Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 812-820, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545979

RESUMO

Taq DNA polymerase, which was discovered from a thermophilic aquatic bacterium (Thermus aquaticus), is an enzyme that possesses both reverse transcriptase activity and DNA polymerase activity. Colicin E (CE) protein belongs to a class of Escherichia coli toxins that utilize the vitamin receptor BtuB as a transmembrane receptor. Among these toxins, CE2, CE7, CE8, and CE9 are classified as non-specific DNase-type colicins. Taq DNA polymerase consists of a 5'→3' exonuclease domain, a 3'→5' exonuclease domain, and a polymerase domain. Taq DNA polymerase lacking the 5'→3' exonuclease domain (ΔTaq) exhibits higher yield but lower processivity, making it unable to amplify long fragments. In this study, we aimed to enhance the processivity of ΔTaq. To this end, we fused dCE with ΔTaq and observed a significant improvement in the processivity of the resulting dCE-ΔTaq compared to Taq DNA polymerase and dCE-Taq. Furthermore, its reverse transcriptase activity was also higher than that of ΔTaq. The most notable improvement was observed in dCE8-ΔTaq, which not only successfully amplified 8 kb DNA fragments within 1 minute, but also yielded higher results compared to other mutants. In summary, this study successfully enhanced the PCR efficiency and reverse transcription activity of Taq DNA polymerase by fusing ΔTaq DNA polymerase with dCE. This approach provides a novel approach for modifying Taq DNA polymerase and holds potential for the development of improved variants of Taq DNA polymerase.


Assuntos
Colicinas , Taq Polimerase/genética , Taq Polimerase/química , Taq Polimerase/metabolismo , Colicinas/genética , Colicinas/metabolismo , Escherichia coli/metabolismo , DNA , Exonucleases , DNA Polimerase Dirigida por RNA/metabolismo , Thermus/genética , Thermus/metabolismo
2.
J Gen Appl Microbiol ; 69(2): 102-108, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37532583

RESUMO

In an extreme thermophile, Thermus thermophilus, sym-homospermidine is synthesized by the actions of two enzymes. The first enzyme coded by dhs gene (annotated to be deoxyhypusine synthase gene) catalyzes synthesis of an intermediate, supposed to be 1,9-bis(guanidino)-5-aza-nonane (=N1, N11-bis(amidino)-sym-homospermidine), from two molecules of agmatine in the presence of NAD. The second enzyme (aminopropylagmatinase) coded by speB gene catalyzes hydrolysis of the intermediate compound to sym-homospermidine releasing two molecules of urea.


Assuntos
Espermidina , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Espermidina/metabolismo , Redes e Vias Metabólicas/genética , Thermus/metabolismo
3.
J Gen Appl Microbiol ; 69(2): 68-78, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394433

RESUMO

In thermophilic microorganisms, c-type cytochrome (cyt) proteins mainly function in the respiratory chain as electron carriers. Genome analyses at the beginning of this century revealed a variety of genes harboring the heme c motif. Here, we describe the results of surveying genes with the heme c motif, CxxCH, in a genome database comprising four strains of Thermus thermophilus, including strain HB8, and the confirmation of 19 c-type cytochromes among 27 selected genes. We analyzed the 19 genes, including the expression of four, by a bioinformatics approach to elucidate their individual attributes. One of the approaches included an analysis based on the secondary structure alignment pattern between the heme c motif and the 6th ligand. The predicted structures revealed many cyt c domains with fewer ß-strands, such as mitochondrial cyt c, in addition to the ß-strand unique to Thermus inserted in cyt c domains, as in T. thermophilus cyt c552 and caa3 cyt c oxidase subunit IIc. The surveyed thermophiles harbor potential proteins with a variety of cyt c folds. The gene analyses led to the development of an index for the classification of cyt c domains. Based on these results, we propose names for T. thermophilus genes harboring the cyt c fold.


