Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
1.
Nat Metab ; 3(10): 1415-1431, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34675439

RESUMO

Current pharmacological therapies for treating obesity are of limited efficacy. Genetic ablation or loss of function of AMP-activated protein kinase alpha 1 (AMPKα1) in steroidogenic factor 1 (SF1) neurons of the ventromedial nucleus of the hypothalamus (VMH) induces feeding-independent resistance to obesity due to sympathetic activation of brown adipose tissue (BAT) thermogenesis. Here, we show that body weight of obese mice can be reduced by intravenous injection of small extracellular vesicles (sEVs) delivering a plasmid encoding an AMPKα1 dominant negative mutant (AMPKα1-DN) targeted to VMH-SF1 neurons. The beneficial effect of SF1-AMPKα1-DN-loaded sEVs is feeding-independent and involves sympathetic nerve activation and increased UCP1-dependent thermogenesis in BAT. Our results underscore the potential of sEVs to specifically target AMPK in hypothalamic neurons and introduce a broader strategy to manipulate body weight and reduce obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/enzimologia , Vesículas Extracelulares/metabolismo , Hipotálamo/enzimologia , Obesidade/metabolismo , Animais , Metabolismo Energético , Camundongos , Termogênese , Redução de Peso
2.
Methods Mol Biol ; 2310: 247-258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34096006

RESUMO

We compared the activity of complex 1, complex 2, and the expression of the complex 1 subunit, NDUFA9, in isolated brown adipose tissue mitochondria from wild type and mitochondrial uncoupling protein 1 (UCP1) knockout mice. Direct spectrophotometric measurement revealed that complex 2 activity was similar, but complex 1 activity was greater (~2.7 fold) in isolated mitochondria from wild-type mice compared to UCP1 knockout mice, an observation endorsed by greater complex 1 subunit expression (NDUFA9) in mitochondria of wild-type mice. We also measured reactive oxygen species (ROS) production by isolated brown adipose mitochondria respiring on succinate, without rotenone, thus facilitating reverse electron flow through complex 1. We observed that reverse electron flow in isolated mitochondria from wild-type mice, with UCP1 inhibited, produced significantly greater (~1.6 fold) ROS when compared with isolated brown adipose mitochondria from UCP1 knockout mice. In summary, we demonstrate that ROS production by succinate-driven reverse electron flow can occur in brown adipose tissue mitochondria and is a good index of complex 1 activity.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/farmacologia , Adipócitos Marrons/enzimologia , Tecido Adiposo Marrom/enzimologia , Animais , Biomarcadores/metabolismo , Western Blotting , Fracionamento Celular , Complexo I de Transporte de Elétrons/genética , Eletroforese em Gel de Poliacrilamida , Fluorometria , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/genética , Ratos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513710

RESUMO

Stimulation of thermogenesis in brown adipose tissue (BAT) could have far-reaching health benefits in combatting obesity and obesity-related complications. Apolipoprotein A-IV (ApoA-IV), produced by the gut and the brain in the presence of dietary lipids, is a well-known short-term satiating protein. While our previous studies have demonstrated reduced diet-induced thermogenesis in ApoA-IV-deficient mice, it is unclear whether this reduction is due to a loss of peripheral or central effects of ApoA-IV. We hypothesized that central administration of ApoA-IV stimulates BAT thermogenesis and that sympathetic and sensory innervation is necessary for this action. To test this hypothesis, mice with unilateral denervation of interscapular BAT received central injections of recombinant ApoA-IV protein or artificial cerebrospinal fluid (CSF). The effects of central ApoA-IV on BAT temperature and thermogenesis in mice with unilateral denervation of the intrascapular BAT were monitored using transponder probe implantation, qPCR, and immunoblots. Relative to CSF, central administration of ApoA-IV significantly increased temperature and UCP expression in BAT. However, all of these effects were significantly attenuated or prevented in mice with unilateral denervation. Together, these results clearly demonstrate that ApoA-IV regulates BAT thermogenesis centrally, and this effect is mediated through sympathetic and sensory nerves.


