Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
ACS Synth Biol ; 13(6): 1762-1772, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38815614

RESUMO

In this study, we designed an artificial pathway composed of tyramine ß-hydroxylase (TBH) and phenylethanolamine N-methyltransferase (PNMT) for the biosynthesis of both octopamine and synephrine. As most TBH and PNMT originate from eukaryotic animals and plants, the heterologous expression and identification of functional TBH and PNMT are critical for establishing the pathway in mode microorganisms like Escherichia coli. Here, three TBHs were evaluated, and only TBH from Drosophila melanogaster was successfully expressed in the soluble form in E. coli. Its expression was promoted by evaluating the effects of different expression strategies. The specific enzyme activity of TBH was optimized up to 229.50 U·g-1, and the first step in the biosynthetic pathway was successfully established and converted tyramine to synthesize 0.10 g/L of octopamine. Furthermore, the second step to produce synephrine from octopamine was developed by screening PNMT, enhancing enzyme activity, and optimizing reaction conditions, with a maximum synephrine production of 2.02 g/L. Finally, based on the optimization of the reaction conditions for each individual reaction, the one-pot cascade reaction for synthesizing synephrine from tyramine was constructed by combining the TBH and PNMT. The synthetic synephrine reached 30.05 mg/L with tyramine as substrate in the two-step enzyme cascade system. With further optimization and amplification, the titers of octopamine and synephrine were increased to 0.45 and 0.20 g/L, respectively, with tyramine as substrate. This work was the first achievement of the biosynthesis of octopamine and synephrine to date.


Assuntos
Drosophila melanogaster , Escherichia coli , Oxigenases de Função Mista , Octopamina , Feniletanolamina N-Metiltransferase , Sinefrina , Octopamina/metabolismo , Sinefrina/metabolismo , Animais , Drosophila melanogaster/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Feniletanolamina N-Metiltransferase/metabolismo , Feniletanolamina N-Metiltransferase/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Tiramina/metabolismo , Tiramina/biossíntese , Vias Biossintéticas , Engenharia Metabólica/métodos
2.
Addict Biol ; 26(4): e13019, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33538092

RESUMO

Identifying mechanisms underlying alcohol-related behaviors could provide important insights regarding the etiology of alcohol use disorder. To date, most genetic studies on alcohol-related behavior in model organisms have focused on neurons, leaving the causal roles of glial mechanisms less comprehensively investigated. Here, we report our studies on the role of Tyrosine decarboxylase 2 (Tdc2), which converts tyrosine to the catecholamine tyramine, in glial cells in Drosophila alcohol sedation. Using genetic approaches that drove transgene expression constitutively in all glia, constitutively in astrocytes and conditionally in glia during adulthood, we found that knockdown and overexpression of Tdc2, respectively, increased and decreased the sensitivity to alcohol sedation in flies. Manipulation of the genes tyramine ß-hydroxylase and tyrosine hydroxylase, which respectively synthesize octopamine and dopamine from tyramine and tyrosine, had no discernable effect on alcohol sedation, suggesting that Tdc2 affects alcohol sedation by regulating tyramine production. We also found that knockdown of the vesicular monoamine transporter (VMAT) and disruption of the SNARE complex in all glia or selectively in astrocytes increased sensitivity to alcohol sedation and that both VMAT and the SNARE complex functioned downstream of Tdc2. Our studies support a model in which the synthesis of tyramine and vesicle-mediated release of tyramine from adult astrocytes regulates alcohol sedation in Drosophila. Considering that tyramine is functionally orthologous to norepinephrine in mammals, our results raise the possibility that gliotransmitter synthesis release could be a conserved mechanism influencing behavioral responses to alcohol as well as alcohol use disorder.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Astrócitos/metabolismo , Drosophila/metabolismo , Proteínas SNARE/metabolismo , Tiramina/biossíntese , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Citoplasma/metabolismo , Dopamina/metabolismo , Etanol/metabolismo , Feminino , Oxigenases de Função Mista , Neurônios/metabolismo , Octopamina/metabolismo , Tirosina Descarboxilase/metabolismo
3.
Nature ; 583(7816): 415-420, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555456

RESUMO

Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms1. Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts2,3. However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that in Caenorhabditis elegans, the neuromodulator tyramine produced by commensal Providencia bacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine ß-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis in Providencia, and show that these genes are necessary for the modulation of host behaviour. We further find that C. elegans colonized by Providencia preferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.