Assuntos
Citocromos , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Transporte de Elétrons , Citocromos/metabolismo , Thermus/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
4.
J Gen Appl Microbiol ; 69(2): 59-67, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37460312

RESUMO

ThermusQ is a website (https://www.thermusq.net/) that aims to gather all the molecular information on Thermus thermophilus and to provide a platform to easily access the whole view of the bacterium. ThermusQ comprises the genome sequences of 22 strains from T. thermophilus and T. oshimai strains, plus the sequences of known Thermus phages. ThermusQ also contains information and map diagrams of pathways unique to Thermus strains. The website provides tools to retrieve sequence data in different ways. By gathering the whole data of T. thermophilus strains, the strainspecific characteristics was found. This bird's-eye view of the whole data will lead the research community to identify missing important data and the integration will provide a platform to conduct future biochemical simulations of the bacterium.


Assuntos
Thermus thermophilus , Thermus , Thermus thermophilus/genética , Thermus/genética , Thermus/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 686-695, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35643958

RESUMO

Prokaryotic Argonaute (pAgo) nucleases with precise DNA cleavage activity show great potential for gene manipulation. Extensive biochemical studies have revealed that recognition of guides with different 5' groups by Ago is important for biocatalysis. Here, we identified an Ago from the thermophilic Thermus parvatiensis ( TpsAgo) and analyzed the regulatory effect of 5'-modified guides on TpsAgo cleavage activity. Recombinant TpsAgo cleaves single-stranded DNA and RNA targets at 65-90°C, which is mediated by a 5' hydroxyl or phosphate DNA guide. Notably, TpsAgo can utilize various 5'-modified DNA guides for catalysis, including 5'-NH 2C 6, 5'-Biotin, 5'-FAM and 5'-SHC 6 guides. Moreover, TpsAgo performs programmable cleavage of double-stranded DNA at temperatures over 80°C and strongly tolerates NaCl concentrations up to 3.2 M. These results provide insight into the catalytic performance of Agos by guide regulation, which may facilitate their biotechnological applications.


Assuntos
DNA , Thermus , Thermus/genética , Thermus/metabolismo , DNA de Cadeia Simples , Endonucleases , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
6.
Microbiol Spectr ; 9(3): e0133321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817221

RESUMO

A novel putative trehalose synthase gene (treM) was identified from an extreme temperature thermal spring. The gene was expressed in Escherichia coli followed by purification of the protein (TreM). TreM exhibited the pH optima of 7.0 for trehalose and trehalulose production, although it was functional and stable in the pH range of 5.0 to 8.0. Temperature activity profiling revealed that TreM can catalyze trehalose biosynthesis in a wide range of temperatures, from 5°C to 80°C. The optimum activity for trehalose and trehalulose biosynthesis was observed at 45°C and 50°C, respectively. A catalytic reaction performed at the low temperature of 5°C yielded trehalose with significantly reduced by-product (glucose) production in the reaction. TreM displayed remarkable thermal stability at optimum temperatures, with only about 20% loss in the activity after heat (50°C) exposure for 24 h. The maximum bioconversion yield of 74% trehalose (at 5°C) and 90% trehalulose (at 50°C) was obtained from 100 mM maltose and 70 mM sucrose, respectively. TreM was demonstrated to catalyze trehalulose biosynthesis utilizing the low-cost feedstock jaggery, cane molasses, muscovado, and table sugar. IMPORTANCE Trehalose is a rare sugar of high importance in biological research, with its property to stabilize cell membrane and proteins and protect the organism from drought. It is instrumental in the cryopreservation of human cells, e.g., sperm and blood stem cells. It is also very useful in the food industry, especially in the preparation of frozen food products. Trehalose synthase is a glycosyl hydrolase 13 (GH13) family enzyme that has been reported from about 22 bacterial species so far. Of these enzymes, to date, only two have been demonstrated to catalyze the biosynthesis of both trehalose and trehalulose. We have investigated the metagenomic data of an extreme temperature thermal spring to discover a novel gene that encodes a trehalose synthase (TreM) with higher stability and dual transglycosylation activities of trehalose and trehalulose biosynthesis. This enzyme is capable of catalyzing the transformation of maltose to trehalose and sucrose to trehalulose in a wide pH and temperature range. The present investigation endorses the thermal aquatic habitat as a promising genetic resource for the biocatalysts with high potential in producing high-value rare sugars.


