Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 354, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727357

RESUMO

BACKGROUND: The non-structural carbohydrates (NSCs), carbon (C), nitrogen (N), and phosphorus (P) are important energy source or nutrients for all plant growth and metabolism. To persist in shaded understory, saplings have to maintain the dynamic balance of carbon and nutrients, such as leaf NSCs, C, N and P. To improve understanding of the nutrient utilization strategies between shade-tolerant and shade-intolerant species, we therefore compared the leaf NSCs, C, N, P in response to shade between seedlings of shade-tolerant Schima superba and shade-intolerant Cunninghamia lanceolate. Shading treatments were created with five levels (0, 40, 60, 85, 95% shading degree) to determine the effect of shade on leaf NSCs contents and C:N:P stoichiometry characteristics. RESULTS: Mean leaf area was significantly larger under 60% shading degree for C. lanceolata while maximum mean leaf area was observed under 85% shading degree for S. superba seedlings, whereas leaf mass per area decreased consistently with increasing shading degree in both species. In general, both species showed decreasing NSC, soluble sugar and starch contents with increasing shading degree. However shade-tolerant S. superba seedlings exhibited higher NSC, soluble sugar and starch content than shade-intolerant C. lanceolate. The soluble sugar/starch ratio of C. lanceolate decreased with increasing shading degree, whereas that of S. superb remained stable. Leaf C:N ratio decreased while N:P ratio increased with increasing shading degree; leaf C:P ratio was highest in 60% shading degree for C. lanceolata and in 40% shading degree for S. superba. CONCLUSION: S. superba is better adapted to low light condition than C. lanceolata through enlarged leaf area and increased carbohydrate reserves that allow the plant to cope with low light stress. From mixed plantation viewpoint, it would be advisable to plant S. superba later once the canopy of C. lanceolata is well developed but allowing enough sunlight.


Assuntos
Cunninghamia/fisiologia , Folhas de Planta/fisiologia , Theaceae/fisiologia , Metabolismo dos Carboidratos , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/anatomia & histologia , Plântula/fisiologia , Amido/metabolismo , Luz Solar , Árvores
2.
Sci Rep ; 9(1): 14942, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628341

RESUMO

The competition-colonization trade-off, by which species can partition spatial niches, is a potentially important mechanism allowing the maintenance of species diversity in plant communities. We examined whether there was evidence for this trade-off among tree species in a subtropical forest and how it correlated with eight functional traits. We developed and estimated a metric for colonization ability that incorporates both fecundity and seed dispersal based on seed trap data and the sizes and distributions of adult trees. Competitive ability was estimated as survival probability under high crowding conditions based on neighborhood models. Although we found no significant relationship between colonization and competitive abilities, there was a significant negative correlation between long distance dispersal ability and competitive ability at the 5 cm size class. Colonizers had traits associated with faster growth, such as large leaves and low leaf lamina density, whereas competitors had traits associated with higher survival, such as dense wood. Our results imply that any trade-off between competition and colonization may be more determined by dispersal ability than by fecundity, suggesting that seed dispersal is an important contributor to diversity maintenance. Future work should test how competitive ability covaries with the components of colonization ability, as we did here.


Assuntos
Fagaceae/fisiologia , Variação Genética , Juglandaceae/fisiologia , Lauraceae/fisiologia , Theaceae/fisiologia , Árvores/fisiologia , Florestas , Modelos Estatísticos , Fenótipo , Folhas de Planta , Probabilidade , Dispersão de Sementes , Sementes , Especificidade da Espécie , Madeira
3.
PLoS One ; 11(12): e0166975, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27930677

