Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Anal Chem ; 96(28): 11181-11188, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38967089

RESUMO

The COVID-19 pandemic has highlighted the need for rapid and reliable diagnostics that are accessible in resource-limited settings. To address this pressing issue, we have developed a rapid, portable, and electricity-free method for extracting nucleic acids from respiratory swabs (i.e. nasal, nasopharyngeal and buccal swabs), successfully demonstrating its effectiveness for the detection of SARS-CoV-2 in residual clinical specimens. Unlike traditional approaches, our solution eliminates the need for micropipettes or electrical equipment, making it user-friendly and requiring little to no training. Our method builds upon the principles of magnetic bead extraction and revolves around a low-cost plastic magnetic lid, called SmartLid, in combination with a simple disposable kit containing all required reagents conveniently prealiquoted. Here, we clinically validated the SmartLid sample preparation method in comparison to the gold standard QIAamp Viral RNA Mini Kit from QIAGEN, using 406 clinical isolates, including 161 SARS-CoV-2 positives, using the SARS-CoV-2 RT-qPCR assays developed by the US Centers for Disease Control and Prevention (CDC). The SmartLid method showed an overall sensitivity of 95.03% (95% CI: 90.44-97.83%) and a specificity of 99.59% (95% CI: 97.76-99.99%), with a positive agreement of 97.79% (95% CI: 95.84-98.98%) when compared to QIAGEN's column-based extraction method. There are clear benefits to using the SmartLid sample preparation kit: it enables swift extraction of viral nucleic acids, taking less than 5 min, without sacrificing significant accuracy when compared to more expensive and time-consuming alternatives currently available on the market. Moreover, its simplicity makes it particularly well-suited for the point-of-care where rapid results and portability are crucial. By providing an efficient and accessible means of nucleic acid extraction, our approach aims to introduce a step-change in diagnostic capabilities for resource-limited settings.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virologia , RNA Viral/isolamento & purificação , RNA Viral/análise , Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/instrumentação , Manejo de Espécimes/métodos , Teste para COVID-19/métodos , Teste para COVID-19/instrumentação , Técnicas de Diagnóstico Molecular/métodos , Região de Recursos Limitados
2.
Talanta ; 274: 125994, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547841

RESUMO

Since the outbreak of corona virus disease 2019 (COVID-19), this pandemic has caused severe death and infection worldwide. Owing to its strong infectivity, long incubation period, and nonspecific symptoms, the early diagnosis is essential to reduce risk of the severe illness. The electrochemical biosensor, as a fast and sensitive technique for quantitative analysis of body fluids, has been widely studied to diagnose different biomarkers caused at different infective stages of COVID-19 virus (SARS-CoV-2). Recently, many reports have proved that nanomaterials with special architectures and size effects can effectively promote the biosensing performance on the COVID-19 diagnosis, there are few comprehensive summary reports yet. Therefore, in this review, we will pay efforts on recent progress of advanced nanomaterials-facilitated electrochemical biosensors for the COVID-19 detections. The process of SARS-CoV-2 infection in humans will be briefly described, as well as summarizing the types of sensors that should be designed for different infection processes. Emphasis will be supplied to various functional nanomaterials which dominate the biosensing performance for comparison, expecting to provide a rational guidance on the material selection of biosensor construction for people. Finally, we will conclude the perspective on the design of superior nanomaterials-based biosensors facing the unknown virus in future.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Eletroquímicas , Nanoestruturas , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Nanoestruturas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/métodos , Teste para COVID-19/instrumentação
4.
JAMA ; 329(5): 357-358, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36630109

RESUMO

This Medical News article discusses whether swabbing both the nose and the throat might improve the sensitivity of rapid antigen COVID-19 tests.