Assuntos
Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Comportamento Alimentar/fisiologia , Intestinos/microbiologia , Neurotransmissores/metabolismo , Providencia/metabolismo , Olfato/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microbioma Gastrointestinal/fisiologia , Metabolômica , Mutação , Octanóis/farmacologia , Octopamina/biossíntese , Octopamina/metabolismo , Providencia/enzimologia , Providencia/fisiologia , Receptores de Amina Biogênica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo , Olfato/efeitos dos fármacos , Tiramina/biossíntese , Tiramina/metabolismo , Tirosina Descarboxilase/deficiência , Tirosina Descarboxilase/genética
4.
Sci Rep ; 9(1): 16881, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727936

RESUMO

Enterococcus faecalis is a lactic acid bacterium characterized by its tolerance of very diverse environmental conditions, a property that allows it to colonize many different habitats. This species can be found in food products, especially in fermented foods where it plays an important role as a biopreservative and influences the development of organoleptic characteristics. However, E. faecalis also produces the biogenic amines tyramine and putrescine. The consumption of food with high concentrations of these compounds can cause health problems. The present work reports the construction, via homologous recombination, of a double mutant of E. faecalis in which the clusters involved in tyramine and putrescine synthesis (which are located in different regions of the chromosome) are no longer present. Analyses showed the double mutant to grow and adhere to intestinal cells normally, and that the elimination of genes involved in the production of tyramine and putrescine has no effect on the expression of other genes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Enterococcus faecalis/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Aderência Bacteriana , Células CACO-2 , Cromossomos Bacterianos/química , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Microbiologia de Alimentos , Engenharia Genética/métodos , Recombinação Homóloga , Humanos , Concentração de Íons de Hidrogênio , Putrescina/biossíntese , Transcriptoma , Tiramina/biossíntese
5.
Appl Biochem Biotechnol ; 188(2): 436-449, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30520007

RESUMO

The soluble expression of tyrosine decarboxylase (TDC) in heterologous host is often challenging. Here, acidic condition was found to be favorable for improving the soluble expression of TDC from Lactobacillus brevis in Escherichia coli, while addition of carbohydrates (such as glucose, arabinose, and fructose) was vital for decreasing the insoluble fraction. By simple pH control and addition of glucose, the specific activity of TDC in crude extract was enhanced to 46.3 U mg-1, 3.67-fold of that produced from LB medium. Optimization of the reaction conditions revealed that Tween-80 was effective in improving the tyramine production catalyzed by TDC, especially at high tyrosine loadings. As much as 400 mM tyrosine could be completely converted into tyramine with a substrate to catalyst ratio of 29.0 g g-1 and total turnover number of 23,300. This study provides efficient strategies for the highly soluble expression of TDC and biocatalytic production of tyramine.


Assuntos
Proteínas de Bactérias/metabolismo , Levilactobacillus brevis/enzimologia , Tiramina/biossíntese , Tirosina Descarboxilase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Biotecnologia , Biotransformação , Escherichia coli/enzimologia , Escherichia coli/genética , Fermentação , Expressão Gênica , Genes Bacterianos , Concentração de Íons de Hidrogênio , Cinética , Levilactobacillus brevis/genética , Polissorbatos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Tirosina/metabolismo , Tirosina Descarboxilase/química , Tirosina Descarboxilase/genética
6.
BMC Plant Biol ; 18(1): 338, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526483

RESUMO

BACKGROUND: Amaryllidaceae alkaloids (AAs) are a large group of plant-specialized metabolites displaying an array of biological and pharmacological properties. Previous investigations on AA biosynthesis have revealed that all AAs share a common precursor, norbelladine, presumably synthesized by an enzyme catalyzing a Mannich reaction involving the condensation of tyramine and 3,4-dihydroxybenzaldehyde. Similar reactions have been reported. Specifically, norcoclaurine synthase (NCS) which catalyzes the condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid biosynthesis. RESULTS: With the availability of wild daffodil (Narcissus pseudonarcissus) database, a transcriptome-mining search was performed for NCS orthologs. A candidate gene sequence was identified and named norbelladine synthase (NBS). NpNBS encodes for a small protein of 19 kDa with an anticipated pI of 5.5. Phylogenetic analysis showed that NpNBS belongs to a unique clade of PR10/Bet v1 proteins and shared 41% amino acid identity to opium poppy NCS1. Expression of NpNBS cDNA in Escherichia coli produced a recombinant enzyme able to condense tyramine and 3,4-DHBA into norbelladine as determined by high-resolution tandem mass spectrometry. CONCLUSIONS: Here, we describe a novel enzyme catalyzing the first committed step of AA biosynthesis, which will facilitate the establishment of metabolic engineering and synthetic biology platforms for the production of AAs.