RESUMO

Schima superba is an important dominant species in subtropical evergreen broadleaved forests of China, and plays a vital role in community structure and dynamics. However, the survival rate of its seedlings in the field is low, and water shortage could be a factor that limits its regeneration. In order to better understand the response of its seedlings to drought stress on a functional genomics scale, RNA-seq technology was utilized in this study to perform a large-scale transcriptome sequencing of the S. superba seedlings under drought stress. More than 320 million clean reads were generated and 72218 unique transcripts were obtained through de novo assembly. These unigenes were further annotated by blasting with different public databases and a total of 53300 unique transcripts were annotated. A total of 31586 simple sequence repeat (SSR) loci were presented. Through gene expression profiling analysis between drought treatment and control, 11038 genes were found to be significantly enriched in drought-stressed seedlings. Based on these differentially expressed genes (DEGs), Gene Ontology (GO) terms enrichment and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis indicated that drought stress caused a number of changes in the types of sugars, enzymes, secondary mechanisms, and light responses, and induced some potential physical protection mechanisms. In addition, the expression patterns of 18 transcripts induced by drought, as determined by quantitative real-time PCR, were consistent with their transcript abundance changes, as identified by RNA-seq. This transcriptome study provides a rapid method for understanding the response of S. superba seedlings to drought stress and provides a number of gene sequences available for further functional genomics studies.


Assuntos
Plântula/fisiologia , Theaceae/genética , Desidratação/fisiopatologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase , Plântula/genética , Análise de Sequência de DNA , Theaceae/fisiologia , Transcriptoma
4.
Zh Obshch Biol ; 76(3): 225-43, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26201219

RESUMO

Higher plants show a wide range of leaf lifespan (LL) variability. LL is calculated as a sum of functional LL(f) (corresponding to the time of active photosynthesis and CO2 accumulation in the leaf) and nonfunctional LL(n) (the time of photosynthetic activity absence). For evergreen species of boreal zones, LL(n) corresponds to the period of winter rest. Photosynthetic potential of leaf (PPL), interpreted as the maximum possible amount of CO2 that can be fixed during its life, can be estimated on the basis of maximum photosynthesis rate (P(a)) dynamics during LL(f); the maximum (P(a max)) being achieved in mature leaf. Photosynthetic potential depends on LL(f) more strongly than on P(a max). The PPL/LL(f) ratio is indicative of the rate of PPL realization over leaf lifespan. As LL(f) shows strong positive correlation with LL, the latter parameter can also characterize the rate of PPL realization. Long LL(f) in evergreen species provides higher PPL, which is advantageous by comparison with deciduous ones. In evergreen species, the PPL itself is realized slower than in deciduous ones. The increase in LL(f) and LL is accompanied by the increase in leaf constructional cost (LCC(a)) as well as the decrease in photosynthesis rate. At that, photosynthesis rate per unit of dry weight (P(m)) decreases much faster than that per unit of leaf area (P(a)). Apparently, when considering dry leaf weight, the apoplast share seems to be much higher in long-living leaves of evergreen species than in short-living leaves of deciduous species. The leaf payback (LP) may be stabilized by unidirectional shifts in PPL and LCC(a). Species with short/long LL(f) and high/low PPL realization rate are typical for early/late succession stages and for habitats with the environmental conditions favorable/adverse for photosynthesis and growth. If the conditions for photosynthesis and growth are favorable, high PPL realization rate provides advantage in competition. The PPL realization rate is coupled with the rate of leaf senescence.


Assuntos
Lauraceae/fisiologia , Modelos Estatísticos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Rosales/fisiologia , Theaceae/fisiologia , Ecossistema , Luz , Estações do Ano , Especificidade da Espécie , Fatores de Tempo
5.
Plant Biol (Stuttg) ; 17(1): 194-200, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24841823

