Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.654
Filtrar
1.
Wound Manag Prev ; 70(2)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38959343

RESUMO

BACKGROUND: CSG dressing is water-soluble and helps to hydrate the wound, control exudate, and provide gentle debridement by virtue of a high concentration of surfactant micelles. The primary objective of this retrospective case series is to report on the feasibility of CSG use in pediatric wounds and its mechanism of action. The secondary aim was to measure pain during application and removal of CSG. METHODS: Eight pediatric patients ranging in age from newborn to a few months old with wounds requiring medical intervention were treated with CSG. The CSG dressing was applied twice daily at initiation of treatment in some patients, but mostly once daily. NIPS was utilized for pain measurements. RESULTS: Near-complete healing of wounds was observed by the end of treatment duration, which was only a few days. The calm temperament of these patients during dressing changes and objective NIPS suggested minimal to no pain. None of the patients experienced any adverse events related to the use of this dressing. CONCLUSION: The CSG dressing could be the dressing of choice in this population to enhance debridement and maintain moist healing and support granulation, either proactively or if other treatments fail.


Assuntos
Bandagens , Tensoativos , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Lactente , Estudos Retrospectivos , Masculino , Feminino , Bandagens/normas , Bandagens/estatística & dados numéricos , Tensoativos/uso terapêutico , Tensoativos/farmacologia , Recém-Nascido , Géis/uso terapêutico , Ferimentos e Lesões/terapia , Ferimentos e Lesões/tratamento farmacológico
2.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949588

RESUMO

Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.


Assuntos
Cardiolipinas , Corantes Fluorescentes , Lipossomas Unilamelares , Cardiolipinas/química , Corantes Fluorescentes/química , Lipossomas Unilamelares/química , Propriedades de Superfície , Lipossomos/química , Cloreto de Sódio/química , Tensoativos/química , Estrutura Molecular
3.
Sci Rep ; 14(1): 15106, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956156

RESUMO

We applied computing-as-a-service to the unattended system-agnostic miscibility prediction of the pharmaceutical surfactants, Vitamin E TPGS and Tween 80, with Copovidone VA64 polymer at temperature relevant for the pharmaceutical hot melt extrusion process. The computations were performed in lieu of running exhaustive hot melt extrusion experiments to identify surfactant-polymer miscibility limits. The computing scheme involved a massively parallelized architecture for molecular dynamics and free energy perturbation from which binodal, spinodal, and mechanical mixture critical points were detected on molar Gibbs free energy profiles at 180 °C. We established tight agreement between the computed stability (miscibility) limits of 9.0 and 10.0 wt% vs. the experimental 7 and 9 wt% for the Vitamin E TPGS and Tween 80 systems, respectively, and identified different destabilizing mechanisms applicable to each system. This paradigm supports that computational stability prediction may serve as a physically meaningful, resource-efficient, and operationally sensible digital twin to experimental screening tests of pharmaceutical systems. This approach is also relevant to amorphous solid dispersion drug delivery systems, as it can identify critical stability points of active pharmaceutical ingredient/excipient mixtures.


Assuntos
Excipientes , Polissorbatos , Excipientes/química , Polissorbatos/química , Vitamina E/química , Tensoativos/química , Pirrolidinas/química , Simulação de Dinâmica Molecular , Termodinâmica , Tecnologia de Extrusão por Fusão a Quente/métodos , Compostos de Vinila
4.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964855

RESUMO

AIMS: Microbial enhanced oil recovery (MEOR) is cost-effective and eco-friendly for oil exploitation. Genetically modified biosurfactants-producing high-yield strains are promising for ex-situ MEOR. However, can they survive and produce biosurfactants in petroleum reservoirs for in-situ MEOR? What is their effect on the native bacterial community? METHODS AND RESULTS: A genetically modified indigenous biosurfactants-producing strain Pseudomonas aeruginosa PrhlAB was bioaugmented in simulated reservoir environments. Pseudomonas aeruginosa PrhlAB could stably colonize in simulated reservoirs. Biosurfactants (200 mg l-1) were produced in simulated reservoirs after bio-augmenting strain PrhlAB. The surface tension of fluid was reduced to 32.1 mN m-1. Crude oil was emulsified with an emulsification index of 60.1%. Bio-augmenting strain PrhlAB stimulated the MEOR-related microbial activities. Hydrocarbon-degrading bacteria and biosurfactants-producing bacteria were activated, while the hydrogen sulfide-producing bacteria were inhibited. Bio-augmenting P. aeruginosa PrhlAB reduced the diversity of bacterial community, and gradually simplified the species composition. Bacteria with oil displacement potential became dominant genera, such as Shewanella, Pseudomonas, and Arcobacter. CONCLUSIONS: Culture-based and sequence-based analyses reveal that genetically modified biosurfactants-producing strain P. aeruginosa PrhlAB are promising for in-situ MEOR as well.


