Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 164(1): 72-84, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617909

RESUMO

Globally, approximately 10%-25% of women smoke during pregnancy. Since nicotine is highly addictive, women may use nicotine-containing products like nicotine replacement therapies for smoking cessation, but the long-term consequences of early life exposure to nicotine remain poorly defined. Our laboratory has previously demonstrated that maternal nicotine exposed (MNE) rat offspring exhibit hypertriglyceridemia due to increased hepatic de novo lipogenesis. Hypertriglyceridemia may also be attributed to impaired white adipose tissue (WAT) lipid storage; however, the effects of MNE on WAT are not completely understood. We hypothesize that nicotine-induced alterations in adipose function (eg, lipid storage) underlie dyslipidemia in MNE adults. Female 6-month-old rats exposed to nicotine during gestation and lactation exhibited significantly decreased visceral adipocyte cell area by 40%, attributed, in part, to a 3-fold increase in adipose triglyceride lipase (ATGL) protein expression compared with vehicle. Given ATGL has antioxidant properties and in utero nicotine exposure promotes oxidative stress in various tissues, we next investigated if there was evidence of increased oxidative stress in MNE WAT. At both 3 weeks and 6 months, MNE offspring expressed 37%-48% higher protein levels of superoxide dismutase-1 and -2 in WAT. Since oxidative stress can induce inflammation, we examined the inflammatory profile of WAT and found increased expression of cytokines (interleukin-1ß, tumor necrosis factor α, and interleukin-6) by 44%-61% at 6 months. Collectively, this suggests that the expression of WAT ATGL may be induced to counter MNE-induced oxidative stress and inflammation. However, higher levels of ATGL would further promote lipolysis in WAT, culminating in impaired lipid storage and long-term dyslipidemia.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Antioxidantes/metabolismo , Lipase/genética , Exposição Materna/efeitos adversos , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/enzimologia , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Proteínas de Escherichia coli/efeitos dos fármacos , Feminino , Lipogênese/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos Wistar
2.
Endocrinology ; 159(5): 2050-2061, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579167

RESUMO

Regulation of adipogenesis is of major interest given that adipose tissue expansion and dysfunction are central to metabolic syndrome. Glucocorticoids (GCs) are important for adipogenesis in vitro. However, establishing a role for GCs in adipogenesis in vivo has been difficult. GC receptor (GR)‒null mice die at birth, a time at which wild-type (WT) mice do not have fully developed white adipose depots. We conducted several studies aimed at defining the role of GC signaling in adipogenesis in vitro and in vivo. First, we showed that GR-null mouse embryonic fibroblasts (MEFs) have compromised ability to form adipocytes in vitro, a phenotype that can be partially rescued with a peroxisome proliferator-activated receptor γ agonist. Next, we demonstrated that MEFs are capable of forming de novo fat pads in mice despite the absence of GR or circulating GCs [by bilateral adrenalectomy (ADX)]. However, ADX and GR-null fat pads and their associated adipocyte areas were smaller than those in controls. Second, using adipocyte-specific luciferase reporter mice, we identified adipocytes in both WT and GR-null embryonic day (E)18 mouse embryos. Lastly, positive perilipin staining in WT and GR-null E18 embryos confirmed the presence of early white inguinal and brown adipocytes. Taken together, these results provide compelling evidence that GCs and GR augment but are not required for the development of functional adipose tissue in vivo.


Assuntos
Adipogenia/genética , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Branco/embriologia , Fibroblastos/metabolismo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Adipócitos Marrons , Adipócitos Brancos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adrenalectomia , Animais , Técnicas In Vitro , Camundongos , PPAR gama/agonistas , Perilipina-1/metabolismo , Transdução de Sinais
3.
Dev Cell ; 35(5): 568-583, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26625958

RESUMO

Progression from brown preadipocytes to adipocytes engages two transcriptional programs: the expression of adipogenic genes common to both brown fat (BAT) and white fat (WAT), and the expression of BAT-selective genes. However, the dynamics of chromatin states and epigenetic enzymes involved remain poorly understood. Here we show that BAT development is selectively marked and guided by repressive H3K27me3 and is executed by its demethylase Jmjd3. We find that a significant subset of BAT-selective genes, but not common fat genes or WAT-selective genes, are demarcated by H3K27me3 in both brown and white preadipocytes. Jmjd3-catalyzed removal of H3K27me3, in part through Rreb1-mediated recruitment, is required for expression of BAT-selective genes and for development of beige adipocytes both in vitro and in vivo. Moreover, gain- and loss-of-function Jmjd3 transgenic mice show age-dependent body weight reduction and cold intolerance, respectively. Together, we identify an epigenetic mechanism governing BAT fate determination and WAT plasticity.


