Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool A Ecol Integr Physiol ; 339(6): 578-589, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37039079

RESUMO

Long-term environment acidifications due to decrease pH of the rainwaters affect both soils and water bodies. The organisms most likely to be affected by acid rain are the ones that possess vital organs made of calcium carbonate; among them are tardigrades, presenting aragonite piercing stylets in feeding apparatuses. A positive relationship between acidic rainfall and loss of tardigrades diversity has been already shown, but there is lack of knowledge of its lethal and sublethal effects. This study quantifies the effects of the acute exposure of three eutardigrade, Acutuncus antarcticus, Hypsibius exemplaris, and Macrobiotus cf. hufelandi, to synthetic acid rains and to organic and inorganic acids (hydrochloric, acetic, sulfuric, and nitric acids) naturally occurring in the environment. The cumulative proportion of dead animals in respect of exposition time was fitted to cumulative Weibull Distribution using a Bayesian framework. At the end of the experiments, animals were observed to investigate damages to their piercing stylets. Besides, stylets were finely morphologically described with Scanning Electron Microscopy. This study shows that acid rains and the other tested acids negatively affect tardigrades accordingly with pH, time of exposure, and tardigrade species. Freshwater species show a better resistance to acidity than the moss dwelling species, which can better acclimate over the time to low pH. The stylets resulted unaltered in almost all of the alive specimens. The results suggest that the tested tardigrades taxa have the ability to buffer the environmental proton change and the negative effect on their populations could be counteracted.


Assuntos
Chuva Ácida , Tardígrados , Animais , Tardígrados/química , Tardígrados/fisiologia , Chuva Ácida/efeitos adversos , Teorema de Bayes
2.
Sci Rep ; 11(1): 21328, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737320

RESUMO

Anhydrobiosis, one of the most extensively studied forms of cryptobiosis, is induced in certain organisms as a response to desiccation. Anhydrobiotic species has been hypothesized to produce substances that can protect their biological components and/or cell membranes without water. In extremotolerant tardigrades, highly hydrophilic and heat-soluble protein families, cytosolic abundant heat-soluble (CAHS) proteins, have been identified, which are postulated to be integral parts of the tardigrades' response to desiccation. In this study, to elucidate these protein functions, we performed in vitro and in vivo characterizations of the reversible self-assembling property of CAHS1 protein, a major isoform of CAHS proteins from Ramazzottius varieornatus, using a series of spectroscopic and microscopic techniques. We found that CAHS1 proteins homo-oligomerized via the C-terminal α-helical region and formed a hydrogel as their concentration increased. We also demonstrated that the overexpressed CAHS1 proteins formed condensates under desiccation-mimicking conditions. These data strongly suggested that, upon drying, the CAHS1 proteins form oligomers and eventually underwent sol-gel transition in tardigrade cytosols. Thus, it is proposed that the CAHS1 proteins form the cytosolic fibrous condensates, which presumably have variable mechanisms for the desiccation tolerance of tardigrades. These findings provide insights into molecular strategies of organisms to adapt to extreme environments.


Assuntos
Dessecação , Proteínas/química , Tardígrados/fisiologia , Adaptação Fisiológica , Animais , Citosol/química , Tardígrados/química
3.
Protein Sci ; 30(2): 513-518, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33226149

RESUMO

Some tardigrades can survive extremely desiccated conditions through transition into a state called anhydrobiosis. Anhydrobiotic tardigrades have proteins unique to them and they are thought to be keys to the understanding of unusual desiccation resistance. In fact, previous transcriptome data show that several tardigrade-specific proteins are significantly upregulated under desiccated conditions. However, their physiological roles and chemical properties have been ambiguous because they show low or no similarity of amino acid sequences to proteins found in other organisms. Here, we report a crystal structure of one of such proteins. This protein shows a ß-sandwich structure composed of 8 ß-strands, three Ca2+ -binding sites, and hydrophobic residues on Ca2+ -binding (CBD) loops, which resemble characteristics of C2 domain proteins. We therefore conveniently describe this protein as tardigrade C2 domain protein (TC2P). Because the C2 domain functions as a Ca2+ -mediated membrane docking module, which is related to signal transduction or membrane trafficking, TC2Ps may play a role in Ca2+ -triggered phenomenon under desiccated situations. Our finding provides not only structural insights into a newly discovered desiccation-related protein family but also insights into the evolution and diversity of C2 domain proteins.