Assuntos
Dissacarídeos/biossíntese , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Nocardioides/metabolismo , Thermus/metabolismo , Trealose/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Fontes Termais/microbiologia , Humanos , Metagenoma/genética , Nocardioides/enzimologia , Nocardioides/genética , Thermomonospora/enzimologia , Thermomonospora/genética , Thermomonospora/metabolismo , Thermus/enzimologia , Thermus/genética
7.
Int J Biol Macromol ; 193(Pt A): 81-87, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34678383

RESUMO

Synthesis of large-ring cyclodextrins (LR-CDs) in any significant amount has been challenging. This study enhanced the LR-CDs production by Thermus filiformis amylomaltase (TfAM) enzyme by starch pretreatment using glycogen debranching enzyme from Corynebacterium glutamicum (CgGDE). CgGDE pretreated tapioca starch gave LR-CD conversion of 31.2 ± 2.2%, compared with LR-CDs produced from non-treated tapioca starch (16.0 ± 2.4%). CgGDE pretreatment enhanced amylose content by approximately 30%. Notably, a shorter incubation time of 1 h is sufficient for CgGDE starch pretreatment to produce high LR-CD yield, compared with 6 h required for the commercial isoamylase. High-Performance Anion Exchange Chromatography coupled with Pulsed Amperometric Detection (HPAEC-PAD) and Gel Permeable Chromatography (GPC) revealed that CgGDE is more efficient than the commercial isoamylase in debranching tapioca starch and gave lower molecular weight products. In addition, lower amount of by-products (linear oligosaccharides) were detected in cyclization reaction when using CgGDE-pretreated starch. In conclusion, CgGDE is a highly effective enzyme to promote LR-CD synthesis from starch with a shorter incubation time than the commercial isoamylase.


Assuntos
Corynebacterium glutamicum/enzimologia , Ciclodextrinas/química , Sistema da Enzima Desramificadora do Glicogênio/química , Amido/química , Thermus/metabolismo
8.
Nucleic Acids Res ; 49(19): 10807-10817, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33997906

RESUMO

In ribosomal translation, the accommodation of aminoacyl-tRNAs into the ribosome is mediated by elongation factor thermo unstable (EF-Tu). The structures of proteinogenic aminoacyl-tRNAs (pAA-tRNAs) are fine-tuned to have uniform binding affinities to EF-Tu in order that all proteinogenic amino acids can be incorporated into the nascent peptide chain with similar efficiencies. Although genetic code reprogramming has enabled the incorporation of non-proteinogenic amino acids (npAAs) into the nascent peptide chain, the incorporation of some npAAs, such as N-methyl-amino acids (MeAAs), is less efficient, especially when MeAAs frequently and/or consecutively appear in a peptide sequence. Such poor incorporation efficiencies can be attributed to inadequate affinities of MeAA-tRNAs to EF-Tu. Taking advantage of flexizymes, here we have experimentally verified that the affinities of MeAA-tRNAs to EF-Tu are indeed weaker than those of pAA-tRNAs. Since the T-stem of tRNA plays a major role in interacting with EF-Tu, we have engineered the T-stem sequence to tune the affinity of MeAA-tRNAs to EF-Tu. The uniform affinity-tuning of the individual pairs has successfully enhanced the incorporation of MeAAs, achieving the incorporation of nine distinct MeAAs into both linear and thioether-macrocyclic peptide scaffolds.