RESUMO

Subdioecy is thought to occupy a transitional position in the gynodioecy-dioecy pathway, explaining one of the evolutionary routes from hermaphroditism to dioecy. Quantifying any female reproductive advantage of females versus hermaphrodites is fundamental to examining the spectrum between subdioecy and dioecy; however, this is challenging, as multiple interacting factors, such as pollen limitation and resource availability, affect plant reproduction. We compared the female reproductive success of females and hermaphrodites via a field experiment in which we hand-pollinated individuals of the subdioecious shrub Eurya japonica of similar size growing under similar light conditions. Effects of pollen limitation and seed quality were also evaluated through comparing the results of hand- and natural-pollination treatments and performing additional laboratory and greenhouse experiments. Overall, females had higher fruit set and produced heavier fruit and more seeds than hermaphrodites, and these results were more pronounced for hand-pollinated than for natural-pollinated plants of both sexes. We also found that seeds naturally produced by females had a higher mean germination rate. These results indicate that females had a pronounced advantage in female reproductive success under conditions of no pollen limitation. The sexual difference in the degree of pollen limitation suggests a pollinator-mediated interaction, whereas the higher female reproductive success of females even under natural conditions implies that E. japonica is a good model species for elucidating the later stages of the gynodioecy-dioecy pathway.


Assuntos
Polinização/fisiologia , Theaceae/fisiologia , Evolução Biológica , Flores/genética , Flores/fisiologia , Frutas/genética , Frutas/fisiologia , Germinação/fisiologia , Organismos Hermafroditas , Pólen/genética , Pólen/fisiologia , Reprodução/fisiologia , Plântula/genética , Plântula/fisiologia , Sementes/genética , Sementes/fisiologia , Theaceae/genética
6.
Ying Yong Sheng Tai Xue Bao ; 25(4): 931-9, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25011282

RESUMO

The xylem sap flows of two pioneer tree species, i.e., Acacia mangium and Schima superba, in degraded hill lands of South China, were continually monitored with Granier' s thermal dissipation probes during 2004-2007 and 2008-2012, respectively, and their seasonal transpiration changes at different tree age levels were compared. The results showed that the annual transpiration of both species increased with tree ages, and S. superba demonstrated a higher value than A. mangium. The average annual whole-tree transpiration of S. superba (7014.76 kg) was higher than that of A. mangium (3704.97 kg). A. mangium (511.46-1802.17 kg) had greater seasonal variation than S. superba (1346.48-2349.35 kg). The standard regression coefficients (beta) of transpiration (Eh), photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) for both species increased with soil moisture, suggesting the increase of soil moisture generated a greater sensitivity of plants to environmental factors. Partial correlation analysis revealed that soil moisture played an important role in the seasonal variation of transpiration of both species. The optimum soil moistures of S. superba and A. mangium were 0.22-0.40 and 0.29-0.30 (V/V), respectively, indicating the native pioneer species S. superba better adapted to water deficit compared with exotic pioneer species A. mangium.


Assuntos
Acacia/fisiologia , Transpiração Vegetal , Theaceae/fisiologia , Água/fisiologia , China , Ecossistema , Fotossíntese , Estações do Ano , Solo , Árvores , Xilema
7.
Sci China Life Sci ; 56(11): 1038-46, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24203453

RESUMO

Coarse roots play a critical role in forest ecosystems and both abiotic and biotic factors affect their spatial distribution. To some extent, coarse root density may reflect the quantity of root biomass and biotic competition in forests. However, using traditional methods (e.g., excavation) to study coarse roots is challenging, because those methods are time-consuming and laborious. Furthermore, these destructive methods cannot be repeated in the same forests. Therefore, the discovery of non-destructive methods for root studies will be very significant. In this study, we used a ground-penetrating radar technique to detect the coarse root density of three habitats (ridge, slope and valley) and the dominant tree species (Castanopsis eyrei and Schima superba) in a subtropical forest. We found that (i) the mean of coarse root density for these three habitats was 88.04 roots m(-2), with roots being mainly distributed at depths of 0-40 cm. Coarse root densities were lower in deeper soils and in areas far from the trunk. (ii) Coarse root densities differed significantly among the three habitats studied here with slope habitat having the lowest coarse root density. Compared with S. superba, C. eyrei had more roots distributed in deeper soils. Furthermore, coarse roots with a diameter >3 cm occurred more frequently in the valleys, compared with root densities in ridge and slope habitats, and most coarse roots occurred at soil depths of 20-40 cm. (iii) The coarse root density correlated negatively with tree species richness at soil depths of 40-60 cm. The abundances of the dominant species, such as C. eyrei, Cyclobalanopsis glauca, Pinus massoniana, had significant impacts on coarse root density. (iv) The soil depth of 0-40 cm was the "basic distribution layer" for coarse roots since the majority of coarse roots were found in this soil layer with an average root density of 84.18 roots m(-2), which had no significant linear relationships with topography, tree species richness, rarefied tree species richness and tree density. Significant relationships between coarse root density and these factors were found at the soil depth of 40-60 cm, which was the "potential distribution layer" for coarse root distribution.