Assuntos
Teste para COVID-19 , COVID-19 , Nariz , Faringe , SARS-CoV-2 , Manejo de Espécimes , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Nariz/virologia , Faringe/virologia , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos
5.
Ear Nose Throat J ; 102(3): NP136-NP139, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33634718

RESUMO

Testing for coronavirus disease 2019 is critical in controlling the pandemic all over the world. Diagnosis of severe acute respiratory syndrome coronavirus-2 infection is based on real-time polymerase chain reaction performed on nasopharyngeal swab. If not adequately performed, the viral specimen collection can be painful and lead to complications. We present a complication occurred during a nasopharyngeal swab collection performed in a noncooperative patient where the plastic shaft of the swab fractured during the procedure, resulting in swab tip retention deep into the nasal cavity. The foreign body was found endoscopically, stuck between the nasal septum and the superior turbinate tail at the upper level of the left choana and removed under general anesthesia in a negative pressure operating room with the health care personnel wearing personal protective equipment. Unpleasant complications like the one described can happen when the swab is collected without the necessary knowledge of nasal anatomy or conducted inappropriately, especially in noncooperative patients. Moreover, the design of currently used viral swabs may expose to accidental rupture, with risk of foreign body retention in the nasal cavities. In such cases, diagnosis and treatment are endoscopy-guided procedures performed in an adequate setting to minimize the risk of spreading of the pandemic.


Assuntos
Teste para COVID-19 , COVID-19 , Corpos Estranhos , Nasofaringe , Humanos , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Corpos Estranhos/complicações , Corpos Estranhos/diagnóstico , Corpos Estranhos/cirurgia , Nasofaringe/cirurgia , SARS-CoV-2 , Endoscopia
6.
Biosensors (Basel) ; 12(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36140055

RESUMO

In the present work, highly multiplexed diagnostic KITs based on an Interferometric Optical Detection Method (IODM) were developed to evaluate six Coronavirus Disease 2019 (COVID-19)-related biomarkers. These biomarkers of COVID-19 were evaluated in 74 serum samples from severe, moderate, and mild patients with positive polymerase chain reaction (PCR), collected at the end of March 2020 in the Hospital Clínico San Carlos, in Madrid (Spain). The developed multiplexed diagnostic KITs were biofunctionalized to simultaneously measure different types of specific biomarkers involved in COVID-19. Thus, the serum samples were investigated by measuring the total specific Immunoglobulins (sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglobulins A (sIgA), all of them against SARS-CoV-2, together with two biomarkers involved in inflammatory disorders, Ferritin (FER) and C Reactive Protein (CRP). To assess the results, a Multiple Linear Regression Model (MLRM) was carried out to study the influence of IgGs, IgMs, IgAs, FER, and CRP against the total sIgTs in these serum samples with a goodness of fit of 73.01% (Adjusted R-Squared).


Assuntos
Teste para COVID-19 , COVID-19 , Biomarcadores , Proteína C-Reativa , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Ferritinas , Humanos , Imunoglobulina A Secretora , Kit de Reagentes para Diagnóstico , SARS-CoV-2
7.
Infect Dis Now ; 52(3): 138-144, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149235

RESUMO

OBJECTIVES: Diagnosis of COVID-19 is essential to prevent the spread of SARS-CoV-2. Nasopharyngeal swabs (NPS) remain the gold standard in screening, although associated with false negative results (up to 30%). We developed a 3D simulator of the nasal and pharyngeal cavities for the learning and improvement of NPS collection. PATIENTS AND METHODS: Simulator training sessions were carried out in 11 centers in France. A questionnaire assessing the simulator was administered at the end of the sessions. The study population included both healthcare workers (HCW) and volunteers from the general population. RESULTS: Out of 589 participants, overall satisfaction was scored 9.0 [8.9-9.1] on a scale of 0 to 10 with excellent results in the 16 evaluation items of each category (HCWs and general population, NPS novices and experienced). The simulator was considered very realistic (95%), easy to use (97%), useful to understand the anatomy (89%) and NPS sampling technique (93%). This educational tool was considered essential (93%). Participants felt their future NPS would be more reliable (72%), less painful (70%), easier to perform (88%) and that they would be carried out more serenely (90%). The mean number of NPS conducted on the simulator to feel at ease was two; technical fluency with the simulator can thus be acquired quickly. CONCLUSION: Our simulator, whose 3D printing can be reproduced freely using a permanent open access link, is an essential educational tool to standardize the learning and improvement of NPS collection. It should enhance virus detection and thus contribute to better pandemic control.