Assuntos
Aminoácidos/genética , Escherichia coli/genética , Fator Tu de Elongação de Peptídeos/química , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/química , Thermus/genética , Aminoácidos/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Escherichia coli/metabolismo , Engenharia Genética/métodos , Cinética , Metilação , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Ligação Proteica , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Termodinâmica , Thermus/metabolismo
9.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741620

RESUMO

A novel gene cluster involved in the degradation of lignin-derived monoaromatics such as p-hydroxybenzoate, vanillate, and ferulate has been identified in the thermophilic nitrate reducer Thermus oshimai JL-2. Based on conserved domain analyses and metabolic pathway mapping, the cluster was classified into upper- and peripheral-pathway operons. The upper-pathway genes, responsible for the degradation of p-hydroxybenzoate and vanillate, are located on a 0.27-Mb plasmid, whereas the peripheral-pathway genes, responsible for the transformation of ferulate, are spread throughout the plasmid and the chromosome. In addition, a lower-pathway operon was also identified in the plasmid that corresponds to the meta-cleavage pathway of catechol. Spectrophotometric and gene induction data suggest that the upper and lower operons are induced by p-hydroxybenzoate, which the strain can degrade completely within 4 days of incubation, whereas the peripheral genes are expressed constitutively. The upper degradation pathway follows a less common route, proceeding via the decarboxylation of protocatechuate to form catechol, and involves a novel thermostable γ-carboxymuconolactone decarboxylase homolog, identified as protocatechuate decarboxylase based on gene deletion experiments. This gene cluster is conserved in only a few members of the Thermales and shows traces of vertical expansion of catabolic pathways in these organisms toward lignoaromatics.IMPORTANCE High-temperature steam treatment of lignocellulosic biomass during the extraction of cellulose and hemicellulose fractions leads to the release of a wide array of lignin-derived aromatics into the natural ecosystem, some of which can have detrimental effects on the environment. Not only will identifying organisms capable of using such aromatics aid in environmental cleanup, but thermostable enzymes, if characterized, can also be used for efficient lignin valorization. However, no thermophilic lignin degraders have been reported thus far. The present study reports T. oshimai JL-2 as a thermophilic bacterium with the potential to use lignin-derived aromatics. The identification of a novel thermostable protocatechuate decarboxylase gene in the strain further adds to its significance, as such an enzyme can be efficiently used in the biosynthesis of cis,cis-muconate, an important intermediate in the commercial production of plastics.


Assuntos
Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Parabenos/metabolismo , Thermus/metabolismo , Ácido Vanílico/metabolismo , Genes Bacterianos , Família Multigênica , Thermus/genética
10.
Microbiol Res ; 243: 126655, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279728

RESUMO

How cell morphology is maintained in thermophilic bacteria is unknown. In this study, the functions and mechanisms of the potential cell shape determinants (e.g. MreB, MreC, MreD and RodA homologues) of the model extremely thermophilic bacterium Thermus thermophilus were initially analyzed. Deletion of mreC, mreD or rodA only resulted in heterozygous mutants indicating that these genes are all essential. In the MreB-inhibited (by A22) strain and the heterozygous mreC, mreD or rodA mutant, cell morphologies were drastically changed, and enlarged spherical cells were eventually dead indicating that they are vital for cell shape maintenance. When fused to sGFP, MreB, MreC, MreD, RodA, and the enzymes involved in peptidoglycan synthesis (e.g. PBP2 and MurG) exhibited similar subcellular localization pattern, appearing as patches, or bands slightly angled to the cell length. The localizations and functions of all the 6 proteins required a natural peptidoglycan synthesis pattern, additionally those of MreD, RodA and MurG were dependent on MreB polymerization. Consistently, through comprehensive bacterial two-hybrid analyses, it was revealed that MreB could interact with itself, MreC, MreD, RodA and MurG, and MreC could associate with PBP2. In conclusion, in T. thermophilus, MreB, MreC, MreD, RodA and the peptidoglycan synthesis enzymes probably form a network of interactions centered with MreB and bridged with MreC, thereby maintaining cell morphology.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/biossíntese , Thermus/citologia , Thermus/metabolismo , Proteínas de Bactérias/genética , Parede Celular/genética , Regulação Bacteriana da Expressão Gênica , Thermus/genética
11.
Nat Commun ; 11(1): 494, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980611

