Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 86(3-4): 239-45, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21840380

RESUMO

Neuronal nitric oxide synthase (nNOS) has been reported to be up-regulated in the hypothalamic supraoptic nucleus (SON) during dehydration which in turn could increase nitric oxide (NO) production and consequently affect arginine vasopressin (AVP) secretion. The anteroventral third ventricle (AV3V) region has strong afferent connections with the SON. Herein we describe our analysis of the effects of an AV3V lesion on AVP secretion, and c-fos and nNOS expression in the SON following dehydration. Male Wistar rats had their AV3V region electrolytically lesioned or were sham operated. After 21 days they were submitted to dehydration or left as controls (euhydrated). Two days later, one group was anaesthetized, perfused and the brains were processed for Fos protein and nNOS immunohistochemistry (IHC). Another group was decapitated, the blood collected for hematocrit, osmolality, serum sodium and AVP plasma level analysis. The brains were removed for measurement of neurohypophyseal AVP content, and the SON was punched out and processed for nNOS detection by western blotting. The AV3V lesion reduced AVP plasma levels and c-fos expression in the SON following dehydration (P<0.05). Western blotting revealed an up-regulation of nNOS in the SON of control animals following dehydration, whereas such up-regulation was not observed in AV3V-lesioned rats (P<0.05). We conclude that the AV3V region plays a role in regulating the expression of nNOS in the SON of rats submitted to dehydration, and thus may affect the local nitric oxide production and the secretion of vasopressin.


Assuntos
Hipotálamo/enzimologia , Óxido Nítrico Sintase Tipo I/biossíntese , Terceiro Ventrículo/lesões , Privação de Água/fisiologia , Animais , Arginina Vasopressina/sangue , Desidratação/metabolismo , Hematócrito , Imuno-Histoquímica , Masculino , Concentração Osmolar , Neuro-Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Sódio/sangue , Núcleo Supraóptico/metabolismo , Terceiro Ventrículo/patologia , Vasopressinas/metabolismo
3.
Circ Res ; 107(2): 263-70, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20558826

RESUMO

RATIONALE: We have previously found that T lymphocytes are essential for development of angiotensin II-induced hypertension; however, the mechanisms responsible for T-cell activation in hypertension remain undefined. OBJECTIVE: We sought to study the roles of the CNS and pressure elevation in T-cell activation and vascular inflammation caused by angiotensin II. METHODS AND RESULTS: To prevent the central actions of angiotensin II, we created anteroventral third cerebral ventricle (AV3V) lesions in mice. The elevation in blood pressure in response to angiotensin II was virtually eliminated by AV3V lesions, as was activation of circulating T cells and the vascular infiltration of leukocytes. In contrast, AV3V lesioning did not prevent the hypertension and T-cell activation caused by the peripheral acting agonist norepinephrine. To determine whether T-cell activation and vascular inflammation are attributable to central influences or are mediated by blood pressure elevation, we administered hydralazine (250 mg/L) in the drinking water. Hydralazine prevented the hypertension and abrogated the increase in circulating activated T cells and vascular infiltration of leukocytes caused by angiotensin II. CONCLUSIONS: We conclude that the central and pressor effects of angiotensin II are critical for T-cell activation and development of vascular inflammation. These findings also support a feed-forward mechanism in which modest degrees of blood pressure elevation lead to T-cell activation, which in turn promotes inflammation and further raises blood pressure, leading to severe hypertension.


Assuntos
Hipertensão/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Terceiro Ventrículo/imunologia , Vasculite/imunologia , Administração Oral , Transferência Adotiva , Angiotensina II , Animais , Anti-Hipertensivos/administração & dosagem , Pressão Sanguínea , Modelos Animais de Doenças , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hidralazina/administração & dosagem , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Norepinefrina , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Superóxidos/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/transplante , Terceiro Ventrículo/lesões , Terceiro Ventrículo/fisiopatologia , Fatores de Tempo , Vasculite/induzido quimicamente , Vasculite/genética , Vasculite/metabolismo , Vasculite/fisiopatologia , Vasculite/prevenção & controle
4.
Brain Res ; 1086(1): 160-7, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16626656