Assuntos
Alcaloides de Amaryllidaceae/metabolismo , Amaryllidaceae/enzimologia , Proteínas de Plantas/metabolismo , Tiramina/análogos & derivados , Amaryllidaceae/genética , Amaryllidaceae/metabolismo , Sequência de Aminoácidos , Benzaldeídos/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Catecóis/metabolismo , Clonagem Molecular , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Tiramina/biossíntese , Tiramina/metabolismo
7.
Biosci Biotechnol Biochem ; 81(6): 1090-1098, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28485206

RESUMO

The inducible metabolites were analyzed in barley leaves inoculated with Bipolaris sorokiniana, the causal agent of spot blotch of barley. HPLC analysis revealed that B. sorokiniana-infected leaves accumulated 4 hydrophilic compounds. They were purified by ODS column chromatography and preparative HPLC. Spectroscopic analyses revealed that they were tyramine (1), 3-(2-aminoethyl)-3-hydroxyindolin-2-one (2), serotonin (3), and 5,5'-dihydroxy-2,4'-bitryptamine (4). Among these, 2 and 4 have not been reported as natural products. They showed antifungal activity in an assay of inhibition of B. sorokiniana conidia germination, suggesting that they play a role in the chemical defense of barley as phytoalexins. The accumulation of 1-4 was examined also in the leaves of rice and foxtail millet. Rice leaves accumulated 2, 3, and 4, whereas foxtail millet leaves accumulated 3 and 4 in response to pathogen attack, suggesting the generality of accumulation of 3 and 4 in the Poaceae species.


Assuntos
Antifúngicos/imunologia , Hordeum/imunologia , Doenças das Plantas/imunologia , Saccharomycetales/efeitos dos fármacos , Sesquiterpenos/imunologia , Esporos Fúngicos/efeitos dos fármacos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Cromatografia Líquida de Alta Pressão , Hordeum/metabolismo , Hordeum/microbiologia , Interações Hidrofóbicas e Hidrofílicas , Indóis/imunologia , Indóis/metabolismo , Indóis/farmacologia , Oryza/imunologia , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Saccharomycetales/patogenicidade , Saccharomycetales/fisiologia , Serotonina/biossíntese , Serotonina/imunologia , Serotonina/farmacologia , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia , Setaria (Planta)/imunologia , Setaria (Planta)/metabolismo , Setaria (Planta)/microbiologia , Especificidade da Espécie , Esporos Fúngicos/patogenicidade , Esporos Fúngicos/fisiologia , Triptaminas/biossíntese , Triptaminas/imunologia , Triptaminas/farmacologia , Tiramina/biossíntese , Tiramina/imunologia , Tiramina/farmacologia , Fitoalexinas
8.
Probiotics Antimicrob Proteins ; 9(4): 483-491, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28342109

RESUMO

Enterococci are widespread bacteria forming the third largest genus among lactic acid bacteria. Some possess probiotic properties or they can produce beneficial proteinaceous antimicrobial substances called enterocins. On the other hand, some enterococci produce biogenic amines (BAs), so this study is focused on the sensitivity to enterocins of biogenic amine-producing faecal enterococci from ostriches and pheasants. Altogether, 60 enterococci isolated from faeces of ostriches and pheasants were tested for production of BAs. This target of the identified enterococci involved 46 strains selected from 140 ostriches and 17 from 60 pheasants involving the species Enterococcus hirae, E. faecium, E. faecalis, and E. mundtii. Although BAs histamine, cadaverine, putrescine, and tryptamine were not detected in the enterococci tested, in general high BA production by the tested enterococci was noted. The species E. hirae formed the majority of the enterococcal strains from ostrichs faeces (34 strains). High production of tyramine (TYM) was measured with an average amount of 958.16 ± 28.18 mg/ml. Among the enterococci from pheasants, the highest was production of TYM compared to phenylethylamine, spermidine, and spermine. Enterococci featured high BA production; however, they were sensitive to seven enterocins with inhibition activity ranging from 100 up to 25,600 AU/ml.