Assuntos
Ecossistema , Fagaceae/fisiologia , Agricultura Florestal/métodos , Raízes de Plantas/fisiologia , Radar , Theaceae/fisiologia , Árvores , China , Densidade Demográfica
8.
Plant Physiol Biochem ; 64: 41-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23353765

RESUMO

To study whether differential responses occur in photosynthesis and antioxidant system for seedlings of Liquidambar formosana, an acid rain (AR)-sensitive tree species and Schima superba, an AR-tolerant tree species treated with three types of pH 3.0 simulated AR (SiAR) including sulfuric-rich (S-SiAR), nitric-rich (N-SiAR), sulfate and nitrate mixed (SN-SiAR), we investigated the changes of leaf necrosis, chlorophyll content, soluble protein and proline content, photosynthesis and chlorophyll fluorescence characteristics, reactive oxygen species production, membrane lipid peroxidation, small molecular antioxidant content, antioxidant enzyme activities and related protein expressions. Our results showed that SiAR significantly caused leaf necrosis, inhibited photosynthesis, induced superoxide radical and hydrogen peroxide generation, aggravated membrane lipid peroxidation, changed antioxidant enzyme activities, modified related protein expressions such as Cu/Zn superoxide dismutase (SOD), l-ascorbate peroxidase (APX, EC 1. 11. 1. 11), glutathione S transferase (GST, EC 2. 5. 1. 18) and Rubisco large subunit (RuBISCO LSU), altered non-protein thiols (NPT) and glutathione (GSH) content in leaves of L. formosana and S. superba. Taken together, we concluded that the damages caused by SiAR in L. formosana were more severe and suffered from more negative impacts than in S. superba. S-SiAR induced more serious damages for the plants than did SN-SiAR and N-SiAR.


Assuntos
Chuva Ácida/efeitos adversos , Ácidos não Carboxílicos/efeitos adversos , Antioxidantes/metabolismo , Liquidambar/fisiologia , Fotossíntese , Estresse Fisiológico , Theaceae/fisiologia , Membrana Celular , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Liquidambar/metabolismo , Ácido Nítrico/efeitos adversos , Folhas de Planta , Ribulose-Bifosfato Carboxilase/metabolismo , Plântula , Compostos de Sulfidrila/metabolismo , Ácidos Sulfúricos/efeitos adversos , Superóxidos/metabolismo , Theaceae/metabolismo , Árvores
9.
Ying Yong Sheng Tai Xue Bao ; 23(7): 1751-7, 2012 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-23173445

RESUMO

To understand the nighttime water recharge of tree through its sap flow is beneficial to the precise estimation of total transpiration and canopy stomatal conductance, and to the further understanding of the time lag between canopy transpiration and stem sap flow. By using Granier's thermal dissipation probe, this paper measured the stem sap flow of Schima superba, and synchronously measured the main environmental factors including air temperature, relative humidity, photosynthetically active radiation, and soil moisture content, and also analyzed the water recharge through nighttime stem flow of S. superba at daily and seasonal scales. The sap flow density of S. superba was lower at night than at daytime, and the nighttime sap flow density had a larger variation in dry season than in wet season. The water recharge at night generally started from sunset when radiation was approaching zero, and lasted up to midnight (18:00-22:00). No significant difference was observed in the nighttime water recharge among seasons, and no significant correlations were found between the nighttime water recharge and environmental factors, but the nighttime water recharge was well regressed with the diameter at breast height, tree height, tree canopy size, stem biomass, and canopy biomass, suggesting that tree form features and biomass could better explain the nighttime water recharge. The contribution of nighttime water recharge to the total transpiration varied significantly with seasons, and was obviously higher in dry season than in wet season.