Assuntos
Tecido Adiposo Marrom/embriologia , Tecido Adiposo Branco/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases com o Domínio Jumonji/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Peso Corporal , Proteínas de Ligação a DNA/metabolismo , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Mutação Puntual , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Termogênese/genética , Fatores de Transcrição/metabolismo , Transgenes , Proteína Desacopladora 1
4.
Biochim Biophys Acta ; 1851(5): 686-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25668679

RESUMO

In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fatores de Transcrição/metabolismo , Adipocinas/metabolismo , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/crescimento & desenvolvimento , Adiposidade , Animais , Metabolismo Energético , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lipogênese , Lipólise , Morfogênese , Transdução de Sinais , Fatores de Transcrição/genética
5.
Proc Natl Acad Sci U S A ; 111(40): 14466-71, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25197048

RESUMO

Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α(+), myogenic factor 5(Cre)-lineage-marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2(GFP) embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Adipócitos/citologia , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/embriologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Linhagem da Célula/genética , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cell Rep ; 8(3): 678-87, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25088414

RESUMO

Pref-1 is an EGF-repeat-containing protein that inhibits adipocyte differentiation. To better understand the origin and development of white adipose tissue (WAT), we generated transgenic mouse models for transient or permanent fluorescent labeling of cells using the Pref-1 promoter, facilitating inducible ablation. We show that Pref-1-marked cells retain proliferative capacity and are very early adipose precursors, prior to expression of Zfp423 or PPARγ. In addition, the Pref-1-marked cells establish that adipose precursors are mesenchymal, but not endothelial or pericytal, in origin. During embryogenesis, Pref-1-marked cells first appear in the dorsal mesenteric region as early as embryonic day 10.5 (E10.5). These cells become lipid-laden adipocytes at E17.5 in the subcutaneous region, whereas visceral WAT develops after birth. Finally, ablation of Pref-1-marked cells prevents not only embryonic WAT development but also later adult adipose expansion upon high-fat feeding, demonstrating the requirement of Pref-1 cells for adipogenesis.


Assuntos
Adipogenia , Tecido Adiposo Branco/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/citologia , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/embriologia , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nature ; 510(7503): 76-83, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24899307

RESUMO

Our understanding of adipose tissue biology has progressed rapidly since the turn of the century. White adipose tissue has emerged as a key determinant of healthy metabolism and metabolic dysfunction. This realization is paralleled only by the confirmation that adult humans have heat-dissipating brown adipose tissue, an important contributor to energy balance and a possible therapeutic target for the treatment of metabolic disease. We propose that the development of successful strategies to target brown and white adipose tissues will depend on investigations that elucidate their developmental origins and cell-type-specific functional regulators.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/inervação , Tecido Adiposo Branco/patologia , Animais , Humanos , Lipólise , Obesidade/metabolismo , Obesidade/patologia , Sistema Nervoso Simpático/metabolismo , Termogênese
8.
Nat Cell Biol ; 16(4): 367-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24609269

RESUMO

Fuelled by the obesity epidemic, there is considerable interest in the developmental origins of white adipose tissue (WAT) and the stem and progenitor cells from which it arises. Whereas increased visceral fat mass is associated with metabolic dysfunction, increased subcutaneous WAT is protective. There are six visceral fat depots: perirenal, gonadal, epicardial, retroperitoneal, omental and mesenteric, and it is a subject of much debate whether these have a common developmental origin and whether this differs from that for subcutaneous WAT. Here we show that all six visceral WAT depots receive a significant contribution from cells expressing Wt1 late in gestation. Conversely, no subcutaneous WAT or brown adipose tissue arises from Wt1-expressing cells. Postnatally, a subset of visceral WAT continues to arise from Wt1-expressing cells, consistent with the finding that Wt1 marks a proportion of cell populations enriched in WAT progenitors. We show that all visceral fat depots have a mesothelial layer like the visceral organs with which they are associated, and provide several lines of evidence that Wt1-expressing mesothelium can produce adipocytes. These results reveal a major ontogenetic difference between visceral and subcutaneous WAT, and pinpoint the lateral plate mesoderm as a major source of visceral WAT. They also support the notion that visceral WAT progenitors are heterogeneous, and suggest that mesothelium is a source of adipocytes.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas WT1/metabolismo , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/embriologia , Animais , Antineoplásicos Hormonais/farmacologia , Linhagem da Célula/genética , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Tamoxifeno/farmacologia , Proteínas WT1/genética
9.
Nat Med ; 19(10): 1338-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23995282