RESUMO

Photosynthetic organisms capture light energy to drive their energy metabolism, and employ the chemical reducing power to convert carbon dioxide (CO2) into organic molecules. Photorespiration, however, significantly reduces the photosynthetic yields. To survive under low CO2 concentrations, cyanobacteria evolved unique carbon-concentration mechanisms that enhance the efficiency of photosynthetic CO2 fixation, for which the molecular principles have remained unknown. We show here how modular adaptations enabled the cyanobacterial photosynthetic complex I to concentrate CO2 using a redox-driven proton-pumping machinery. Our cryo-electron microscopy structure at 3.2 Å resolution shows a catalytic carbonic anhydrase module that harbours a Zn2+ active site, with connectivity to proton-pumping subunits that are activated by electron transfer from photosystem I. Our findings illustrate molecular principles in the photosynthetic complex I machinery that enabled cyanobacteria to survive in drastically changing CO2 conditions.


Assuntos
Carbono/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fotossíntese , Bombas de Próton/metabolismo , Dióxido de Carbono/metabolismo , Domínio Catalítico , Complexo I de Transporte de Elétrons/química , Oxirredução , Eletricidade Estática , Thermus/metabolismo , Água/metabolismo
12.
J Hazard Mater ; 384: 121271, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31611021

RESUMO

Land spreading of sewage sludge is a major source of environmental microplastics (MPs) contamination. However, conventional sludge treatments are inefficient at removing sludge-based MPs. Herein, hyperthermophilic composting (hTC) technology is proposed and demonstrated in full-scale (200 t) for in situ biodegradation of sludge-based MPs. After 45 days of hTC treatment, 43.7% of the MPs was removed from the sewage sludge, which is the highest value ever reported for MPs biodegradation. The underlying mechanisms of MPs removal were investigated in lab-scale polystyrene-microplastics (PS-MPs) biodegradation experiments. The hTC inoculum degraded 7.3% of the PS-MPs at 70 °C in 56 days, which was about 6.6 times higher than that of the conventional thermophilic composting (cTC) inoculum at 40 °C. Analyses of the molecular weight and physicochemical properties of the PS-MPs residuals indicated that hyperthermophilic bacteria in hTC accelerated PS-MPs biodegradation through excellent bio-oxidation performance. High-throughput sequencing suggested that Thermus, Bacillus, and Geobacillus were the dominant bacteria responsible for the highly efficient biodegradation during hTC. These results reveal the critical role of hyperthermophilic bacteria in MPs biodegradation during hTC, highlighting a promising strategy for sludge-based MPs removal from the real environment.


Assuntos
Compostagem/métodos , Microplásticos/metabolismo , Esgotos/microbiologia , Bacillus/metabolismo , Biodegradação Ambiental , Geobacillus/metabolismo , Thermus/metabolismo
13.
Methods Mol Biol ; 2075: 209-221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584165

RESUMO

Conjugation, transformation, and transduction constitute the three classical mechanisms involved in horizontal gene transfer (HGT) among prokaryotes. In addition, alternative HGT mechanisms exist in groups of organisms. Among them, the use of DNA-containing membrane vesicles as shuttle elements for HGT has been described for a number of microorganisms, including both thermophiles and mesophiles. Here we describe the methods followed to detect, purify, and analyze these vesicles.