Assuntos
Ecossistema , Caules de Planta/fisiologia , Transpiração Vegetal/fisiologia , Theaceae/fisiologia , Água/fisiologia , Técnicas de Química Analítica/instrumentação , China , Estações do Ano
10.
Tree Physiol ; 23(9): 641-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12750057

RESUMO

A stomatal conductance model and a photosynthesis model were applied to field measurements of transpiration and photosynthesis of seven tree species growing in subtropical southern China. Parameter values of drought resistance and tolerance and biochemical assimilation capacity were obtained by means of nonlinear statistical regression, and were used to quantify species succession. The analysis indicated that the models adequately described the ecophysiological behavior of the trees under various environmental conditions. We found a general pattern of decreased drought resistance and tolerance, but increased biochemical assimilation capacity from pines to heliophilus broadleaf trees to mesophilus broadleaf trees. Succession was explained on the basis of these physiological characteristics together with positive feedbacks caused by changes in soil physical properties. The ecophysiological explanation of succession implies that: (1) fitness of a species for a particular succession stage at a particular location can be measured by stomatal behavior and biochemical assimilation capacity under local climate and soil conditions; (2) selection of species for a particular location at a particular succession stage can be guided by the parameter values provided in this study; and (3) succession may be accelerated by selecting trees with large root systems and large soil-root conductances that facilitate soil hydraulic redistribution of water.


Assuntos
Ecossistema , Árvores/fisiologia , China , Desidratação , Ecologia , Fagaceae/fisiologia , Fotossíntese/fisiologia , Pinus/fisiologia , Transpiração Vegetal/fisiologia , Theaceae/fisiologia
11.
Evolution ; 57(1): 62-73, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12643568

RESUMO

Camellia japonica L. (Theaceae), an insect- and bird-pollinated, broad-leaved evergreen tree, is widely distributed in Japan and the southern Korean peninsula. The species has a relatively even age distribution within populations, which may influence the spatial genetic structure of different age classes relative to species with typical L-shaped age distributions. To determine whether the internal spatial genetic structure found in seedlings and young individuals carries over into adults, we used allozyme loci, F-statistics, spatial autocorrelation statistics (Moran's I), and coancestry measures to examine changes in genetic structure among seven age classes in a population (60-m x 100-m area) in southern Korea. In seedlings, weak but significant positive values of Moran's I-statistics and coancestry measures were found for distances less than 14 m, which is consistent with a mechanism of limited seed dispersal combined with overlapping seed shadows. This spatial structure, however, dissipates in older age classes, and in adults genetic variation has an essentially random spatial distribution. Morisita's index of dispersion of individuals in each age class showed that seedlings and juveniles are more highly clustered than are older individuals. These results suggest that self-thinning changes the spatial relationships of individuals, and thus genotypes. A multilocus estimate of FST (0.008) shows a small but statistically significant difference in allele frequencies among age classes. In summary, intrapopulation genetic structure within and among age classes of C. japonica was significant but weak. Despite presumably limited seed dispersal, weak spatial genetic structure in juveniles suggests overlapping seed shadows followed by self-thinning during recruitment. The present study also demonstrates that studies of spatial genetic structure focusing on limited numbers of generations may not be sufficient to reveal the entire picture of genetic structure in populations with overlapping generations.


Assuntos
Theaceae/genética , Eletroforese , Genes de Plantas , Theaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...