RESUMO

White adipose tissue displays high plasticity. We developed a system for the inducible, permanent labeling of mature adipocytes that we called the AdipoChaser mouse. We monitored adipogenesis during development, high-fat diet (HFD) feeding and cold exposure. During cold-induced 'browning' of subcutaneous fat, most 'beige' adipocytes stem from de novo-differentiated adipocytes. During HFD feeding, epididymal fat initiates adipogenesis after 4 weeks, whereas subcutaneous fat undergoes hypertrophy for a period of up to 12 weeks. Gonadal fat develops postnatally, whereas subcutaneous fat develops between embryonic days 14 and 18. Our results highlight the extensive differences in adipogenic potential in various fat depots.


Assuntos
Adipogenia , Tecido Adiposo Branco/fisiologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/embriologia , Animais , Diferenciação Celular , Temperatura Baixa , Gorduras na Dieta/administração & dosagem , Hiperplasia , Camundongos
10.
Diabetologia ; 55(6): 1597-606, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22402988

RESUMO

Adipose tissue function changes with development. In the newborn, brown adipose tissue (BAT) is essential for ensuring effective adaptation to the extrauterine environment, and its growth during gestation is largely dependent on glucose supply from the mother to the fetus. The amount, location and type of adipose tissue deposited can also determine fetal glucose homeostasis. Adipose tissue first appears at around mid-gestation. Total adipose mass then increases through late gestation, when it comprises a mixture of white and brown adipocytes. BAT possesses a unique uncoupling protein, UCP1, which is responsible for the rapid generation of large amounts of heat at birth. Then, during postnatal life some, but not all, depots are replaced by white fat. This process can be utilised to investigate the physiological conversion of brown to white fat, and how it is re-programmed by nutritional changes in pre- and postnatal environments. A reduction in early BAT deposition may perpetuate through the life cycle, thereby suppressing energy expenditure and ultimately promoting obesity. Normal fat development profiles in the offspring are modified by changes in maternal diet at defined stages of pregnancy, ultimately leading to adverse long-term outcomes. For example, excess macrophage accumulation and the onset of insulin resistance occur in an adipose tissue depot-specific manner in offspring born to mothers fed a suboptimal diet from early to mid-gestation. In conclusion, the growth of the different fetal adipose tissue depots varies according to maternal diet and, if challenged in later life, this can contribute to insulin resistance and impaired glucose homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Desenvolvimento Fetal/fisiologia , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Branco/embriologia , Animais , Feminino , Desenvolvimento Fetal/genética , Humanos , Resistência à Insulina , Modelos Biológicos , Gravidez
11.
Animal ; 6(4): 641-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22436281

RESUMO

This study reports the metabolic and morphological characteristics of bovine intermuscular adipose tissue (AT) throughout foetal growth. Our hypothesis was that the histological and molecular features of intermuscular AT would be different from those previously reported for foetal perirenal AT, based on its anatomical location near the muscle and the recent identification of two distinct adipocyte precursors in mouse AT depending on their locations. To address this question, intermuscular AT was sampled from Charolais and Blond d'Aquitaine foetuses at 180, 210 and 260 days post conception (dpc). The two bovine breeds were chosen because of the higher adiposity of Charolais than Blond d'Aquitaine cattle during the postnatal life. Regardless of the breed, adipocyte volume increased slightly (+38%, P < 0.01) with increasing foetal age. This was concomitant with a decrease (P < 0.05) in the activity of enzymes involved in de novo fatty acid (FA) synthesis (FA synthase and glucose-6-phosphate dehydrogenase) and FA esterification (glycerol-3-phosphate dehydrogenase) when expressed per million adipocytes, and with an increase (P ⩽ 0.01) in mRNA abundances for uncoupling protein 1, adiponectin and leptin (LEP) between 180 and 260 dpc. No difference was observed in the adipocyte volume between breeds, which was consistent with the lack of major between-breed differences in mRNA abundances or activities of enzymes involved in lipid metabolism. The mRNA abundance of lipoprotein lipase was maintained across ages, suggesting a storage of circulating FA rather than of FA synthesized de novo. Plasma LEP increased with foetal age, but only in the Charolais breed (+71%, P ⩽ 0.01), and was two- to threefold higher in Charolais than Blond d'Aquitaine foetuses. Regardless of the breed, bovine intermuscular AT contained predominantly unilocular adipocytes believed to be white adipocytes that were larger at 260 dpc than at 180 dpc. These data thus challenge current concepts of the largely brown nature of bovine foetal AT (based on histological and metabolic features of perirenal AT as previously reported a few days before or after birth).