Assuntos
Tecido Adiposo Marrom/fisiologia , Apolipoproteínas A/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Termogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Animais , Apolipoproteínas A/deficiência , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Regulação da Expressão Gênica/genética , Lipase/genética , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes , Terceiro Ventrículo/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(36): 22080-22089, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32820071

RESUMO

Nonshivering thermogenesis occurs in brown adipose tissue to generate heat in response to cold ambient temperatures. Thioesterase superfamily member 1 (Them1) is transcriptionally up-regulated in brown adipose tissue upon exposure to the cold and suppresses thermogenesis in order to conserve energy reserves. It hydrolyzes long-chain fatty acyl-CoAs that are derived from lipid droplets, preventing their use as fuel for thermogenesis. In addition to its enzymatic domains, Them1 contains a C-terminal StAR-related lipid transfer (START) domain with unknown ligand or function. By complementary biophysical approaches, we show that the START domain binds to long-chain fatty acids, products of Them1's enzymatic reaction, as well as lysophosphatidylcholine (LPC), lipids shown to activate thermogenesis in brown adipocytes. Certain fatty acids stabilize the START domain and allosterically enhance Them1 catalysis of acyl-CoA, whereas 18:1 LPC destabilizes and inhibits activity, which we verify in cell culture. Additionally, we demonstrate that the START domain functions to localize Them1 near lipid droplets. These findings define the role of the START domain as a lipid sensor that allosterically regulates Them1 activity and spatially localizes it in proximity to the lipid droplet.


Assuntos
Ácidos Graxos/metabolismo , Lisofosfatidilcolinas/metabolismo , Palmitoil-CoA Hidrolase/química , Palmitoil-CoA Hidrolase/metabolismo , Acil Coenzima A/metabolismo , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Regulação Alostérica , Ácidos Graxos/química , Humanos , Cinética , Gotículas Lipídicas/enzimologia , Gotículas Lipídicas/metabolismo , Lisofosfatidilcolinas/química , Palmitoil-CoA Hidrolase/genética , Domínios Proteicos
5.
Proc Natl Acad Sci U S A ; 117(26): 15055-15065, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554489

RESUMO

Phosphocholine phosphatase-1 (PHOSPHO1) is a phosphocholine phosphatase that catalyzes the hydrolysis of phosphocholine (PC) to choline. Here we demonstrate that the PHOSPHO1 transcript is highly enriched in mature brown adipose tissue (BAT) and is further induced by cold and isoproterenol treatments of BAT and primary brown adipocytes. In defining the functional relevance of PHOPSPHO1 in BAT thermogenesis and energy metabolism, we show that PHOSPHO1 knockout mice are cold-tolerant, with higher expression of thermogenic genes in BAT, and are protected from high-fat diet-induced obesity and development of insulin resistance. Treatment of mice with the PHOSPHO1 substrate phosphocholine is sufficient to induce cold tolerance, thermogenic gene expression, and allied metabolic benefits. Our results reveal a role of PHOSPHO1 as a negative regulator of BAT thermogenesis, and inhibition of PHOSPHO1 or enhancement of phosphocholine represent innovative approaches to manage the metabolic syndrome.


Assuntos
Tecido Adiposo Marrom/fisiologia , Monoéster Fosfórico Hidrolases/genética , Fosforilcolina/metabolismo , Termogênese , Adipócitos Marrons/enzimologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/enzimologia , Animais , Temperatura Baixa , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoéster Fosfórico Hidrolases/deficiência
6.
Am J Physiol Endocrinol Metab ; 318(3): E318-E329, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961704

RESUMO

Browning of white adipose tissue (WAT) has been recognized as an important strategy for the treatment of obesity, insulin resistance, and diabetes. Enoyl coenzyme A hydratase 1 (ECH1) is a widely known enzyme involved in lipid metabolism. However, whether and how ECH1 is implicated in browning of WAT remain obscure. Adeno-associated, virus-mediated genetic engineering of ECH1 in adipose tissue was used in investigations in mouse models of obesity induced by a high-fat diet (HFD) or browning induced by cold exposure. Metabolic parameters showed that ECH1 overexpression decreased weight gain and improved insulin sensitivity and lipid profile after 8 wk of an HFD. Further work revealed that these changes were associated with enhanced energy expenditure and increased appearance of brown-like adipocytes in inguinal WAT, as verified by a remarkable increase in uncoupling protein 1 and thermogenic gene expression. In vitro, ECH1 induced brown fat-related gene expression in adipocytes differentiated from primary stromal vascular fractions, whereas knockdown of ECH1 reversed this effect. Mechanistically, ECH1 regulated the thermogenic program by inhibiting mammalian target of rapamycin signaling, which may partially explain the potential mechanism for ECH1 regulating adipose browning. In summary, ECH1 may participate in the pathology of obesity by regulating browning of WAT, which probably provides us with a new therapeutic strategy for combating obesity.