RESUMO

Neurons from the rostral ventrolateral medulla (RVLM) directly activate sympathetic pre-ganglionic neurons in the spinal cord. Hypertensive responses and sympathetic activation produced by different stimuli are strongly affected by lesions of the preoptic periventricular tissue surrounding the anteroventral third ventricle (AV3V region). Therefore, in the present study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the AV3V region on the pressor responses produced by injections of the excitatory amino acid L-glutamate into the RVLM of unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the RVLM were used. The pressor responses produced by injections of L-glutamate (1, 5 and 10 nmol/100 nl) into the RVLM were reduced 1 day (9 +/- 4, 39 +/- 6 and 37 +/- 4 mm Hg, respectively) and 15 days after AV3V lesions (13 +/- 6, 39 +/- 4 and 43 +/- 4 mm Hg, respectively, vs. sham lesions: 29 +/- 3, 50 +/- 2 and 58 +/- 3 mm Hg, respectively). Injections of L-glutamate into the RVLM in sham or AV3V-lesioned rats produced no significant change in the heart rate (HR). Baroreflex bradycardia and tachycardia produced by iv phenylephrine or sodium nitroprusside, respectively, and the pressor and bradycardic responses to chemoreflex activation with iv potassium cyanide were not modified by AV3V lesions. The results suggest that signals from the AV3V region are important for sympathetic activation induced by L-glutamate into the RVLM.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Bulbo/efeitos dos fármacos , Terceiro Ventrículo/fisiologia , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletrólise/métodos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/farmacologia , Terceiro Ventrículo/lesões , Fatores de Tempo
5.
Brain Res ; 1055(1-2): 111-21, 2005 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16054600

RESUMO

The cholinergic agonist pilocarpine injected intraperitoneally (ip) increases mean arterial pressure (MAP) and superior mesenteric (SM) vascular resistance and reduces submandibular/sublingual gland (SSG) vascular resistance. In the present study, we investigated the effects of electrolytic lesions of the anteroventral third ventricle (AV3V) region on the changes in MAP, SM, and SSG vascular resistances induced by ip pilocarpine. Male Holtzman rats anesthetized with urethane (1.0 g/kg) and chloralose (60 mg/kg) were submitted to sham or electrolytic AV3V lesions and had pulsed Doppler flow probes implanted around the arteries. Contrary to sham rats, in 1-h and 2-day AV3V-lesioned rats, pilocarpine (4 micromol/kg) ip decreased MAP (-41 +/- 4 and -26 +/- 4 mm Hg, respectively, vs. sham: 19 +/- 4 mm Hg) and SM (-48 +/- 11 and -45 +/- 10%, respectively, vs. sham: 41 +/- 10%) and hindlimb vascular resistances (-65 +/- 32 and -113 +/- 29%, respectively, vs. sham: 19 +/- 29%). In 7-day AV3V-lesioned rats, pilocarpine produced no changes on MAP and SM and hindlimb vascular resistances. Similar to sham rats, pilocarpine reduced SSG vascular resistance 1 h after AV3V lesions (-46 +/- 6%, vs. sham: -40 +/- 6%), but it produced no effect 2 days after AV3V lesions and increased SSG vascular resistance (37 +/- 6%) in 7-day AV3V-lesioned rats. The responses to ip pilocarpine were similar in 15-day sham and AV3V-lesioned rats. The cholinergic antagonist atropine methyl bromide (10 nmol) iv slightly increased the pressor response to ip pilocarpine in sham rats and abolished for 40 min the fall in MAP induced by ip pilocarpine in 1-h AV3V-lesioned rats. The results suggest that central mechanisms dependent on the AV3V region are involved in the pressor responses to ip pilocarpine. Although it was impaired 2 and 7 days after AV3V lesions, pilocarpine-induced salivary gland vasodilation was not altered 1 h after AV3V lesions which suggests that this vasodilation is not directly dependent on the AV3V region.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Glândulas Salivares/efeitos dos fármacos , Terceiro Ventrículo/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Análise de Variância , Animais , Atropina/farmacologia , Interações Medicamentosas , Eletrólise/efeitos adversos , Frequência Cardíaca/efeitos dos fármacos , Injeções Intraventriculares , Fluxometria por Laser-Doppler/métodos , Masculino , Antagonistas Muscarínicos/farmacologia , Ratos , Glândulas Salivares/fisiologia , Terceiro Ventrículo/lesões , Fatores de Tempo
6.
Auton Neurosci ; 117(1): 9-16, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15620565

RESUMO

The anteroventral third ventricle (AV3V) region is a critical area of the forebrain, acting on fluid and electrolyte balance and maintaining cardiovascular homeostasis. The purpose of this study was to determine the effects of lesions to the anteroventral third ventricle region on cardiovascular responses to intravenous hypertonic saline (HS) infusion. Male Wistar rats were anesthetized with urethane. The femoral artery and jugular vein were cannulated to record mean arterial pressure (MAP) and infuse hypertonic saline (3M NaCl, 0.18 mL/100 g bw, over 1 min), respectively. Renal blood flow (RBF) was recorded by ultrasonic transit-time flow probes. Renal vascular conductance (RVC) was calculated as renal blood flow to mean arterial pressure ratio and expressed as percentage of baseline. After hypertonic saline infusion in sham animals, renal blood flow and renal vascular conductance increased to 137+10% and 125+7% (10 min), and 141+/-10% and 133+/-10% (60 min), respectively. Increases in mean arterial pressure (20-min peak: 12+/-3 mm Hg) were also observed. An acute lesion in the AV3V region (DC, 2 mA 25s) 30 min before infusion abrogated the effects of hypertonic saline. Mean arterial pressure was unchanged and renal blood flow and renal vascular conductance were 107+/-7% and 103+/-6% (10 min), and 107+/-4 and 106+/-4% (60 min), respectively. Marked tachycardia was observed immediately after lesion. Responses of chronic sham or lesioned rats were similar to those of acute animals. However, in chronic lesioned rats, hypertonic saline induced sustained hypertension. These results demonstrate that integrity of the AV3V region is essential for the renal vasodilation that follows acute changes in extracellular fluid compartment composition.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Solução Salina Hipertônica/administração & dosagem , Terceiro Ventrículo/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Infusões Intravenosas , Masculino , Ratos , Ratos Wistar , Circulação Renal/efeitos dos fármacos , Terceiro Ventrículo/lesões , Terceiro Ventrículo/patologia , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
7.
Brain Res Bull ; 63(6): 515-20, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15249117