Assuntos
Adipócitos/citologia , Tecido Adiposo/embriologia , Bovinos/embriologia , Adipócitos/enzimologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Bovinos/anatomia & histologia , Bovinos/metabolismo , Ácido Graxo Sintases/metabolismo , Feminino , Glucosefosfato Desidrogenase/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Leptina/sangue , Malato Desidrogenase/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Gravidez , RNA Mensageiro/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-22093549

RESUMO

BACKGROUND: Little is known about the gestational age (GA) dependent content, composition and intrauterine accretion rates of fatty acids (FA) in fetal white adipose tissue (WAT). OBJECTIVE & DESIGN: To acquire this information, we collected abdominal subcutaneous WAT samples from 40 preterm and term fetuses. Their GA ranged from 22 to 43 weeks. FA were expressed as mg/g wet WAT and g/100g FA (g%). Intrauterine WAT FA accretion rates were estimated for appropriate (AGA) and large (LGA) for gestational age infants. RESULTS: From 25 to 40 weeks gestation, saturated-FA (SAFA) increased from 83 to 298 mg/g WAT and monounsaturated-FA (MUFA) from 83 to 226 mg/g WAT, while polyunsaturated-FA (PUFA) increased insignificantly from 18.0 to 23.2 mg/g WAT. As percentages of total FA, SAFA increased from 46 to 55 g%, MUFA decreased from 44 to 41 g%, and PUFA from 10.3 to 4.26 g%. Docosahexaenoic (DHA) and arachidonic acid (AA) accretion rates in WAT during the 3rd trimester for AGA infants were 88 and 193 mg/week, respectively. Contemporaneous DHA and AA accretion rates for 4500 g LGA infants were 184 and 402 mg/week, respectively. Compared to the whole 3rd trimester, increment rates during the last 5 weeks of gestation were about 2-fold higher. CONCLUSION: FA accretion rates, notably those of DHA and AA, may be important for designing nutritional regiments for preterm infants. The current WAT-DHA and WAT-AA accretion rates are considerably lower than previously reported in the literature.


Assuntos
Tecido Adiposo Branco/metabolismo , Ácidos Graxos/metabolismo , Feto/metabolismo , Tecido Adiposo Branco/embriologia , Ácido Araquidônico/metabolismo , Peso ao Nascer , Peso Corporal , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos/química , Ácidos Graxos Insaturados , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro/metabolismo , Masculino , Gravidez , Terceiro Trimestre da Gravidez , Fatores de Tempo
13.
J Cell Physiol ; 227(4): 1688-700, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21678425

RESUMO

Epidemiological and fetal programming studies point to the role of fetal growth in adult adipose tissue (AT) mass in large mammals. Despite the incidence of fetal AT growth for human health and animal production outcomes, there is still a lack of relevant studies. We determined the cellular and large-scale-molecular features of bovine fetal perirenal AT sampled at 110, 180, 210, and 260 days post-conception (dpc) with the aim of identifying key cellular and molecular events in AT growth. The increase in AT weight from 110 to 260 dpc resulted from an increase in adipocyte volume and particularly adipocyte number that were concomitant with temporal changes in the abundance of 142 proteins revealed by proteomics. At 110 and 180 dpc, we identified proteins such as TCP1, FKBP4, or HSPD1 that may regulate adipocyte precursor proliferation by controlling cell-cycle progression and/or apoptosis or delaying PPARγ-induced differentiation. From 180 dpc, the up-regulation of PPARγ-induced proteins, lipogenic and lipolytic enzymes, and adipokine expression may underpin the differentiation and increase in adipocyte volume. Also from 180 dpc, we unexpectedly observed up-regulations in the ß-subunit of ATP synthase, which is normally bypassed in brown AT, as well as in aldehyde dehydrogenases ALDH2 and ALDH9A1, which were predominantly expressed in mouse white AT. These results, together with the observed abundant unilocular adipocytes at 180 and 260 dpc, strongly suggest that fetal bovine perirenal AT has much more in common with white than with brown AT.