Assuntos
Tecido Adiposo Marrom/enzimologia , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Terapia Genética/métodos , Doenças Metabólicas/terapia , Obesidade/terapia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Temperatura Baixa , Dieta Hiperlipídica , Metabolismo Energético , Engenharia Genética , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Termogênese , Aumento de Peso
7.
Proc Natl Acad Sci U S A ; 116(47): 23822-23828, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31694884

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme for cellular energy metabolism. The aim of the present study was to determine the importance of brown and white adipose tissue (BAT and WAT) NAD+ metabolism in regulating whole-body thermogenesis and energy metabolism. Accordingly, we generated and analyzed adipocyte-specific nicotinamide phosphoribosyltransferase (Nampt) knockout (ANKO) and brown adipocyte-specific Nampt knockout (BANKO) mice because NAMPT is the rate-limiting NAD+ biosynthetic enzyme. We found ANKO mice, which lack NAMPT in both BAT and WAT, had impaired gene programs involved in thermogenesis and mitochondrial function in BAT and a blunted thermogenic (rectal temperature, BAT temperature, and whole-body oxygen consumption) response to acute cold exposure, prolonged fasting, and administration of ß-adrenergic agonists (norepinephrine and CL-316243). In addition, the absence of NAMPT in WAT markedly reduced adrenergic-mediated lipolytic activity, likely through inactivation of the NAD+-SIRT1-caveolin-1 axis, which limits an important fuel source fatty acid for BAT thermogenesis. These metabolic abnormalities were rescued by treatment with nicotinamide mononucleotide (NMN), which bypasses the block in NAD+ synthesis induced by NAMPT deficiency. Although BANKO mice, which lack NAMPT in BAT only, had BAT cellular alterations similar to the ANKO mice, BANKO mice had normal thermogenic and lipolytic responses. We also found NAMPT expression in supraclavicular adipose tissue (where human BAT is localized) obtained from human subjects increased during cold exposure, suggesting our finding in rodents could apply to people. These results demonstrate that adipose NAMPT-mediated NAD+ biosynthesis is essential for regulating adaptive thermogenesis, lipolysis, and whole-body energy metabolism.


Assuntos
Adaptação Fisiológica , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Homeostase , NAD/biossíntese , Termogênese , Tecido Adiposo Marrom/enzimologia , Animais , Caveolina 1/antagonistas & inibidores , Temperatura Baixa , Citocinas/genética , Jejum , Humanos , Camundongos , Camundongos Knockout , Mononucleotídeo de Nicotinamida/administração & dosagem , Nicotinamida Fosforribosiltransferase/genética
8.
Biomed Pharmacother ; 120: 109537, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605951

RESUMO

BACKGROUND: Perivascular adipose tissue (PVAT) attenuates its anti-contractile effect through an endothelial-dependent mechanism that aggravates endothelial dysfunction in obesity. The present study was conducted to explore whether liraglutide could improve vascular dysfunction, including the anti-contractile effect of PVAT and endothelial function, by modulating PVAT-related signaling pathways in obesity. METHODS: C57BL/6 mice were fed a normal-chow diet or a high-fat diet (HFD) with or without liraglutide treatment. Vascular function of the thoracic aorta with or without PVAT were measured. Protein levels of components of the PKA-AMPK-PGC1α and antioxidant signaling pathway in PVAT were determined by western blotting. Brown adipose tissue-related gene in PVAT was measured by qRT-PCR. RESULTS: Metabolic profiles of HFD-fed mice were improved after treatment with liraglutide. Liraglutide improved PVAT-induced anti-contractile capability and PVAT-induced endothelial dysfunction in HFD-fed mice both in vivo and ex vivo. However, blocking PKA, or AMPK, but not cAMP, attenuated these beneficial effects of liraglutide. Treating HFD-fed mice with liraglutide activated the AMPK/eNOS pathway and induced browning-related gene expression. Moreover, liraglutide increased antioxidant capability. The protective effects were related to activation of a cAMP-independent PKA-AMPK pathway, as demonstrated by western blot and PCR. CONCLUSIONS: Liraglutide improved vascular dysfunction by modulating a cAMP-independent PKA-AMPK pathway in PVAT in HFD-induced obese mice. The findings provide a novel mechanism for the cardiovascular protection of liraglutide by modulating PVAT function in obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/irrigação sanguínea , Tecido Adiposo Marrom/enzimologia , Vasos Sanguíneos/fisiopatologia , AMP Cíclico/metabolismo , Liraglutida/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais , Adiponectina/metabolismo , Animais , Vasos Sanguíneos/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Nutrients ; 11(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340540