Assuntos
Proteínas de Ligação ao Cálcio/química , Tardígrados/química , Sequência de Aminoácidos , Animais , Domínios C2 , Conformação Proteica em Folha beta
4.
PLoS One ; 13(12): e0208617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586374

RESUMO

Together with nematodes and rotifers, tardigrade belong to micrometazoans that can cope with environmental extremes such as UV and solar radiations, dehydration, supercooling or overheating. Tardigrade can resist the harshest conditions by turning to cryptobiosis, an anhydrobiotic state that results from almost complete dehydration and is characterized by an ametabolic status. Although reports have challenged the molecular basis of the mechanisms underlying genomic injury resistance, little is yet known regarding the possible involvement of other tardigrade macromolecules in injury during a stress experience. In this report, we show that the tardigrade Hypsibius exemplaris can accumulate molecular damages by means of in situ detection of carbonyls. Furthermore, we demonstrate that living tardigrade can accumulate carbonylation. Finally, we reveal that anhydrobiotic tardigrade can be constitutively affected by carbonylation that marks aging in other metazoans.


Assuntos
Aldeídos/metabolismo , Cetonas/metabolismo , Tardígrados/química , Aldeídos/química , Animais , Cetonas/química , Microscopia Confocal , Tardígrados/crescimento & desenvolvimento , Tardígrados/efeitos da radiação , Fatores de Tempo , Raios Ultravioleta
5.
J Vis Exp ; (137)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059025

RESUMO

Tardigrades are microscopic animals that enter an ametabolic state called anhydrobiosis when facing desiccation and can return to their original state when water is supplied. The genomic sequencing of microscopic animals such as tardigrades risks bacterial contamination that sometimes leads to erroneous interpretations, for example, regarding the extent of horizontal gene transfer in these animals. Here, we provide an ultralow input method to sequence the genome of the tardigrade, Hypsibius dujardini, from a single specimen. By employing rigorous washing and contaminant exclusion along with an efficient extraction of the 50 ~ 200 pg genomic DNA from a single individual, we constructed a library sequenced with a DNA sequencing instrument. These libraries were highly reproducible and unbiased, and an informatics analysis of the sequenced reads with other H. dujardini genomes showed a minimal amount of contamination. This method can be applied to unculturable tardigrades that could not be sequenced using previous methods.


Assuntos
Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Biblioteca Gênica , Tardígrados/química , Animais
6.
Protein Sci ; 27(5): 993-999, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29493034

RESUMO

Though anhydrobiotic tardigrades (micro-animals also known as water bears) possess many genes of secretory abundant heat soluble (SAHS) proteins unique to Tardigrada, their functions are unknown. A previous crystallographic study revealed that a SAHS protein (RvSAHS1) from one of the toughest tardigrades, Ramazzottius varieornatus, has a ß-barrel architecture similar to fatty acid binding proteins (FABPs) and two putative ligand binding sites (LBS1 and LBS2) where fatty acids can bind. However, some SAHS proteins such as RvSAHS4 have different sets of amino acid residues at LBS1 and LBS2, implying that they prefer other ligands and have different functions. Here RvSAHS4 was crystallized and analyzed under a condition similar to that for RvSAHS1. There was no electron density corresponding to a fatty acid at LBS1 of RvSAHS4, where a putative fatty acid was observed in RvSAHS1. Instead, LBS2 of RvSAHS4, which was composed of uncharged residues, captured a putative polyethylene glycol molecule. These results suggest that RvSAHS4 mainly uses LBS2 for the binding of uncharged molecules.