Assuntos
Tecido Adiposo Marrom/embriologia , Bovinos/embriologia , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/metabolismo , Animais , Apoptose , Bovinos/metabolismo , Contagem de Células , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Idade Gestacional , Humanos , Rim/embriologia , Lipogênese , Lipólise , Camundongos , Modelos Animais , Gravidez , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie
14.
Development ; 138(21): 4709-19, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21989915

RESUMO

Obesity is characterized by an expansion of white adipose tissue mass that results from an increase in the size and the number of adipocytes. However, the mechanisms responsible for the formation of adipocytes during development and the molecular mechanisms regulating their increase and maintenance in adulthood are poorly understood. Here, we report the use of leptin-luciferase BAC transgenic mice to track white adipose tissue (WAT) development and guide the isolation and molecular characterization of adipocytes during development using DNA microarrays. These data reveal distinct transcriptional programs that are regulated during murine WAT development in vivo. By using a de novo cis-regulatory motif discovery tool (FIRE), we identify two early gene clusters whose promoters show significant enrichment for NRF2/ETS transcription factor binding sites. We further demonstrate that Ets transcription factors, but not Nrf2, are regulated during early adipogenesis and that Ets2 is essential for the normal progression of the adipocyte differentiation program in vitro. These data identify ETS2 as a functionally important transcription factor in adipogenesis and its possible role in regulating adipose tissue mass in adults can now be tested. Our approach also provides the basis for elucidating the function of other gene networks during WAT development in vivo. Finally these data confirm that although gene expression during adipogenesis in vitro recapitulates many of the patterns of gene expression in vivo, there are additional developmental transitions in pre and post-natal adipose tissue that are not evident in cell culture systems.


Assuntos
Adipogenia/genética , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteína Proto-Oncogênica c-ets-2/metabolismo , Células 3T3-L1 , Animais , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise em Microsséries , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-2/genética
15.
Methods Cell Biol ; 105: 63-86, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21951526

RESUMO

White adipose tissue (WAT) is the major site of energy storage in bony vertebrates, and also serves central roles in the endocrine regulation of energy balance. The cellular and molecular mechanisms underlying WAT development and physiology are not well understood. This is due in part to difficulties associated with imaging adipose tissues in mammalian model systems, especially during early life stages. The zebrafish (Danio rerio) has recently emerged as a new model system for adipose tissue research, in which WAT can be imaged in a transparent living vertebrate at all life stages. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for in vivo microscopy of zebrafish WAT.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Biologia do Desenvolvimento/métodos , Embrião não Mamífero/metabolismo , Larva/metabolismo , Imagem Molecular/métodos , Coloração e Rotulagem/métodos , Peixe-Zebra/embriologia , Adipócitos/citologia , Tecido Adiposo Branco/química , Tecido Adiposo Branco/embriologia , Animais , Embrião não Mamífero/anatomia & histologia , Metabolismo Energético , Feminino , Fixadores/química , Corantes Fluorescentes/análise , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Lipídeos/análise , Masculino , Microscopia de Fluorescência , Peixe-Zebra/fisiologia
16.
J Physiol Biochem ; 67(3): 487-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21626400

RESUMO

Vitamin A or retinol plays a major role in the regulation of cellular homeostasis. Retinyl palmitate remains the main chemical form of vitamin A storage and is mainly located in hepatic stellate cells (HSCs) in lipid droplets resembling those found in adipose cells. White adipose tissue (WAT), is essentially involved in the regulation of lipid metabolism, through its role in lipid storage, and might also be considered as a vitamin A storage and metabolism site. WAT contains all the intracellular equipment for vitamin A metabolism and signaling pathways which allows retinol to be metabolized into retinoic acid, known to control genomic expression in WAT. The description of molecular mechanisms involved in the activation of HSCs and the differentiation of preadipocytes reveal similar cellular and molecular mechanisms. Indeed HSCs and adipocytes share a common expression of key transcription factors like PPAR-γ and RXR known to influence perilipin expression, which play fundamental roles in lipid droplet metabolism. Both cells are also sources of important endocrine signaling secretions influencing the expression of these transcription factors. The morphological and functional characteristics of HSCs and adipocytes, including the metabolism of vitamin A and other lipids and their related signaling pathways, are summarized and compared in this review. We highlight the complexity of the interrelationship between lipids and vitamin A metabolism and the role of the complex communication existing between HSCs and WAT in diseases such as non-alcoholic fatty liver disease which is the hepatic manifestation of the metabolic syndrome.