Assuntos
Petróleo , Pseudomonas aeruginosa , Tensoativos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Petróleo/metabolismo , Tensoativos/metabolismo , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Hidrocarbonetos/metabolismo , Microbiota
5.
Arch Microbiol ; 206(8): 354, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017726

RESUMO

Titanium implants are subject to bacterial adhesion and peri-implantitis induction, and biosurfactants bring a new alternative to the fight against infections. This work aimed to produce and characterize the biosurfactant from Bacillus subtilis ATCC 19,659, its anti-adhesion and antimicrobial activity, and cell viability. Anti-adhesion studies were carried out against Streptococcus sanguinis, Staphylococcus aureus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Proteus mirabilis as the minimum inhibitory concentration and the minimum bactericidal concentration. Cell viability was measured against osteoblast and fibroblast cells. The biosurfactant was classified as lipopeptide, with critical micelle concentration at 40 µg mL- 1, and made the titanium surface less hydrophobic. The anti-adhesion effect was observed for Staphylococcus aureus and Streptococcus sanguinis with 54% growth inhibition and presented a minimum inhibitory concentration of 15.7 µg mL- 1 for Streptococcus sanguinis and Aggregatibacter actinomycetemcomitans. The lipopeptide had no cytotoxic effect and demonstrated high potential application against bacterial biofilms.


Assuntos
Aderência Bacteriana , Biofilmes , Implantes Dentários , Lipopeptídeos , Testes de Sensibilidade Microbiana , Titânio , Titânio/farmacologia , Titânio/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Implantes Dentários/microbiologia , Lipopeptídeos/farmacologia , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Bacillus subtilis/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Propriedades de Superfície , Fibroblastos/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Tensoativos/farmacologia
6.
Drug Deliv ; 31(1): 2372279, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38992340

RESUMO

The aim of this study was to develop eye-drops with cefuroxime (CEF) sodium or vancomycin (VAN) hydrochloride, antibiotics that are instable in water. Anhydrous self-emulsifying oils (SEO) are proposed as a carrier and antibiotics are suspended. In the contact with tear fluid, the formulation should transform into emulsion, with fast dissolution of an antibiotic. CEF or VAN (5% w/w) was suspended in SEO carriers prepared by dissolving surfactants (Tween 20 or Span 80 5% w/w) in Miglyol, castor oil, or olive oil. Formulations with or without sodium citrate (2% w/w) were compared. Six-months or 1-year stability tests were carried out at 40 °C. The content of CEF and VAN was evaluated using HPLC and the potency of the antibiotic was assessed with agar diffusion method. In contact with water, drug particles suspended in SEO dissolved rapidly and o/w emulsion was formed. After 1-year at 40 °C, the content of degradation products was at most 0.5% in CEF and 4.0% in VAN formulations. The agar diffusion assay has shown that CEF and VAN loaded into SEO retained its potency against the sensitive microorganisms comparable to an aqueous solution. Therefore, SEO can be used as a novel carrier for the active substances which may not require improved solubility or absorption but need to be protected from moisture. This is a formulation that can be produced on industrial scale, with no limitation of stability or drug concentration.