RESUMO

Selenium, an essential trace element known mainly for its antioxidant properties, is critical for proper brain function and regulation of energy metabolism. Whole-body knockout of the selenium recycling enzyme, selenocysteine lyase (Scly), increases susceptibility to metabolic syndrome and diet-induced obesity in mice. Scly knockout mice also have decreased selenoprotein expression levels in the hypothalamus, a key regulator of energy homeostasis. This study investigated the role of selenium in whole-body metabolism regulation using a mouse model with hypothalamic knockout of Scly. Agouti-related peptide (Agrp) promoter-driven Scly knockout resulted in reduced weight gain and adiposity while on a high-fat diet (HFD). Scly-Agrp knockout mice had reduced Agrp expression in the hypothalamus, as measured by Western blot and immunohistochemistry (IHC). IHC also revealed that while control mice developed HFD-induced leptin resistance in the arcuate nucleus, Scly-Agrp knockout mice maintained leptin sensitivity. Brown adipose tissue from Scly-Agrp knockout mice had reduced lipid deposition and increased expression of the thermogenic marker uncoupled protein-1. This study sheds light on the important role of selenium utilization in energy homeostasis, provides new information on the interplay between the central nervous system and whole-body metabolism, and may help identify key targets of interest for therapeutic treatment of metabolic disorders.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Dieta Hiperlipídica , Hipotálamo/enzimologia , Leptina/metabolismo , Liases/deficiência , Neurônios/metabolismo , Obesidade/prevenção & controle , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/fisiopatologia , Adiposidade , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Hipotálamo/fisiopatologia , Liases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/fisiopatologia , Transdução de Sinais , Proteína Desacopladora 1/metabolismo , Aumento de Peso
10.
Horm Metab Res ; 51(10): 671-677, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31174228

RESUMO

Plastics are ubiquitously present in our daily life and some components of plastics are endocrine-disrupting chemicals, such as bisphenol A and phthalates. Herein, we aimed to evaluate the effect of plastic endocrine disruptors on type 1 and type 2 deiodinase activities, enzymes responsible for the conversion of the pro-hormone T4 into the biologically active thyroid hormone T3, both in vitro and in vivo. Initially, we incubated rat liver type 1 deiodinase and brown adipose tissue type 2 deiodinase samples with 0.5 mM of the plasticizers, and the deiodinase activity was measured. Among them, only BPA was capable to inhibit both type 1 and type 2 deiodinases. Then, adult male Wistar rats were treated orally with bisphenol A (40 mg/kg b.w.) for 15 days and hepatic type 1 deiodinase and brown adipose tissue type 2 deiodinase activities and serum thyroid hormone concentrations were measured. In vivo bisphenol A treatment significantly reduced hepatic type 1 deiodinase activity but did not affect brown adipose tissue type 2 deiodinase activity. Serum T4 levels were higher in bisphenol A group, while T3 remained unchanged. T3/T4 ratio was decreased in rats treated with bisphenol A, reinforcing the idea that peripheral metabolism of thyroid hormone was affected by bisphenol A exposure. Therefore, our results suggest that bisphenol A can affect the metabolism of thyroid hormone thus disrupting thyroid signaling.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Iodeto Peroxidase/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fenóis/farmacologia , Tecido Adiposo Marrom/enzimologia , Animais , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar
11.
FASEB J ; 33(1): 1428-1439, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133327