Assuntos
Vesículas Extracelulares , Transferência Genética Horizontal , Thermus/genética , Thermus/metabolismo , Transporte Biológico , DNA/genética , DNA/metabolismo , Vesículas Extracelulares/ultraestrutura , Thermus/ultraestrutura , Transformação Bacteriana
14.
Metab Eng ; 52: 1-8, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30389613

RESUMO

The upgrade of D-xylose, the most abundant pentose, to value-added biochemicals is economically important to next-generation biorefineries. myo-Inositol, as vitamin B8, has a six-carbon carbon-carbon ring. Here we designed an in vitro artificial NAD(P)-free 12-enzyme pathway that can effectively convert the five-carbon xylose to inositol involving xylose phosphorylation, carbon-carbon (C-C) rearrangement, C-C bond circulation, and dephosphorylation. The reaction conditions catalyzed by all thermostable enzymes from hyperthermophilic microorganisms Thermus thermophiles, Thermotoga maritima, and Archaeoglobus fulgidus were optimized in reaction temperature, buffer type and concentration, enzyme composition, Mg2+ concentration, and fed-batch addition of ATP. The 11-enzyme cocktail, whereas a fructose 1,6-bisphosphatase from T. maritima has another function of inositol monophosphatase, converted 20 mM xylose to 16.1 mM inositol with a conversion efficiency of 96.6% at 70 °C. Polyphosphate was found to replace ATP for xylulose phosphorylation due to broad substrate promiscuity of the T. maritima xylulokinase. The Tris-HCl buffer effectively mitigated the Maillard reaction at 70 °C or higher temperature. The co-production of value-added biochemicals, such as inositol, from wood sugar could greatly improve economics of new biorefineries, similar to oil refineries that make value-added plastic precursors to subsidize gasoline/diesel production.


Assuntos
Suplementos Nutricionais/análise , Engenharia Metabólica/métodos , Açúcares/química , Madeira/química , Xilose/química , Trifosfato de Adenosina/metabolismo , Archaeoglobus/enzimologia , Archaeoglobus/metabolismo , Catálise , Inositol/metabolismo , Magnésio/metabolismo , Redes e Vias Metabólicas , NAD/metabolismo , Fosforilação , Thermotoga maritima/enzimologia , Thermus/enzimologia , Thermus/metabolismo
15.
Extremophiles ; 22(6): 983-991, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30219948

RESUMO

Thermus species are widespread in natural and artificial thermal environments. Two new yellow-pigmented strains, L198T and L423, isolated from Little Hot Creek, a geothermal spring in eastern California, were identified as novel organisms belonging to the genus Thermus. Cells are Gram-negative, rod-shaped, and non-motile. Growth was observed at temperatures from 45 to 75 °C and at salinities of 0-2.0% added NaCl. Both strains grow heterotrophically or chemolithotrophically by oxidation of thiosulfate to sulfate. L198T and L423 grow by aerobic respiration or anaerobic respiration with arsenate as the terminal electron acceptor. Values for 16S rRNA gene identity (≤ 97.01%), digital DNA-DNA hybridization (≤ 32.7%), OrthoANI (≤ 87.5%), and genome-to-genome distance (0.13) values to all Thermus genomes were less than established criteria for microbial species. The predominant respiratory quinone was menaquinone-8 and the major cellular fatty acids were iso-C15:0, iso-C17:0 and anteiso-C15:0. One unidentified phospholipid (PL1) and one unidentified glycolipid (GL1) dominated the polar lipid pattern. The new strains could be differentiated from related taxa by ß-galactosidase and ß-glucosidase activity and the presence of hydroxy fatty acids. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic evidence, the novel species Thermus sediminis sp. nov. is proposed, with the type strain L198T (= CGMCC 1.13590T = KCTC XXX).