Assuntos
Aminas Biogênicas/biossíntese , Enterococcus/isolamento & purificação , Fezes/microbiologia , Animais , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Enterococcus/classificação , Fezes/química , Galliformes/microbiologia , Fenetilaminas/metabolismo , Espermidina/biossíntese , Espermina/biossíntese , Struthioniformes/microbiologia , Tiramina/biossíntese
9.
J Appl Microbiol ; 122(4): 1078-1091, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28117533

RESUMO

AIMS: The tyraminogenic potential of the strains Enterococcus faecalis EF37 and ATCC 29212 was investigated in a synthetic medium containing defined amounts of tyrosine and phenylalanine at different temperatures. METHODS AND RESULTS: Enterococci growth and the production of biogenic amines (BA) were evaluated in relation to their pre-growth in medium containing tyrosine. Significant differences between the two strains were evidenced at metabolic level. Both the pre-adapted strains grew faster in all the tested conditions, independently of the presence of the precursor. Temperatures of 30 and 40°C positively affected the growth parameters. The tyrosine decarboxylase (tyrDC) activity of the strain EF37 was positively affected by pre-adaptation, while ATCC 29212 showed a faster and higher tyramine accumulation with not-adapted cells. The expression analysis of the gene tyrDC confirmed the influence of the growth conditions on gene transcription. CONCLUSIONS: The small differences found between the two strains in the maximum transcript level reached rapidly after the inoculum and the different behaviour in the tyramine accumulation suggested the possible involvement of complex regulation mechanisms on the tyrDC or on the membrane transport systems, which could affect the different BA accumulation trend. SIGNIFICANCE AND IMPACT OF THE STUDY: This study gives deeper insight into the metabolic regulation of tyrDC activity of enterococci.


Assuntos
Aminas Biogênicas/biossíntese , Enterococcus faecalis/metabolismo , Tirosina Descarboxilase/biossíntese , Meios de Cultura , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Fenilalanina/metabolismo , Transcrição Gênica , Tiramina/biossíntese , Tirosina/metabolismo , Tirosina Descarboxilase/genética
10.
Lett Appl Microbiol ; 64(2): 171-176, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27930817

RESUMO

Enterococcus faecium MXVK29 has the ability to produce an antimicrobial compound that belongs to Class IIa of the Klaenhammer classification, and could be used as part of a biopreservation technology through direct inoculation of the strain as a starter or protective culture. However, Enterococcus is considered as an opportunistic pathogen, hence, the purpose of this work was to study the food safety determinants of E. faecium MXVK29. The strain was sensitive to all of the antibiotics tested (penicillin, tetracycline, vancomycin, erythromycin, chloramphenicol, gentamicin, neomycin, kanamycin and netilmicin) and did not demonstrate histamine, cadaverine or putrescine formation. Furthermore, tyrosine-decarboxylase activity was detected by qualitative assays and PCR. Among the virulence factors analysed for the strain, only the genes encoding the sexual pheromone cCF10 precursor lipoprotein (ccf) and cell-wall adhesion (efaAfm ) were amplified. The presence of these genes has low impact on pathogenesis, as there are no other genes encoding for virulence factors, such as aggregation proteins. Therefore, Enterococcus faecium could be employed as part of a bioconservation method, because it does not produce risk factors for consumer's health; in addition, it could be used as part of the hurdle technology in foods. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of molecular techniques has allowed, in recent years, to detect pathogenicity genes present in the genome of starter cultures used in food processing and preservation. The presence of these genes is undesirable, because horizontal transfer may occur with the natural biota of consumers. For this reason, it is important to analyse the presence of pathogenicity genes in such cultures. In this work, virulence factors and antibiotic resistance of Enterococcus faecium strain MXVK29, producing an antimicrobial compound with high antilisterial activity, were analysed. The results indicate that the strain is safe to be used in food processing as starter culture.


Assuntos
Enterococcus faecium , Conservação de Alimentos , Inocuidade dos Alimentos , Produtos da Carne/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/enzimologia , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/patogenicidade , Humanos , México , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Tiramina/biossíntese , Tirosina Descarboxilase/metabolismo , Virulência/genética , Fatores de Virulência/genética
11.
J Food Sci ; 80(12): M2899-903, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26580308

RESUMO

The impact of carvacrol at different levels (0.1%, 0.5%, and 1%) on ammonia (AMN) and biogenic amines (BAs) production by 8 common foodborne pathogens (FBPs) (Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, Listeria monocytogenes, Aeromonas hydrophila, and Salmonella Paratyphi A) was studied using a rapid high-performance liquid chromatography method. Significant differences among bacteria (P < 0.05) in AMN and BA production were observed using a tyrosine decarboxylase broth. Tyramine, dopamine, agmatine, spermine, and putrescine were the main amines produced by the bacteria. Tyramine production by P. aeruginosa was the highest (967 mg/L), whereas K. pneumoniae was the poorest tyramine producer (6.42 mg/L). AMN and BA production varied significantly depending on carvacrol levels and the specific bacterial strains. Tyramine production for all bacterial strains was significantly suppressed by addition of carvacrol at levels of 0.5% and 1%, but not 0.1%. Consequently, the effect of carvacrol on BA and AMN formation by FBP was dependent on bacterial strain as well as carvacrol level.