Assuntos
Antibacterianos , Estabilidade de Medicamentos , Emulsões , Soluções Oftálmicas , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacocinética , Emulsões/química , Soluções Oftálmicas/química , Hidrólise , Óleo de Rícino/química , Cefuroxima/química , Cefuroxima/administração & dosagem , Cefuroxima/farmacocinética , Vancomicina/química , Vancomicina/administração & dosagem , Tensoativos/química , Química Farmacêutica/métodos , Suspensões , Água/química , Solubilidade , Polissorbatos/química , Azeite de Oliva/química , Hexoses/química , Portadores de Fármacos/química
7.
Soft Matter ; 20(28): 5553-5563, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957095

RESUMO

The addition of a surfactant and/or an increase in temperature disrupt the native structure of proteins, where high temperature further results in protein gelation. However, in a mixed protein-surfactant system, surfactant concentration and temperature have been observed to exhibit both mutually associative and counter-balancing effects towards heat-induced gelation of protein-surfactant dispersion. This study is conducted on globular bovine serum albumin (BSA) protein and cationic surfactant dodecyl trimethyl ammonium bromide (DTAB), which interact strongly owing to their oppositely charged nature. The findings reveal that the BSA-DTAB suspension undergoes gelation with increasing temperature but only at lower concentrations of DTAB, where the presence of the surfactant facilitates gelation (associative effect). Conversely, as the surfactant concentration increases beyond a critical value, temperature-driven gelation of the BSA-DTAB system is completely inhibited, despite surfactant-induced protein denaturation (counter-balancing effect). To conceptualize these results, we compared them with observations made in a system comprising protein and a similarly charged surfactant, sodium dodecyl sulfate (SDS). It has been further demonstrated that the anionic surfactant (SDS) can restrict protein gelation at much lower concentration compared to the cationic surfactant (DTAB). The evolution of the structure and interaction during gel formation/inhibition has been examined to understand the underlying mechanism guiding these sol-gel transitions. We present a comprehensive phase diagram, encompassing the solution/gel states of the protein-surfactant dispersion, with respect to the dispersion temperature, surfactant concentration, and ionic behavior (anionic or cationic) of the surfactants.


Assuntos
Géis , Temperatura Alta , Compostos de Amônio Quaternário , Soroalbumina Bovina , Tensoativos , Tensoativos/química , Soroalbumina Bovina/química , Géis/química , Bovinos , Compostos de Amônio Quaternário/química , Animais , Dodecilsulfato de Sódio/química
8.
AAPS J ; 26(4): 78, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981948

RESUMO

A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes.


Assuntos
Emulsões , Espectroscopia de Ressonância Magnética , Óleos , Água , Espectroscopia de Ressonância Magnética/métodos , Água/química , Óleos/química , Tensoativos/química , Fluprednisolona/química , Fluprednisolona/análogos & derivados , Tamanho da Partícula , Composição de Medicamentos/métodos , Nanopartículas/química , Química Farmacêutica/métodos
9.
J Phys Chem B ; 128(28): 6940-6950, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38956449

RESUMO

Two ionic liquids (ILs) with amphiphilic properties composed of 1-butyl-3-methylimidazolium dioctylsulfosuccinate (bmim-AOT) and 1-hexyl-3-methylimidazolium dioctylsulfosuccinate (hmim-AOT) form unilamellar vesicles spontaneously simply by dissolving the IL-like surfactant in water. These novel vesicles were characterized using two different and highly sensitive fluorescent probes: 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN) and trans-4-[4-(dimethylamino)-styryl]-1-methylpyridinium iodide (HC). These fluorescent probes provide information about the physicochemical properties of the bilayer, such as micropolarity, microviscosity, and electron-donor capacity. In addition, the biocompatibility of these vesicles with the blood medium was evaluated, and their toxicity was determined using Dictyostelium discoideum amoebas. First, using PRODAN and HC, it was found that the bilayer composition and the chemical structure of the ions at the interface produced differences between both amphiphiles, making the vesicles different. Thus, the bilayer of hmim-AOT vesicles is less polar, more rigid, and has a lower electron-donor capacity than those made by bmim-AOT. Finally, the results obtained from the hemolysis studies and the growth behavior of unicellular amoebas, particularly utilizing the D. discoideum assay, showed that both vesicular systems do not produce toxic effects up to a concentration of 0.02 mg/mL. This elegant assay, devoid of animal usage, highlights the potential of these newly organized systems for the delivery of drugs and bioactive molecules of different polarities.