RESUMO

It is widely accepted that chronic stress may alter the homeostatic mechanisms of body weight control. In this study, we followed the metabolic changes occurring in mice when chronic stress caused by psychosocial defeat (CPD) is associated with ad libitum exposure to a palatable high-fat diet (HFD). In this model, CPD mice consumed more HFD than unstressed (Un) mice without gaining body weight. We focused on metabolic processes involved in weight control, such as de novo lipogenesis (DNL), fatty acid ß-oxidation (FAO), and thermogenesis. The activity and expression of DNL enzymes were reduced in the liver and white adipose tissue of mice consuming the HFD. Such effects were particularly evident in stressed mice. In both CPD and Un mice, HFD consumption increased the hepatic expression of the mitochondrial FAO enzyme carnitine palmitoyltransferase-1. In the liver of mice consuming the HFD, stress exposure prevented accumulation of triacylglycerols; however, accumulation of triacylglycerols was observed in Un mice under the same dietary regimen. In brown adipose tissue, stress increased the expression of uncoupling protein-1, which is involved in energy dissipation, both in HFD and control diet-fed mice. We consider increased FAO and energy dissipation responsible for the antiobesity effect seen in CPD/HFD mice. However, CPD associated with HFD induced hepatic oxidative stress.-Giudetti, A. M., Testini, M., Vergara, D., Priore, P., Damiano, F., Gallelli, C. A., Romano, A., Villani, R., Cassano, T., Siculella, L., Gnoni, G. V., Moles, A., Coccurello, R., Gaetani, S. Chronic psychosocial defeat differently affects lipid metabolism in liver and white adipose tissue and induces hepatic oxidative stress in mice fed a high-fat diet.


Assuntos
Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado/metabolismo , Estresse Oxidativo , Estresse Psicológico , Acetil-CoA Carboxilase/metabolismo , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/enzimologia , Animais , Peso Corporal , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Modelos Animais de Doenças , Ingestão de Energia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Glutationa/metabolismo , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Proteína Desacopladora 1/metabolismo
12.
Curr Diab Rep ; 18(10): 80, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120579

RESUMO

PURPOSE OF REVIEW: The global prevalence of type 2 diabetes (T2D) is escalating at alarming rates, demanding the development of additional classes of therapeutics to further reduce the burden of disease. Recent studies have indicated that increasing the metabolic activity of brown and beige adipose tissue may represent a novel means to reduce circulating glucose and lipids in people with T2D. The AMP-activated protein kinase (AMPK) is a cellular energy sensor that has recently been demonstrated to be important in potentially regulating the metabolic activity of brown and beige adipose tissue. The goal of this review is to summarize recent work describing the role of AMPK in brown and beige adipose tissue, focusing on its role in adipogenesis and non-shivering thermogenesis. RECENT FINDINGS: Ablation of AMPK in mouse adipocytes results in cold intolerance, a reduction in non-shivering thermogenesis in brown adipose tissue (BAT), and the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance; effects associated with a defect in mitochondrial specific autophagy (mitophagy) within BAT. The effects of a ß3-adrenergic agonist on the induction of BAT thermogenesis and the browning of white adipose tissue (WAT) are also blunted in mice lacking adipose tissue AMPK. A specific AMPK activator, A-769662, also results in the activation of BAT and the browning of WAT, effects which may involve demethylation of the PR domain containing 16 (Prdm16) promoter region, which is important for BAT development. AMPK plays an important role in the development and maintenance of brown and beige adipose tissue. Adipose tissue AMPK is reduced in people with insulin resistance, consistent with findings that mice lacking adipocyte AMPK develop greater NAFLD and insulin resistance. These data suggest that pharmacologically targeting adipose tissue AMPK may represent a promising strategy to enhance energy expenditure and reduce circulating glucose and lipids, which may be effective for the treatment of NAFLD and T2D.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Bege/enzimologia , Tecido Adiposo Marrom/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Resistência à Insulina , Obesidade/enzimologia , Tecido Adiposo Bege/patologia , Tecido Adiposo Marrom/patologia , Animais , Humanos
13.
PLoS Biol ; 16(7): e2004455, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979672