Assuntos
Teste para COVID-19/métodos , COVID-19 , Impressão Tridimensional , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Humanos , Nasofaringe , SARS-CoV-2
9.
Anal Bioanal Chem ; 414(5): 1949-1962, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981149

RESUMO

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC-MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC-MS analysis. A sensitive and specific LC-MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Cromatografia Líquida/métodos , Separação Imunomagnética/métodos , SARS-CoV-2/genética , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Anticorpos Antivirais/química , Biomarcadores/química , COVID-19/imunologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Teste para COVID-19/normas , Cromatografia Líquida/instrumentação , Cromatografia Líquida/normas , Humanos , Separação Imunomagnética/instrumentação , Separação Imunomagnética/normas , Nasofaringe/virologia , Peptídeos/química , Peptídeos/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/normas
11.
Mol Biotechnol ; 64(4): 339-354, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34655396

RESUMO

The outbreak of COVID-19 pandemic and its consequences have inflicted a substantial damage on the world. In this study, it was attempted to review the recent coronaviruses appeared among the human being and their epidemic/pandemic spread throughout the world. Currently, there is an inevitable need for the establishment of a quick and easily available biosensor for tracing COVID-19 in all countries. It has been known that the incubation time of COVID-19 lasts about 14 days and 25% of the infected individuals are asymptomatic. To improve the ability to determine SARS-CoV-2 precisely and reduce the risk of eliciting false-negative results produced by mutating nature of coronaviruses, many researchers have established a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using mismatch-tolerant molecular beacons as multiplex real-time RT-PCR to distinguish between pathogenic and non-pathogenic strains of coronaviruses. The possible mechanisms and pathways for the detection of coronaviruses by biosensors have been reviewed in this study.


Assuntos
Teste para COVID-19/métodos , Técnicas Biossensoriais/métodos , Teste para COVID-19/instrumentação , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência/métodos , Humanos , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/métodos , Testes de Neutralização , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/patogenicidade , Ressonância de Plasmônio de Superfície
12.
Adv Mater ; 34(3): e2104608, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738258

RESUMO

Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining upscalable manufacturing with the required performance remains challenging. Here, an alternative biosensor transistor concept is developed, which relies on a solution-processed In2 O3 /ZnO semiconducting heterojunction featuring a geometrically engineered tri-channel architecture for the rapid, real-time detection of important biomolecules. The sensor combines a high electron mobility channel, attributed to the electronic properties of the In2 O3 /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried electron channel and electrostatic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (am) concentrations. The experimental findings are corroborated by extensive device simulations, highlighting the unique advantages of the heterojunction tri-channel design. By functionalizing the surface of the geometrically engineered channel with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody receptors, real-time detection of the SARS-CoV-2 spike S1 protein down to am concentrations is demonstrated in under 2 min in physiological relevant conditions.


Assuntos
Técnicas Biossensoriais/instrumentação , COVID-19/virologia , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/análise , Transistores Eletrônicos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Imobilizados , Anticorpos Antivirais , Bioengenharia , COVID-19/sangue , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Simulação por Computador , Sistemas Computacionais , DNA/análise , Desenho de Equipamento , Humanos , Índio , Microtecnologia , Estudo de Prova de Conceito , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Óxido de Zinco
14.
Maputo; INS; 2022. 3 p. tab.
Não convencional em Português | RDSM | ID: biblio-1532173

RESUMO

Para o diagnóstico de varíola dos macacos (Monkeypox), amostras de esfregaço e fluído da lesão são as recomendadas para diagnóstico. Amostras de esfregaço nasofaríngeo, esfregaço orofaríngeo, biopsia, sangue total e soro são amostras complementares às de esfregaço/ fluído da lesão e podem ser colhidas para aumentar a capacidade de detecção. Nesta instrução de trabalho, o foco são amostras de esfregaço/fluído da lesão...


Assuntos
Humanos , Animais , Mpox/virologia , Vírus da Varíola/efeitos dos fármacos , Ferimentos e Lesões/diagnóstico , Bancos de Espécimes Biológicos/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Mpox/tratamento farmacológico , Teste para COVID-19/instrumentação , Laboratórios/ética , Moçambique
17.
Biosensors (Basel) ; 11(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34677325