Assuntos
Líquidos Iônicos , Tensoativos , Lipossomas Unilamelares , Líquidos Iônicos/química , Tensoativos/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Nanomedicina , Corantes Fluorescentes/química , Compostos de Piridínio/química , Imidazóis/química , Bicamadas Lipídicas/química
10.
AAPS PharmSciTech ; 25(6): 163, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997614

RESUMO

Some glycoside drugs can be transported through intestinal glucose transporters (IGTs). The surfactants used in oral drug preparations can affect the function of transporter proteins. This study aimed to investigate the effect of commonly used surfactants, Poloxamer 188 and Tween 80, on the drug transport capacity of IGTs. Previous studies have shown that gastrodin is the optimal drug substrate for IGTs. Gastrodin was used as a probe drug to evaluate the effect of these two surfactants on intestinal absorption in SD rats through pharmacokinetic and in situ single-pass intestinal perfusion. Then, the effects of the two surfactants on the expression of glucose transporters and tight-junction proteins were examined using RT-PCR and western blotting. Additionally, the effect of surfactants on intestinal permeability was evaluated through hematoxylin-eosin staining. The results found that all experimental for Poloxamer 188 (0.5%, 2.0% and 8.0%) and Tween 80 (0.1% and 2.0%) were not significantly different from those of the blank group. However, the AUC(0-∞) of gastrodin increased by approximately 32% when 0.5% Tween 80 was used. The changes in IGT expression correlated with the intestinal absorption of gastrodin. A significant increase in the expression of IGTs was observed at 0.5% Tween 80. In conclusion, Poloxamer 188 had minimal effect on the drug transport capacity of IGTs within the recommended limits of use. However, the expression of IGTs increased in response to 0.5% Tween 80, which significantly enhanced the drug transport capacity of IGTs. However, 0.1% and 2.0% Tween 80 had no significant effect.


Assuntos
Absorção Intestinal , Mucosa Intestinal , Poloxâmero , Polissorbatos , Ratos Sprague-Dawley , Tensoativos , Animais , Poloxâmero/farmacologia , Polissorbatos/farmacologia , Ratos , Absorção Intestinal/efeitos dos fármacos , Masculino , Tensoativos/farmacologia , Transporte Biológico/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucosídeos/farmacologia
11.
AAPS PharmSciTech ; 25(6): 162, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997615

RESUMO

In 1987, Won invented the solid-phase porous microsphere (MS), which stores bioactive compounds in many interconnected voids. Spherical particles (5-300 µm), MS, may form clusters of smaller spheres, resulting in many benefits. The current investigation focussed on gel-encased formulation, which can be suitable for dermal usage. First, quasi-emulsion (w/o/w) solvent evaporation was used to prepare 5-fluorouracil (5 FU) MS particles. The final product was characterized (SEM shows porous structure, FTIR and DSC showed drug compatibility with excipients, and gel formulation is shear-thinning) and further scaled up using the 8-fold method. Furthermore, CCD (Central Composite Design) was implemented to obtain the optimized results. After optimizing the conditions, including the polymer (600 mg, ethyl cellulose (EC), eudragit RS 100 (ERS)), stirring speed (1197 rpm), and surfactant concentration (2% w/v), we achieved the following results: optimal yield (63%), mean particle size (152 µm), drug entrapment efficiency (76%), and cumulative drug release (74.24% within 8 h). These findings are promising for industrial applications and align with the objectives outlined in UN Sustainable Development Goals 3, 9, and 17, as well as the goals of the G20 initiative.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Fluoruracila , Microesferas , Tamanho da Partícula , Fluoruracila/administração & dosagem , Fluoruracila/química , Sistemas de Liberação de Medicamentos/métodos , Porosidade , Emulsões/química , Celulose/química , Celulose/análogos & derivados , Química Farmacêutica/métodos , Polímeros/química , Excipientes/química , Solventes/química , Tensoativos/química , Resinas Acrílicas/química , Portadores de Fármacos/química , Géis/química
12.
Mar Genomics ; 76: 101113, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009494

RESUMO

Biosurfactants are amphipathic molecules with high industrial values owing to their chemical properties and stability under several environmental conditions. They have become attractive microbial products in the emerging biotechnology industry, offering a potential environmentally-friendly alternative to synthetic surfactants. Nowadays, several types of biosurfactants are commercially available for a wide range of applications in healthcare, agriculture, oil extraction and environmental remediation. In this study, a marine bacterium Bacillus velezensis L2D39 with the capability of producing biosurfactants was successfully isolated and characterized. The complete genome sequence of the bacterium B. velezensis L2D39 was obtained using PacBio Sequel HGAP.4, resulting in a sequence consisting of 4,140,042 base pairs with a 46.2 mol% G + C content and containing 4071 protein-coding genes. The presence of gene clusters associated with biosurfactants was confirmed through antiSMASH detection. The analysis of complete genome sequence will provide insight into the potential applications of this bacterium in biotechnological and natural product biosynthesis.


