8(6): e64793, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762256

RESUMO

Tardigrades inhabiting terrestrial environments exhibit extraordinary resistance to ionizing radiation and UV radiation although little is known about the mechanisms underlying the resistance. We found that the terrestrial tardigrade Ramazzottius varieornatus is able to tolerate massive doses of UVC irradiation by both being protected from forming UVC-induced thymine dimers in DNA in a desiccated, anhydrobiotic state as well as repairing the dimers that do form in the hydrated animals. In R. varieornatus accumulation of thymine dimers in DNA induced by irradiation with 2.5 kJ/m(2) of UVC radiation disappeared 18 h after the exposure when the animals were exposed to fluorescent light but not in the dark. Much higher UV radiation tolerance was observed in desiccated anhydrobiotic R. varieornatus compared to hydrated specimens of this species. On the other hand, the freshwater tardigrade species Hypsibius dujardini that was used as control, showed much weaker tolerance to UVC radiation than R. varieornatus, and it did not contain a putative phrA gene sequence. The anhydrobiotes of R. varieornatus accumulated much less UVC-induced thymine dimers in DNA than hydrated one. It suggests that anhydrobiosis efficiently avoids DNA damage accumulation in R. varieornatus and confers better UV radiation tolerance on this species. Thus we propose that UV radiation tolerance in tardigrades is due to the both high capacities of DNA damage repair and DNA protection, a two-pronged survival strategy.


Assuntos
Adaptação Fisiológica/genética , Reparo do DNA/efeitos da radiação , Dímeros de Pirimidina/genética , Tolerância a Radiação/genética , Tardígrados/efeitos da radiação , Animais , Dano ao DNA , Dessecação , Relação Dose-Resposta à Radiação , Dímeros de Pirimidina/metabolismo , Tardígrados/genética , Raios Ultravioleta , Água/metabolismo
7.
Astrobiology ; 12(4): 283-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22490117

RESUMO

Tardigrades are tiny (less than 1 mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.


Assuntos
Tardígrados/metabolismo , Animais , Relação Dose-Resposta à Radiação , Microscopia Eletrônica de Varredura , Doses de Radiação , Tolerância a Radiação , Tardígrados/efeitos da radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...