Assuntos
Arseniatos/metabolismo , Thermus/genética , Tiossulfatos/metabolismo , Respiração Celular , Genoma Bacteriano , Fontes Termais/microbiologia , Metabolismo dos Lipídeos , Oxirredução , Termotolerância , Thermus/isolamento & purificação , Thermus/metabolismo
16.
J Biol Chem ; 293(37): 14285-14294, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30072380

RESUMO

Sliding clamps on DNA consist of evolutionarily conserved enzymes that coordinate DNA replication, repair, and the cellular DNA damage response. MutS homolog (MSH) proteins initiate mismatch repair (MMR) by recognizing mispaired nucleotides and in the presence of ATP form stable sliding clamps that randomly diffuse along the DNA. The MSH sliding clamps subsequently load MutL homolog (MLH/PMS) proteins that form a second extremely stable sliding clamp, which together coordinate downstream MMR components with the excision-initiation site that may be hundreds to thousands of nucleotides distant from the mismatch. Specific or nonspecific binding of other proteins to the DNA between the mismatch and the distant excision-initiation site could conceivably obstruct the free diffusion of these MMR sliding clamps, inhibiting their ability to initiate repair. Here, we employed bulk biochemical analysis, single-molecule fluorescence imaging, and mathematical modeling to determine how sliding clamps might overcome such hindrances along the DNA. Using both bacterial and human MSH proteins, we found that increasing the number of MSH sliding clamps on a DNA decreased the association of the Escherichia coli transcriptional repressor LacI to its cognate promoter LacO. Our results suggest a simple mechanism whereby thermal diffusion of MSH sliding clamps along the DNA alters the association kinetics of other DNA-binding proteins over extended distances. These observations appear generally applicable to any stable sliding clamp that forms on DNA.


Assuntos
DNA Bacteriano/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Thermus/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , Modelos Teóricos , Ligação Proteica , Ressonância de Plasmônio de Superfície
17.
Food Res Int ; 106: 428-438, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29579944

RESUMO

Black garlic is a distinctive garlic deep-processed product made from fresh garlic at high temperature and controlled humidity. To explore microbial community structure, diversity and metabolic potential during the 12days of the black garlic processing, Illumina MiSeq sequencing technology was performed to sequence the 16S rRNA V3-V4 hypervariable region of bacteria. A total of 677,917 high quality reads were yielded with an average read length of 416bp. Operational taxonomic units (OTU) clustering analysis showed that the number of species OTUs ranged from 148 to 1974, with alpha diversity increasing remarkably, indicating the high microbial community abundance and diversity. Taxonomic analysis indicated that bacterial community was classified into 45 phyla and 1125 distinct genera, and the microbiome of black garlic samples based on phylogenetic analysis was dominated by distinct populations of four genera: Thermus, Corynebacterium, Streptococcus and Brevundimonas. The metabolic pathways were predicted for 16S rRNA marker gene sequences based on Kyoto Encyclopedia of Genes and Genomes (KEGG), indicating that amino acid metabolism, carbohydrate metabolism and membrane transport were important for the black garlic fermentation process. Overall, the study was the first to reveal microbial community structure and speculate the composition of functional genes in black garlic samples. The results contributed to further analysis of the interaction between microbial community and black garlic components at different stages, which was of great significance to study the formation mechanism and quality improvement of black garlic in the future.


Assuntos
Bactérias/isolamento & purificação , Fermentação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Alho/microbiologia , Microbiota , Raízes de Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Corynebacterium/genética , Corynebacterium/isolamento & purificação , Corynebacterium/metabolismo , Fermentação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Umidade , Microbiota/genética , Filogenia , Ribotipagem , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/metabolismo , Thermus/genética , Thermus/isolamento & purificação , Thermus/metabolismo
18.
Structure ; 26(1): 118-129.e3, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29276038