Assuntos
Bacillus , Genoma Bacteriano , Tensoativos , Sequenciamento Completo do Genoma , Bacillus/genética , Bacillus/metabolismo , Tensoativos/metabolismo
13.
J Oleo Sci ; 73(7): 921-941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945922

RESUMO

This comprehensive review offers a chemical analysis of cutting fluids, delving into both their formulation and deformulation processes. The study covers a wide spectrum of cutting fluid formulations, ranging from simple compositions predominantly comprising oils, whether mineral or vegetable, to emulsions. The latter involves the integration of surfactants, encompassing both nonionic and anionic types, along with a diverse array of additives. Concerning oils, the current trend leans towards the use of vegetable oils instead of mineral oils for environmental reasons. As vegetable oils are more prone to oxidation, chemical alterations, the addition of antioxidant may be necessary. The chemical aspects of the different compounds are scrutinized, in order to understand the role of each component and its impact on the fluid's lubricating, cooling, anti-wear, and anti-corrosion properties. Furthermore, the review explores the deformulation methodologies employed to dissect cutting fluids. This process involves a two-step approach: separating the aqueous and organic phases of the emulsions by physical or chemical treatments, and subsequently conducting a detailed analysis of each to identify the compounds. Several analytical techniques, including spectrometric or chromatographic, can be employed simultaneously to reveal the chemical structures of samples. This review aims to contribute to the improvement of waste treatment stemming from cutting fluids. By gathering extensive information about the formulation, deformulation, and chemistry of the ingredients, there is a potential to enhance the waste management and disposal effectively.


Assuntos
Emulsões , Tensoativos , Emulsões/química , Tensoativos/química , Óleos de Plantas/química , Óleo Mineral/química , Antioxidantes/química , Antioxidantes/análise , Oxirredução , Lubrificação , Lubrificantes/química , Fenômenos Químicos
14.
J Oleo Sci ; 73(7): 953-961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945924

RESUMO

Handwashing represents an important personal hygiene measure for preventing infection. Herein, we report the persistence of antibacterial and antiviral effects after handwashing with fatty acid salt-based hand soap. To this end, we developed a new in vitro test method to measure persistence, utilizing coacervation formed by anionic surfactants and cationic polymers to retain highly effective soap components against each bacterium and virus on the skin. Coacervation with fatty acid salts and poly diallyldimethylammonium chloride (PDADMAC) as a cationic polymer allowed the persistence of antibacterial and antiviral effects against E. coli, S. aureus, and influenza virus even 4 h after handwashing. Furthermore, we confirmed an increase in the number of residual components effective against each bacterium and virus on the skin. In summary, the current findings describe an effective approach for enhancing the protective effects of handwashing.


Assuntos
Antibacterianos , Antivirais , Escherichia coli , Desinfecção das Mãos , Polietilenos , Compostos de Amônio Quaternário , Pele , Sabões , Staphylococcus aureus , Tensoativos , Sabões/farmacologia , Escherichia coli/efeitos dos fármacos , Desinfecção das Mãos/métodos , Compostos de Amônio Quaternário/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antivirais/farmacologia , Pele/efeitos dos fármacos , Pele/microbiologia , Tensoativos/farmacologia , Humanos , Ácidos Graxos/farmacologia , Ácidos Graxos/análise , Fatores de Tempo , Orthomyxoviridae/efeitos dos fármacos
15.
Environ Sci Pollut Res Int ; 31(30): 43262-43280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38902440