RESUMO

The COVID-19 pandemic has changed people's lives and has brought society to a sudden standstill, with lockdowns and social distancing as the preferred preventative measures. To lift these measurements and reduce society's burden, developing an easy-to-use, rapid, and portable system to detect SARS-CoV-2 is mandatory. To this end, we developed a portable and semi-automated device for SARS-CoV-2 detection based on reverse transcription loop-mediated isothermal amplification followed by a CRISPR/Cas12a reaction. The device contains a heater element mounted on a printed circuit board, a cooler fan, a proportional integral derivative controller to control the temperature, and designated areas for 0.2 mL Eppendorf® PCR tubes. Our system has a limit of detection of 35 copies of the virus per microliter, which is significant and has the capability of being used in crisis centers, mobile laboratories, remote locations, or airports to diagnose individuals infected with SARS-CoV-2. We believe the current methodology that we have implemented in this article is beneficial for the early screening of infectious diseases, in which fast screening with high accuracy is necessary.


Assuntos
COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , COVID-19/virologia , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Humanos , Limite de Detecção , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/metabolismo , SARS-CoV-2/isolamento & purificação
18.
PLoS One ; 16(9): e0256877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473769

RESUMO

In French Polynesia, the first case of SARS-CoV-2 infection was detected on March 10th, 2020, in a resident returning from France. Between March 28th and July 14th, international air traffic was interrupted and local transmission of SARS-CoV-2 was brought under control, with only 62 cases recorded. The main challenge for reopening the air border without requiring travelers to quarantine on arrival was to limit the risk of re-introducing SARS-CoV-2. Specific measures were implemented, including the obligation for all travelers to have a negative RT-PCR test for SARS-CoV-2 carried out within 3 days before departure, and to perform another RT-PCR testing 4 days after arrival. Because of limitation in available medical staff, travelers were provided a kit allowing self-collection of oral and nasal swabs. In addition to increase our testing capacity, self-collected samples from up to 10 travelers were pooled before RNA extraction and RT-PCR testing. When a pool tested positive, RNA extraction and RT-PCR were performed on each individual sample. We report here the results of COVID-19 surveillance (COV-CHECK PORINETIA) conducted between July 15th, 2020, and February 15th, 2021, in travelers using self-collection and pooling approaches. We tested 5,982 pools comprising 59,490 individual samples, and detected 273 (0.46%) travelers positive for SARS-CoV-2. A mean difference of 1.17 Ct (CI 95% 0.93-1.41) was found between positive individual samples and pools (N = 50), probably related to the volume of samples used for RNA extraction (200 µL versus 50 µL, respectively). Retrospective testing of positive samples self-collected from October 20th, 2020, using variants-specific amplification kit and spike gene sequencing, found at least 6 residents infected by the Alpha variant. Self-collection and pooling approaches allowed large-scale screening for SARS-CoV-2 using less human, material and financial resources. Moreover, this strategy allowed detecting the introduction of SARS-CoV-2 variants of concern in French Polynesia.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Programas de Rastreamento/métodos , Vigilância da População/métodos , Manejo de Espécimes/métodos , Viagem , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Epidemias/prevenção & controle , França/epidemiologia , Humanos , Polinésia/epidemiologia , Estudos Prospectivos , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Manejo de Espécimes/instrumentação
20.
Viruses ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578334

RESUMO

3D-printed alternatives to standard flocked swabs were rapidly developed to provide a response to the unprecedented and sudden need for an exponentially growing amount of diagnostic tools to fight the COVID-19 pandemic. In light of the anticipated shortage, a hospital-based 3D-printing platform was implemented in our institution for the production of swabs for nasopharyngeal and oropharyngeal sampling based on the freely available, open-source design provided to the community by University of South Florida's Health Radiology and Northwell Health System teams as a replacement for locally used commercial swabs. Validation of our 3D-printed swabs was performed with a head-to-head diagnostic accuracy study of the 3D-printed "Northwell model" with the cobas PCR Media® swab sample kit. We observed an excellent concordance (total agreement 96.8%, Kappa 0.936) in results obtained with the 3D-printed and flocked swabs, indicating that the in-house 3D-printed swab could be used reliably in the context of a shortage of flocked swabs. To our knowledge, this is the first study to report on autonomous hospital-based production and clinical validation of 3D-printed swabs.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2 , Teste para COVID-19/instrumentação , Gerenciamento Clínico , Humanos , Nasofaringe/virologia , Reação em Cadeia da Polimerase/métodos , Impressão Tridimensional , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...