RESUMO

Adipose tissue has emerged as an important regulator of whole-body metabolism, and its capacity to dissipate energy in the form of heat has acquired a special relevance in recent years as potential treatment for obesity. In this context, the p38MAPK pathway has arisen as a key player in the thermogenic program because it is required for the activation of brown adipose tissue (BAT) thermogenesis and participates also in the transformation of white adipose tissue (WAT) into BAT-like depot called beige/brite tissue. Here, using mice that are deficient in p38α specifically in adipose tissue (p38αFab-KO), we unexpectedly found that lack of p38α protected against high-fat diet (HFD)-induced obesity. We also showed that p38αFab-KO mice presented higher energy expenditure due to increased BAT thermogenesis. Mechanistically, we found that lack of p38α resulted in the activation of the related protein kinase family member p38δ. Our results showed that p38δ is activated in BAT by cold exposure, and lack of this kinase specifically in adipose tissue (p38δ Fab-KO) resulted in overweight together with reduced energy expenditure and lower body and skin surface temperature in the BAT region. These observations indicate that p38α probably blocks BAT thermogenesis through p38δ inhibition. Consistent with the results obtained in animals, p38α was reduced in visceral and subcutaneous adipose tissue of subjects with obesity and was inversely correlated with body mass index (BMI). Altogether, we have elucidated a mechanism implicated in physiological BAT activation that has potential clinical implications for the treatment of obesity and related diseases such as diabetes.


Assuntos
Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/fisiologia , Proteína Quinase 13 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Termogênese , Adipócitos Marrons/enzimologia , Adulto , Animais , Índice de Massa Corporal , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/prevenção & controle , Dieta , Metabolismo Energético , Ativação Enzimática , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Obesidade/enzimologia , Obesidade/prevenção & controle , Proteína Desacopladora 1/metabolismo
14.
Nature ; 560(7716): 102-106, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30022159

RESUMO

Thermogenesis by brown and beige adipose tissue, which requires activation by external stimuli, can counter metabolic disease1. Thermogenic respiration is initiated by adipocyte lipolysis through cyclic AMP-protein kinase A signalling; this pathway has been subject to longstanding clinical investigation2-4. Here we apply a comparative metabolomics approach and identify an independent metabolic pathway that controls acute activation of adipose tissue thermogenesis in vivo. We show that substantial and selective accumulation of the tricarboxylic acid cycle intermediate succinate is a metabolic signature of adipose tissue thermogenesis upon activation by exposure to cold. Succinate accumulation occurs independently of adrenergic signalling, and is sufficient to elevate thermogenic respiration in brown adipocytes. Selective accumulation of succinate may be driven by a capacity of brown adipocytes to sequester elevated circulating succinate. Furthermore, brown adipose tissue thermogenesis can be initiated by systemic administration of succinate in mice. Succinate from the extracellular milieu is rapidly metabolized by brown adipocytes, and its oxidation by succinate dehydrogenase is required for activation of thermogenesis. We identify a mechanism whereby succinate dehydrogenase-mediated oxidation of succinate initiates production of reactive oxygen species, and drives thermogenic respiration, whereas inhibition of succinate dehydrogenase supresses thermogenesis. Finally, we show that pharmacological elevation of circulating succinate drives UCP1-dependent thermogenesis by brown adipose tissue in vivo, which stimulates robust protection against diet-induced obesity and improves glucose tolerance. These findings reveal an unexpected mechanism for control of thermogenesis, using succinate as a systemically-derived thermogenic molecule.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácido Succínico/metabolismo , Termogênese/fisiologia , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Masculino , Metabolômica , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Ácido Succínico/farmacologia , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
15.
Cell Rep ; 24(4): 809-814, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044978

RESUMO

Previous studies using genetic mouse models have implicated COX-2 in the browning of white adipose tissues (WATs) in mice during cold exposure. However, COX-2 is important during development, and conventional knockouts (KOs) exhibit many defects, conditioned by genetic background. Similarly, the physiological relevance of transgenic overexpression of COX-2 is questionable. In the present study, we utilized mice in which COX-2 was deleted postnatally, bypassing the consequences of enzyme deficiency during development. Despite activation of thermogenesis and browning of inguinal WAT, cold exposure failed to increase COX-2 expression in the adipose tissues of mice with different genetic backgrounds, and the body temperature response to cold was unaltered in postnatal global COX-2 KOs. Selective disruption of COX-2 in adipose tissues also failed detectably to impact systemic prostaglandin biosynthesis. Browning of inguinal WATs induced by exposure to cold is independent of adipose tissue COX-2.