RESUMO

Rationally engineering thermostability in proteins would create enzymes and receptors that function under harsh industrial applications. Several sequence-based approaches can generate thermostable variants of mesophilic proteins. To gain insight into the mechanisms by which proteins become more stable, we use structural and dynamic analyses to compare two popular approaches, ancestral sequence reconstruction (ASR) and the consensus method, used to generate thermostable variants of Elongation Factor Thermo-unstable (EF-Tu). We present crystal structures of ancestral and consensus EF-Tus, accompanied by molecular dynamics simulations aimed at probing the strategies employed to enhance thermostability. All proteins adopt crystal structures similar to extant EF-Tus, revealing no difference in average structure between the methods. Molecular dynamics reveals that ASR-generated sequences retain dynamic properties similar to extant, thermostable EF-Tu from Thermus aquaticus, while consensus EF-Tu dynamics differ from evolution-based sequences. This work highlights the advantage of ASR for engineering thermostability while preserving natural motions in multidomain proteins.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/metabolismo , Guanosina Difosfato/química , Fator Tu de Elongação de Peptídeos/química , Engenharia de Proteínas , Thermus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Sequência Consenso , Cristalografia por Raios X , Escherichia coli/classificação , Escherichia coli/genética , Evolução Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanosina Difosfato/metabolismo , Simulação de Dinâmica Molecular , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Thermus/classificação , Thermus/genética
19.
J Hazard Mater ; 343: 59-67, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28941838

RESUMO

Ciprofloxacin (CIP) is an antibiotic drug frequently detected in manure compost and is difficult to decompose at high temperatures, resulting in a potential threat to the environment. Microbial degradation is an effective and environmentally friendly method to degrade CIP. In this study, a thermophilic bacterium that can degrade CIP was isolated from sludge sampled from an antibiotics pharmaceutical factory. This strain is closely related to Thermus thermophilus based on 16S rRNA gene sequence analysis and is designated C419. The optimal temperature and pH values for CIP degradation are 70°C and 6.5, respectively, and an appropriate sodium acetate concentration promotes CIP degradation. Seven major biodegradation metabolites were identified by an ultra-performance liquid chromatography tandem mass spectrometry analysis. In addition, strain C419 degraded other fluoroquinolones, including ofloxacin, norfloxacin and enrofloxacin. The supernatant from the C419 culture grown in fluoroquinolone-containing media showed attenuated antibacterial activity. These results indicate that strain C419 might be a new auxiliary bacterial resource for the biodegradation of fluoroquinolone residue in thermal environments.


Assuntos
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Thermus/metabolismo , Biodegradação Ambiental , Resíduos Industriais , Preparações Farmacêuticas , Esgotos/microbiologia , Acetato de Sódio/farmacologia , Thermus/efeitos dos fármacos , Thermus/crescimento & desenvolvimento , Thermus/isolamento & purificação
20.
Biochemistry ; 56(45): 5972-5979, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29045140

RESUMO

Elongation factor Tu (EF-Tu) is a highly conserved GTPase that is responsible for supplying the aminoacylated tRNA to the ribosome. Upon binding to the ribosome, EF-Tu undergoes GTP hydrolysis, which drives a major conformational change, triggering the release of aminoacylated tRNA to the ribosome. Using a combination of molecular simulation techniques, we studied the transition between the pre- and post-hydrolysis structures through two distinct pathways. We show that the transition free energy is minimal along a non-intuitive pathway that involves "separation" of the GTP binding domain (domain 1) from the OB folds (domains 2 and 3), followed by domain 1 rotation, and, eventually, locking the EF-Tu conformation in the post-hydrolysis state. The domain separation also leads to a slight extension of the linker connecting domain 1 to domain 2. Using docking tools and correlation-based analysis, we identified and characterized the EF-Tu conformations that release the tRNA. These calculations suggest that EF-Tu can release the tRNA before the domains separate and after domain 1 rotates by 25°. We also examined the EF-Tu conformations in the context of the ribosome. Given the high degrees of sequence similarity with other translational GTPases, we predict a similar separation mechanism is followed.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica , Fator Tu de Elongação de Peptídeos/química , Aminoacil-RNA de Transferência/metabolismo , Thermus/metabolismo , Animais , Guanosina Trifosfato/metabolismo , Humanos , Simulação de Dinâmica Molecular , Fator 1 de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Conformação Proteica , Domínios Proteicos , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...