Assuntos
Amônia/metabolismo , Bactérias/efeitos dos fármacos , Aminas Biogênicas/biossíntese , Doenças Transmitidas por Alimentos/microbiologia , Monoterpenos/farmacologia , Extratos Vegetais/farmacologia , Bactérias/metabolismo , Cimenos , Humanos , Putrescina/biossíntese , Tiramina/biossíntese
12.
J Food Prot ; 78(5): 940-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25951388

RESUMO

The effect of NaCl stress (0 to 8%, wt/vol) on the growth and tyramine production in two Enterococcus faecalis strains was examined during culture time. The growth of E. faecalis was inhibited by the increase in NaCl concentration, but tyramine production was unaffected. Tyramine accumulated rapidly during the logarithmic phase of the strains, and the final tyramine levels were approximately 800 µg/ml. Relative gene expression of four genes in the tyrosine decarboxylase locus, namely, tyrRS, tyrDC, tyrP, and nhaC, was evaluated at different incubation times. The results showed that NaCl stress could upregulate the expression of tyrDC and tyrP to improve the tyramine production of a single E. faecalis strain under certain conditions, and TyrS could act as a negative regulator on the genetic regulation of the tyramine cluster.


Assuntos
Enterococcus faecalis/metabolismo , Cloreto de Sódio/metabolismo , Tiramina/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Tirosina Descarboxilase/genética , Tirosina Descarboxilase/metabolismo
13.
PLoS One ; 10(5): e0125488, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996877

RESUMO

To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC), which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L) than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.


Assuntos
Brachypodium/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina Descarboxilase/metabolismo , Tirosina/biossíntese , Brachypodium/genética , Clonagem Molecular , Expressão Gênica , Genes de Plantas , Tiramina/biossíntese , Tirosina Descarboxilase/genética
14.
Proc Natl Acad Sci U S A ; 112(5): 1452-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605909

RESUMO

In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, ß3-octopamine receptor (Octß3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octß3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant.


Assuntos
Drosophila/crescimento & desenvolvimento , Ecdisona/biossíntese , Metamorfose Biológica , Receptores de Amina Biogênica/fisiologia , Tórax/fisiologia , Animais , Hormônios de Inseto/metabolismo , Larva/crescimento & desenvolvimento , Receptores de Amina Biogênica/metabolismo , Transdução de Sinais , Tiramina/biossíntese
15.
Food Chem ; 173: 45-53, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25465993

RESUMO

The function of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on tyramine and other biogenic amine production by different food borne-pathogens (FBPs) was investigated in tyrosine decarboxylase broth (TDB) using HPLC. Cell free solutions were prepared from four LAB strains. Two different concentrations which were 50% (5 ml CFS+5 ml medium/1:1) and 25% (2.5 ml CFS+7.5 ml medium/1:3) CFS and the control without CFS were prepared. Both concentration of CFS of Streptococcus thermophilus and 50% CFS of Pediococcus acidophilus inhibited tyramine production up to 98% by Salmonella paratyphi A. Tyramine production by Escherichia coli was also inhibited by 50% CFS of Lactococcus lactis subsp. lactis and 25% CFS of Leuconostoc lactis. subsp. cremoris. The inhibitor effect of 50% CFS of P. acidophilus was the highest on tyramine production (55%) by Listeria monocytogenes, following Lc. lactis subsp. lactis and Leuconostoc mesenteroides subsp. cremoris (20%) whilst 25% CFS of Leu. mes. subsp. cremoris and Lc. lactis subsp. lactis showed stimulator effects (160%). The stimulation effects of 50% CFS of S. thermophilus and Lc. lactis subsp. lactis were more than 70% by Staphylococcus aureus comparing to the control. CFS of LAB strains showed statistically inhibitor effect since lactic acid inhibited microbial growth, decreased pH quickly and reduced the formation of AMN and BAs. Consequently, in order to avoid the formation of high concentrations of biogenic amines in fermented food by bacteria, it is advisable to use CFS for food and food products.