Assuntos
Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Branco/enzimologia , Ciclo-Oxigenase 2/metabolismo , Animais , Temperatura Baixa , Camundongos , Termogênese
16.
Arterioscler Thromb Vasc Biol ; 38(8): 1785-1795, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29903737

RESUMO

Objective- The E3 ubiquitin ligase IDOL (inducible degrader of the LDLR [LDL (low-density lipoprotein) receptor]) is a post-transcriptional regulator of LDLR abundance. Model systems and human genetics support a role for IDOL in regulating circulating LDL levels. Whether IDOL plays a broader metabolic role and affects development of metabolic syndrome-associated comorbidities is unknown. Approach and Results- We studied WT (wild type) and Idol(-/-) (Idol-KO) mice in 2 models: physiological aging and diet-induced obesity. In both models, deletion of Idol protected mice from metabolic dysfunction. On a Western-type diet, Idol loss resulted in decreased circulating levels of cholesterol, triglycerides, glucose, and insulin. This was accompanied by protection from weight gain in short- and long-term dietary challenges, which could be attributed to reduced hepatosteatosis and fat mass in Idol-KO mice. Although feeding and intestinal fat uptake were unchanged in Idol-KO mice, their brown adipose tissue was protected from lipid accumulation and had elevated expression of UCP1 (uncoupling protein 1) and TH (tyrosine hydroxylase). Indirect calorimetry indicated a marked increase in locomotion and suggested a trend toward increased cumulative energy expenditure and fat oxidation. An increase in in vivo clearance of reconstituted lipoprotein particles in Idol-KO mice may sustain this energetic demand. In the BXD mouse genetic reference population, hepatic Idol expression correlates with multiple metabolic parameters, thus providing support for findings in the Idol-KO mice. Conclusions- Our study uncovers an unrecognized role for Idol in regulation of whole body metabolism in physiological aging and on a Western-type diet. These findings support Idol inhibition as a therapeutic strategy to target multiple metabolic syndrome-associated comorbidities.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Fígado/enzimologia , Síndrome Metabólica/prevenção & controle , Obesidade/prevenção & controle , Ubiquitina-Proteína Ligases/deficiência , Adipogenia , Tecido Adiposo Marrom/enzimologia , Adiposidade , Fatores Etários , Envelhecimento , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Colesterol/sangue , Modelos Animais de Doenças , Feminino , Insulina/sangue , Locomoção , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/enzimologia , Síndrome Metabólica/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Obesidade/sangue , Obesidade/enzimologia , Obesidade/genética , Triglicerídeos/sangue , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Desacopladora 1/metabolismo
17.
Nat Commun ; 9(1): 1566, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674659

RESUMO

In acute cold stress in mammals, JMJD1A, a histone H3 lysine 9 (H3K9) demethylase, upregulates thermogenic gene expressions through ß-adrenergic signaling in brown adipose tissue (BAT). Aside BAT-driven thermogenesis, mammals have another mechanism to cope with long-term cold stress by inducing the browning of the subcutaneous white adipose tissue (scWAT). Here, we show that this occurs through a two-step process that requires both ß-adrenergic-dependent phosphorylation of S265 and demethylation of H3K9me2 by JMJD1A. The histone demethylation-independent acute Ucp1 induction in BAT and demethylation-dependent chronic Ucp1 expression in beige scWAT provides complementary molecular mechanisms to ensure an ordered transition between acute and chronic adaptation to cold stress. JMJD1A mediates two major signaling pathways, namely, ß-adrenergic receptor and peroxisome proliferator-activated receptor-γ (PPARγ) activation, via PRDM16-PPARγ-P-JMJD1A complex for beige adipogenesis. S265 phosphorylation of JMJD1A, and the following demethylation of H3K9me2 might prove to be a novel molecular target for the treatment of metabolic disorders, via promoting beige adipogenesis.