RESUMO

This study investigated the elaboration of novel porous absorbent granules by mixing powdered hydroxyapatite, metakaolin, sodium metasilicate, polyethylene glycol, and sodium dodecyl sulfate (SDS), an anionic surfactant. The effect of sodium dodecyl sulfate (SDS) was then studied by introducing it as a powder to the powdered mixture or dissolved into the granulation fluid. Characterization of the granules indicated that the incorporation of SDS dissolved in the granulation fluid into the G-PEG granules improved their specific surface area (97.9 m2/g) and porosity, resulting in a synergistic increase in the adsorption of crystal violet and methylene blue dyes compared to G-PEG granules and hydroxyapatite or metakaolin geopolymer alone. Moreover, the granules exhibited satisfactory compressive strength of 0.81 MPa, making them suitable for large-scale adsorption columns. Finally, the regeneratiοn prοcess οf the granules was modeled and optimized by using surface response methodology based on Box-Behnken design. The granules cοuld be regenerated fοr eight cycles under οptimum cοnditiοns οf acetic acid cοncentratiοn οf 0.72 mοl/L, a temperature οf 323 K, and a cοntact time οf 173.22 min, withοut a significant lοss in the adsοrptiοn capacity οr degradatiοn οf the granules. These results suggest that the pοrοus granules prepared in this study have pοtential tο be used in industrial wastewater treatment.


Assuntos
Dodecilsulfato de Sódio , Tensoativos , Tensoativos/química , Dodecilsulfato de Sódio/química , Adsorção , Durapatita/química
16.
J Colloid Interface Sci ; 672: 244-255, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838632

RESUMO

HYPOTHESIS: Nonionic surfactants can counter the deleterious effect that anionic surfactants have on proteins, where the folded states are retrieved from a previously unfolded state. However, further studies are required to refine our understanding of the underlying mechanism of the refolding process. While interactions between nonionic surfactants and tightly folded proteins are not anticipated, we hypothesized that intermediate stages of surfactant-induced unfolding could define new interaction mechanisms by which nonionic surfactants can further alter protein conformation. EXPERIMENTS: In this work, the behavior of three model proteins (human growth hormone, bovine serum albumin, and ß-lactoglobulin) was investigated in the presence of the anionic surfactant sodium dodecylsulfate, the nonionic surfactant ß-dodecylmaltoside, and mixtures of both surfactants. The transitions occurring to the proteins were determined using intrinsic fluorescence spectroscopy and far-UV circular dichroism. Based on these results, we developed a detailed interaction model for human growth hormone. Using nuclear magnetic resonance and contrast-variation small-angle neutron scattering, we studied the amino acid environment and the conformational state of the protein. FINDINGS: The results demonstrate the key role of surfactant cooperation in defining the conformational state of the proteins, which can shift away or toward the folded state depending on the nonionic-to-ionic surfactant ratio. Dodecylmaltoside, initially a non-interacting surfactant, can unexpectedly associate with sodium dodecylsulfate-unfolded proteins to further impact their conformation at low nonionic-to-ionic surfactant ratio. When this ratio increases, the protein begins to retrieve the folded state. However, the native conformation cannot be fully recovered due to remnant surfactant molecules still adsorbed to the protein. This study demonstrates that the conformational landscape of the protein depends on a delicate interplay between the surfactants, ultimately controlled by the ratio between them, resulting in unpredictable changes in the protein conformation.


Assuntos
Lactoglobulinas , Desdobramento de Proteína , Soroalbumina Bovina , Dodecilsulfato de Sódio , Tensoativos , Tensoativos/química , Humanos , Lactoglobulinas/química , Desdobramento de Proteína/efeitos dos fármacos , Dodecilsulfato de Sódio/química , Bovinos , Soroalbumina Bovina/química , Animais , Hormônio do Crescimento Humano/química , Ânions/química , Redobramento de Proteína/efeitos dos fármacos , Conformação Proteica , Glucosídeos
17.
J Colloid Interface Sci ; 672: 209-223, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838629