Assuntos
Adipócitos/metabolismo , Células Estreladas do Fígado/metabolismo , Metabolismo dos Lipídeos , Vitamina A/fisiologia , Adipócitos/patologia , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/patologia , Animais , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Células Estreladas do Fígado/patologia , Humanos , Fígado/embriologia , Fígado/patologia , Fígado/fisiopatologia , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Hepatopatia Gordurosa não Alcoólica
17.
Mol Cell Endocrinol ; 333(1): 28-36, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21134414

RESUMO

The aim of this study was to compare the changes in concentration of glucose and glucose transporters (GLUTs) in the utero-embryonic unit, consisting of decidua, trophoblast and embryo, during delayed and non-delayed periods to understand the possible cause of delayed embryonic development in Cynopterus sphinx. The results showed a significantly decreased concentration of glucose in the utero-embryonic unit due to decline in the expression of insulin receptor (IR) and GLUT 3, 4 and 8 proteins in the utero-embryonic unit during delayed period. The in vitro study showed suppressive effect of insulin on expression of GLUTs 4 and 8 in the utero-embryonic unit and a significant positive correlation between the decreased amount of glucose consumed by the utero-embryonic unit and decreased expression of GLUTs 4 (r=0.99; p<0.05) and 8 (r=0.98; p<0.05). The in vivo study showed expression of IR and GLUT 4 proteins in adipose tissue during November suggesting increased transport of glucose to adipose tissue for adipogenesis. This study showed increased expression of HSL and OCTN2 and increased availability of l-carnitine to utero-embryonic unit suggesting increased transport of fatty acid to utero-embryonic unit during the period of delayed embryonic development. Hence it appears that due to increased transport of glucose for adipogenesis prior to winter, glucose utilization by utero-embryonic unit declines and this may be responsible for delayed embryonic development in C. sphinx. Increased supply of fatty acid to the delayed embryo may be responsible for its survival under low glucose condition but unable to promote embryonic development in C. sphinx.


Assuntos
Quirópteros/embriologia , Quirópteros/metabolismo , Embrião de Mamíferos/metabolismo , Glucose/metabolismo , Adipogenia , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/fisiologia , Carnitina/análise , Decídua/metabolismo , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Ácidos Graxos/análise , Feminino , Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Immunoblotting , Insulina/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Gravidez , Radioimunoensaio , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Trofoblastos/metabolismo
18.
Dev Dyn ; 239(11): 3013-23, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20925116

RESUMO

Adipocytes are heterogeneous. Whether their differences are attributed to anatomical location or to different developmental origins is unknown. We investigated whether development of different white adipose tissue (WAT) depots in zebrafish occurs simultaneously or whether adipogenesis is influenced by the metabolic demands of growing fish. Like mammals, zebrafish adipocyte morphology is distinctive and adipocytes express cell-specific markers. All adults contain WAT in pancreatic, subcutaneous, visceral, esophageal, mandibular, cranial, and tail-fin depots. Unlike most zebrafish organs that form during embryogenesis, WAT was not found in embryos or young larvae. Instead, WAT was first identified in the pancreas on 12 days postfertilization (dpf), and then in visceral, subcutaneous, and cranial stores in older fish. All 30 dpf fish exceeding 10.6 mm standard length contained the adult repertoire of WAT depots. Pancreatic, esophageal, and subcutaneous WAT appearance correlated with size, not age, as found for other features appearing during postembryonic zebrafish development.


Assuntos
Tecido Adiposo Branco/citologia , Adipócitos/citologia , Tecido Adiposo Branco/embriologia , Animais , Tamanho Corporal/genética , Tamanho Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Reação em Cadeia da Polimerase , Peixe-Zebra
19.
Cell ; 131(2): 242-56, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17956727

RESUMO

The development of obesity not only depends on the balance between food intake and caloric utilization but also on the balance between white adipose tissue, which is the primary site of energy storage, and brown adipose tissue, which is specialized for energy expenditure. In addition, some sites of white fat storage in the body are more closely linked than others to the metabolic complications of obesity, such as diabetes. In this Review, we consider how the developmental origins of fat contribute to its physiological, cellular, and molecular heterogeneity and explore how these factors may play a role in the growing epidemic of obesity.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Obesidade/metabolismo , Adipócitos/patologia , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Gorduras na Dieta , Ingestão de Alimentos/fisiologia , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...