Assuntos
Resposta ao Choque Frio , Histona Desmetilases com o Domínio Jumonji/metabolismo , Termogênese , Aclimatação , Adipogenia , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Baixa , Feminino , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismo , Fosforilação , Transdução de Sinais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
18.
Cell Rep ; 22(3): 760-773, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29346772

RESUMO

Peroxisome proliferator-activated receptors (PPARs) have been suggested as the master regulators of adipose tissue formation. However, their role in regulating brown fat functionality has not been resolved. To address this question, we generated mice with inducible brown fat-specific deletions of PPARα, ß/δ, and γ, respectively. We found that both PPARα and ß/δδ are dispensable for brown fat function. In contrast, we could show that ablation of PPARγ in vitro and in vivo led to a reduced thermogenic capacity accompanied by a loss of inducibility by ß-adrenergic signaling, as well as a shift from oxidative fatty acid metabolism to glucose utilization. We identified glycerol kinase (Gyk) as a partial mediator of PPARγ function and could show that Gyk expression correlates with brown fat thermogenic capacity in human brown fat biopsies. Thus, Gyk might constitute the link between PPARγ-mediated regulation of brown fat function and activation by ß-adrenergic signaling.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Glicerol Quinase/metabolismo , PPAR gama/metabolismo , Adipócitos/citologia , Adipócitos/enzimologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/enzimologia , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Termogênese
19.
Arch Physiol Biochem ; 124(1): 54-60, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28844165

RESUMO

CONTEXT: Heat generation by brown adipose tissue (BAT) in response to temperature reduction seems to be entirely related to sympathetic nervous stimulation. OBJECTIVE: To analyse if temperature reduction and norepinephrine may differently affect the expression of proteins related to energy metabolism in BAT. MATERIALS AND METHODS: Isolated rats BAT was incubated with/without norepinephrine (10-6 mol/L, 24 h at 32 °C and 37 °C). RESULTS: In BAT, 32 °C increased the protein expression levels of carnitine palmitoyltransferase-I and -II, mitochondrial uncoupling protein-1 (UCP-1) and the expression and activity of lactate dehydrogenase. Mitochondrial F1-ATP synthase α-chain expression was decreased at 32 °C compared to 37 °C. Norepinephrine and at 32 °C exposure, UCP-1 expression was increased but cytochrome-c oxidase and F1-ATP synthase α-chain expression was reduced with respect to 37 °C. DISCUSSION: Sympathetic stimulation seems not to be the only factor associated with heat generation. CONCLUSIONS: Temperature reduction by itself exerts some different effects on the expression of proteins related to the energy metabolism than norepinephrine.


Assuntos
Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Modelos Biológicos , Norepinefrina/metabolismo , Sistema Nervoso Simpático/metabolismo , Termogênese , Adenosina Trifosfatases/metabolismo , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/inervação , Animais , Western Blotting , Carnitina O-Palmitoiltransferase/metabolismo , Temperatura Baixa , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Técnicas In Vitro , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Ratos Wistar , Proteína Desacopladora 1/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(52): E11285-E11292, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237750

RESUMO

A single-nucleotide polymorphism in the human arylamine N-acetyltransferase 2 (Nat2) gene has recently been identified as associated with insulin resistance in humans. To understand the cellular and molecular mechanisms by which alterations in Nat2 activity might cause insulin resistance, we examined murine ortholog Nat1 knockout (KO) mice. Nat1 KO mice manifested whole-body insulin resistance, which could be attributed to reduced muscle, liver, and adipose tissue insulin sensitivity. Hepatic and muscle insulin resistance were associated with marked increases in both liver and muscle triglyceride (TAG) and diacylglycerol (DAG) content, which was associated with increased PKCε activation in liver and increased PKCθ activation in skeletal muscle. Nat1 KO mice also displayed reduced whole-body energy expenditure and reduced mitochondrial oxygen consumption in white adipose tissue, brown adipose tissue, and hepatocytes. Taken together, these studies demonstrate that Nat1 deletion promotes reduced mitochondrial activity and is associated with ectopic lipid-induced insulin resistance. These results provide a potential genetic link among mitochondrial dysfunction with increased ectopic lipid deposition, insulin resistance, and type 2 diabetes.


Assuntos
Arilamina N-Acetiltransferase/deficiência , Diabetes Mellitus Tipo 2 , Metabolismo Energético , Resistência à Insulina , Isoenzimas/deficiência , Mitocôndrias/enzimologia , Doenças Mitocondriais , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/patologia , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diglicerídeos/genética , Diglicerídeos/metabolismo , Fígado/enzimologia , Fígado/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Consumo de Oxigênio/genética , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Triglicerídeos/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...