Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Appl Microbiol ; 44(4): 126230, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34293647

RESUMO

A novel hyperthermophilic crenarchaeon, strain 3507LTT, was isolated from a terrestrial hot spring near Tinguiririca volcano, Chile. Cells were non-motile thin, slightly curved filamentous rods. It grew at 73-93 °C and pH range of 5 to 7.5 with an optimum at 85 °C and pH 6.0-6.7. The presence of culture broth filtrate of another hyperthemophilic archaeon as well as yeast extract was obligatory for growth of the novel isolate. Strain 3507LTT is an anaerobic chemoorganoheterotroph, fermenting monosaccharides, disaccharides and polysaccharides (lichenan, starch, xanthan gum, xyloglucan, alpha-cellulose and amorphous cellulose). No growth stimulation was detected when nitrate, thiosulfate, selenate or elemental sulfur were added as the electron acceptors. The complete genome of strain 3507LTT consisted of a single circular chromosome with size of 1.63 Mbp. The DNA G+C content was 53.9%. According to the 16S rRNA gene sequence as well as conserved protein sequences phylogenetic analyses, strain 3507LTT together with Thermofilum uzonense formed a separate cluster within a Thermofilaceae family (Thermoproteales/Thermoprotei/Crenarchaeota). Based on phenotypic characteristics, phylogeny as well as AAI comparisons, a novel genus and species Infirmifilum lucidum strain 3507LTT (=VKM B-3376T = KCTC 15797T) gen. nov. sp. nov. was proposed. Its closest relative, Thermofilum uzonense strain 1807-2T should be reclassified as Infirmifilum uzonense strain 1807-2T comb. nov. Finally, based on phylogenomic and comparative genome analyses of representatives of Thermofilaceae family and other representatives of Thermoproteales order, a proposal of transfer of the family Thermofilaceae into a separate order Thermofilales ord. nov. was made.


Assuntos
Fontes Termais/microbiologia , Filogenia , Thermofilaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Thermofilaceae/classificação , Thermofilaceae/isolamento & purificação
2.
Syst Appl Microbiol ; 43(2): 126064, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32044151

RESUMO

The ability to grow by anaerobic CO oxidation with production of H2 from water is known for some thermophilic bacteria, most of which belong to Firmicutes, as well as for a few hyperthermophilic Euryarchaeota isolated from deep-sea hydrothermal habitats. A hyperthermophilic, neutrophilic, anaerobic filamentous archaeon strain 1505=VKM B-3180=KCTC 15798 was isolated from a terrestrial hot spring in Kamchatka (Russia) in the presence of 30% CO in the gas phase. Strain 1505 could grow lithotrophically using carbon monoxide as the energy source with the production of hydrogen according to the equation CO+H2O→CO2+H2; mixotrophically on CO plus glucose; and organotrophically on peptone, yeast extract, glucose, sucrose, or Avicel. The genome of strain 1505 was sequenced and assembled into a single chromosome. Based on 16S rRNA gene sequence analysis and in silico genome-genome hybridization, this organism was shown to be closely related to the Thermofilum adornatum species. In the genome of Thermofilum sp. strain 1505, a gene cluster (TCARB_0867-TCARB_0879) was found that included genes of anaerobic (Ni,Fe-containing) carbon monoxide dehydrogenase and genes of energy-converting hydrogenase ([Ni,Fe]-CODH-ECH gene cluster). Compared to the [Ni,Fe]-CODH-ECH gene clusters occurring in the sequenced genomes of other H2-producing carboxydotrophs, the [Ni,Fe]-CODH-ECH gene cluster of Thermofilum sp. strain 1505 presented a novel type of gene organization. The results of the study provided the first evidence of anaerobic CO oxidation coupled with H2 production performed by a crenarchaeon, as well as the first documented case of lithotrophic growth of a Thermofilaceae representative.


Assuntos
Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Thermofilaceae/crescimento & desenvolvimento , Thermofilaceae/metabolismo , Aldeído Oxirredutases/genética , Anaerobiose , Processos Autotróficos , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Fontes Termais/química , Fontes Termais/microbiologia , Hidrogenase/genética , Complexos Multienzimáticos/genética , Família Multigênica , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Thermofilaceae/classificação , Thermofilaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...