RESUMO

The anteroventral region of the third ventricle (AV3V) is critical in mediating osmotic sensitivity. AV3V lesions increase plasma osmolality and block osmotic-induced vasopressin (VP) and oxytocin (OT) secretion. The aim was to evaluate the effects of AV3V lesions on neurosecretion under control/water replete conditions and after 48 h dehydration. The focus was on central peptidergic changes with measurement of OT and VP content in the hypothalamic paraventricular (PVN) and supraoptic (OT) regions and the posterior pituitary. AV3V-lesioned rats exhibited an elevated plasma osmolality and higher OT content in SON and PVN. There was an increase in VP content in PVN, but no change in SON. As predicted, the plasma peptide response to dehydration was absent in lesioned animals. However, dehydration produced depletion in posterior pituitary VP in lesioned animals with no change in OT. No changes in nuclear VP and OT levels were seen after dehydration. These results demonstrate that AV3V lesions alter the VP and OT neurosecretory system, seen as a blockade of osmotic-induced release and an increase in basal nuclear peptide content. The data indicate that interruption of the osmotic sensory system affects the central neurosecretory axis, resulting in a backup in content and likely changes in synthesis and processing.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Ocitocina/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Terceiro Ventrículo/lesões , Vasopressinas/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Encefalopatias/metabolismo , Desidratação/metabolismo , Masculino , Microdissecção/métodos , Concentração Osmolar , Pressão Osmótica , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Radioimunoensaio , Ratos , Ratos Wistar , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/metabolismo , Terceiro Ventrículo/metabolismo , Água/farmacologia , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
8.
Anat Rec ; 256(3): 233-41, 1999 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-10521782

RESUMO

This investigation describes the migration and emergence of significant numbers of what appear to be neuron-like cells upon the surface of the median eminence of the adult rodent neurohypophyseal system of the endocrine hypothalamus following the trauma of hypophysectomy. These cells appear to migrate through the neuropil of the underlying median eminence and emerge in large numbers upon the surface of the third cerebral ventricle within 7 days following hypophysectomy (axotomy) of supraoptic (SON) and paraventricular neurites (PVN) of the adult neurohypophyseal system. Previous investigations have demonstrated regeneration of the neural stem and neural lobe in a variety of mammalian species (Adams et al., J Comp Neurol, 1969;135:121-144; Beck et al., Neuroendocrinology, 1969;5:161-182; Scott et al., Exp Neurol, 1995;131-1:23-39; Scott and Hansen, Vir Med 1997;124:249-261). It also has been demonstrated that the process of regeneration is invariably accompanied by the up-regulation of nitric oxide synthase (NOS), the enzyme that catalyzes arginine to nitric oxide (NO) and that both neurohypophyseal regeneration, as well as migration and emergence of neuron-like cells upon the surface of the adjacent third cerebral ventricle, is associated with the up-regulation of NOS and increased expression of NO. It also has been amply demonstrated that this entire process of neurohypophyseal regeneration and cell migration is completely inhibited by the introduction of the antagonist of nitric oxide, namely, nitroarginine (Scott et al., Exp Neurol, 1995;131-1:23-39; Scott and Hansen, Vir Med, 1997;124:249-261). The emergence and migratory dynamics of this novel cell line upon the floor of the rodent third cerebral ventricle are discussed with respect to the role of the ubiquitous free radical NO and the implications and potential clinical applications of neuronal migration following trauma in the human central nervous system (CNS).


Assuntos
Movimento Celular/fisiologia , Epêndima/citologia , Hipofisectomia , Neurônios/citologia , Terceiro Ventrículo/citologia , Animais , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epêndima/efeitos dos fármacos , Epêndima/lesões , Epêndima/fisiologia , Masculino , Microscopia Eletrônica de Varredura , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Nitroarginina/farmacologia , Ratos , Ratos Sprague-Dawley , Terceiro Ventrículo/efeitos dos fármacos , Terceiro Ventrículo/lesões , Terceiro Ventrículo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...