Assuntos
Proteínas de Ligação a Ácido Graxo/química , Tardígrados/química , Animais , Cristalografia por Raios X , Modelos Moleculares , Estrutura Secundária de Proteína
7.
Integr Comp Biol ; 55(2): 241-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25857526

RESUMO

The cuticular portion of the tardigrade feeding apparatus is a complex structure that can be schematically divided into four parts: a buccal ring, a buccal tube, a stylet system (formed by two piercing stylets, each within a stylet coat, and two stylet supports), and the lining of a myoepithelial sucking pharynx. To better understand the function and evolution of the feeding apparatus, the morpho-functional traits and chemical composition of the structures forming the feeding apparatuses of eight different species of tardigrades were analyzed. These eight species are representative of almost all main phylogenetic lineages of the phylum. The calcium and chitin in the feeding apparatus were examined by light microscopy, scanning electron microscopy, confocal laser scanning microscopy, energy dispersive X-ray spectroscopy, and Raman microspectroscopy (Raman). In all species, the feeding apparatus had been subjected to biomineralization due to CaCO3 encrustations organized in the crystalline form of aragonite. Aragonite and chitin are present in different concentrations in the feeding apparatus according to the structures and species considered. Generally, where the structures are rigid there is more aragonite than chitin, and vice versa. The buccal tube and piercing stylets are rich in calcium, with the piercing stylets apparently composed exclusively of aragonite. In eutardigrades, chitin is in higher concentration in the structures subject to higher mechanical stresses, such as the crests of the buccal crown and the condyles of the stylet furca.


Assuntos
Tardígrados/química , Tardígrados/fisiologia , Animais , Evolução Biológica , Cálcio/análise , Quitina/análise , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/química , Arcada Osseodentária/fisiologia , Filogenia , Tardígrados/anatomia & histologia
8.
J Exp Biol ; 216(Pt 7): 1235-43, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239888

RESUMO

Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na(+) and Cl(-) are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K(+), NH4(+), Ca(2+), Mg(2+), F(-), SO4(2-) and PO4(3-) were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na(+), ×70-800; K(+), ×20-90; Ca(2+) and Mg(2+), ×30-200; F(-), ×160-1040, Cl(-), ×20-50; PO4(3-), ×700-2800; SO4(2-), ×30-150). In contrast, in the marine species H. crispae, Na(+), Cl(-) and SO4(2-) are almost in ionic equilibrium with (brackish) salt water, while K(+), Ca(2+), Mg(2+) and F(-) are only slightly concentrated (×2-10). An anion deficit of ~120 mEq l(-1) in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg(-1) in R. coronifer to 961±43 mOsm kg(-1) in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis.


Assuntos
Adaptação Biológica/fisiologia , Íons/metabolismo , Estresse Fisiológico/fisiologia , Tardígrados/química , Equilíbrio Hidroeletrolítico/fisiologia , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Ecossistema , Osmometria , Especificidade da Espécie
9.
PLoS One ; 7(11): e50162, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185564

RESUMO

Tardigrades are microscopic aquatic animals with remarkable abilities to withstand harsh physical conditions such as dehydration or exposure to harmful highly energetic radiation. The mechanisms responsible for such robustness are presently little known, but protection against oxidative stresses is thought to play a role. Despite the fact that many tardigrade species are variously pigmented, scarce information is available about this characteristic. By applying Raman micro-spectroscopy on living specimens, pigments in the tardigrade Echiniscus blumi are identified as carotenoids, and their distribution within the animal body is visualized. The dietary origin of these pigments is demonstrated, as well as their presence in the eggs and in eye-spots of these animals, together with their absence in the outer layer of the animal (i.e., cuticle and epidermis). Using in-vivo semi-quantitative Raman micro-spectroscopy, a decrease in carotenoid content is detected after inducing oxidative stress, demonstrating that this approach can be used for studying the role of carotenoids in oxidative stress-related processes in tardigrades. This approach could be thus used in further investigations to test several hypotheses concerning the function of these carotenoids in tardigrades as photo-protective pigments against ionizing radiations or as antioxidants defending these organisms against the oxidative stress occurring during desiccation processes.


Assuntos
Antioxidantes/análise , Carotenoides/análise , Óvulo/química , Pigmentos Biológicos/análise , Tardígrados/química , Animais , Antioxidantes/metabolismo , Carotenoides/metabolismo , Dessecação , Dieta , Feminino , Peróxido de Hidrogênio/farmacologia , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Oxirredução , Estresse Oxidativo , Pigmentos Biológicos/metabolismo , Análise Espectral Raman , Estresse Fisiológico , Tardígrados/efeitos dos fármacos , Tardígrados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...