RESUMO

Multidrug resistance (MDR) is a rising threat to global health because the number of essential antibiotics used for treating MDR infections is increasingly compromised. In this work we report a group of new amphiphilic peptides (AMPs) derived from the well-studied G3 (G(IIKK)3I-NH2) to fight infections from Gram-positive bacteria including susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), focusing on membrane interactions. Time-dependent killing experiments revealed that substitutions of II by WW (GWK), II by FF (GFK) and KK by RR (GIR) resulted in improved bactericidal efficiencies compared to G3 (GIK) on both S. aureus and MRSA, with the order of GWK > GIR > GFK > GIK. Electronic microscopy imaging revealed structural disruptions of AMP binding to bacterial cell walls. Fluorescence assays including AMP binding to anionic lipoteichoic acids (LTA) in cell-free and cell systems indicated concentration and time-dependent membrane destabilization associated with bacterial killing. Furthermore, AMP's binding to anionic plasma membrane via similar fluorescence assays revealed a different extent of membrane depolarization and leakage. These observations were supported by the penetration of AMPs into the LTA barrier and the subsequent structural compromise to the cytoplasmic membrane as revealed from SANS (small angle neutron scattering). Both experiments and molecular dynamics (MD) simulations revealed that GWK and GIR could make the membrane more rigid but less effective in diffusive efficiency than GIK and GFK through forming intramembrane peptide nanoaggregates associated with hydrophobic mismatch and formation of fluidic and rigid patches. The reported peptide-aggregate-induced phase-separation emerged as a crucial factor in accelerated membrane disintegration and fast bacterial killing. This work has demonstrated the importance of membrane interactions to the development of more effective AMPs and the relevance of the approaches as reported in assisting this area of research.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Cátions/química , Tensoativos/química , Tensoativos/farmacologia , Simulação de Dinâmica Molecular
18.
Bull Exp Biol Med ; 176(6): 709-715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38888647

RESUMO

The review presents the results of the blood substitute development based on perfluororganic compounds (PFC). The limitations of PFC due to which their further development was suspended are described. The presented data allows us to imagine a possible way to create optimal drugs based on PFC. Chemically inactive perfluorocomponents should be used - perfluorinated hydrocarbons and tertiary perfluorinated amines. However, in order to emulsify and stabilize the emulsion, other types of effective and chemically indifferent surfactants that do not interact with oxygen and other components of the drug are needed.


Assuntos
Substitutos Sanguíneos , Fluorocarbonos , Fluorocarbonos/química , Humanos , Tensoativos/química , Tensoativos/farmacologia , Emulsões/química , Oxigênio/química , Animais
19.
Int J Biol Macromol ; 273(Pt 1): 132966, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851620

RESUMO

The multifunctionality of advanced laundry detergents primarily relies on the inclusion of functional solid particles, such as pearlescent powder, enzymes, and perfume microcapsules. However, the high-content surfactants in these detergents can render most existing suspending rheology modifiers ineffective, making it challenging to achieve uniform suspension of these functional particles. This compromises the overall functionality of laundry products. To address this, we have developed a binary rheology modifier comprising cellulose microgel and HPMC (hydroxypropyl methylcellulose), acting as the "island" and "chain," respectively. Together, they form an interconnected dynamic network that effectively "encapsulates" the functional particles. Furthermore, the cellulose microgel/HPMC rheology modifier demonstrates versatility, proving effective with various surfactants. Despite its potential, the suspension mechanism of cellulose microgel/HPMC remains elusive. Therefore, we conducted a comprehensive investigation, fabricating cellulose microgels with varying nanofabrication degrees and surface charges through TEMPO oxidation. Our findings highlight the critical role of the surficial structure of T-Microgel, specifically its nanofabrication degree, in influencing the dynamic network's fabrication, thereby impacting yield and thixotropic properties. The surface charge of T-microgel does not significantly influence the process. This research not only elucidates the intricate dynamics of cellulose microgel/HPMC interaction but also provides fundamental insights essential for the development of innovative rheology modifiers tailored for high-content surfactant applications.


Assuntos
Celulose , Microgéis , Reologia , Celulose/química , Microgéis/química , Tensoativos/química , Derivados da Hipromelose/química , Óxidos N-Cíclicos/química
20.
Int J Biol Macromol ; 273(Pt 1): 133049, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857727

RESUMO

To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.


Assuntos
Hidrolases de Éster Carboxílico , Polietilenoglicóis , Polietilenotereftalatos , Tensoativos , Polietilenotereftalatos/química , Polietilenoglicóis/química , Hidrólise , Tensoativos/química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...