Assuntos
Ácido Láctico/farmacologia , Tiramina/biossíntese , Tirosina Descarboxilase/metabolismo , Aminas Biogênicas/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Ácido Láctico/química , Ácido Láctico/metabolismo , Lactobacillus acidophilus/química , Lactobacillus acidophilus/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/metabolismo , Pediococcus/química , Pediococcus/metabolismo , Salmonella paratyphi A/efeitos dos fármacos , Salmonella paratyphi A/metabolismo , Soluções , Streptococcus thermophilus/química , Streptococcus thermophilus/metabolismo
16.
Appl Microbiol Biotechnol ; 99(8): 3547-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25529314

RESUMO

Enterococcus faecalis is a commensal bacterium of the human gut that requires the ability to pass through the stomach and therefore cope with low pH. E. faecalis has also been identified as one of the major tyramine producers in fermented food products, where they also encounter acidic environments. In the present work, we have constructed a non-tyramine-producing mutant to study the role of the tyramine biosynthetic pathway, which converts tyrosine to tyramine via amino acid decarboxylation. Wild-type strain showed higher survival in a system that mimics gastrointestinal stress, indicating that the tyramine biosynthetic pathway has a role in acid resistance. Transcriptional analyses of the E. faecalis V583 tyrosine decarboxylase cluster showed that an acidic pH, together with substrate availability, induces its expression and therefore the production of tyramine. The protective role of the tyramine pathway under acidic conditions appears to be exerted through the maintenance of the cytosolic pH. Tyramine production should be considered important in the adaptability of E. faecalis to acidic environments, such as fermented dairy foods, and to survive passage through the human gastrointestinal tract.


Assuntos
Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Tiramina/biossíntese , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Família Multigênica , Tirosina Descarboxilase/biossíntese , Tirosina Descarboxilase/genética
17.
Front Neural Circuits ; 8: 134, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426030

RESUMO

The trace amines (TAs), tryptamine, tyramine, and ß-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na(+)-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na(+)-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function.


Assuntos
Locomoção/fisiologia , Fenetilaminas/metabolismo , Medula Espinal/fisiologia , Triptaminas/metabolismo , Tiramina/metabolismo , Animais , Animais Recém-Nascidos , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Monoaminas Biogênicas/metabolismo , Geradores de Padrão Central/efeitos dos fármacos , Geradores de Padrão Central/fisiologia , Locomoção/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , N-Metilaspartato/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Medula Espinal/efeitos dos fármacos , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/fisiologia , Triptaminas/biossíntese , Tiramina/biossíntese
18.
J Food Prot ; 77(10): 1804-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25285502

RESUMO

Tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks was evaluated during storage at different temperatures. The results showed that E. faecalis R612Z1 could produce tyramine in meat samples when the storage temperature was no less than 4°C. The E. faecalis R612Z1 counts of the meat samples reached 10(8) CFU/g on day 7 at 4°C and on day 4 at 10°C. However, the tyramine content of the meat samples stored at 10°C increased to 23.73 µg/g (on day 10), which was greater than the level in the samples stored at 4°C (7.56 µg/g). Reverse transcription quantitative PCR detection of the expression level of the tyrDC gene in E. faecalis R612Z1 in the meat samples revealed no significant changes at different storage temperatures. Thus, the changes in tyramine production of E. faecalis R612Z1 may be due to the different enzymatic activities at different storage temperatures.


Assuntos
Patos/microbiologia , Enterococcus faecalis/metabolismo , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Carne/microbiologia , Tiramina/biossíntese , Animais , Aminas Biogênicas/química , Manipulação de Alimentos/métodos , Refrigeração , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/química , Células-Tronco , Temperatura
19.
J Food Prot ; 77(4): 592-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24680070

RESUMO

Tyrosine decarboxylase (TDC) is responsible for tyramine production and can catalyze phenylalanine to produce ß-phenylethylamine. Enterococcus strains are a group of bacteria predominantly producing tyramine and ß-phenylethylamine in water-boiled salted duck. In this study, the heterologous expression and characterization of two TDCs from Enterococcus faecalis R612Z1 (612TDC) and Enterococcus faecium R615Z1 (615TDC) were studied. The recombinant putative proteins of 612TDC and 615TDC were heterologously expressed in Escherichia coli. 612TDC is a 620-amino-acid protein with a molecular mass of 70.0 kDa, whereas 615TDC is a 625-amino-acid protein with a molecular mass of 70.3 kDa. Both 612TDC and 615TDC showed an optimum temperature of 25 °C for the tyrosine and phenylalanine substrates. However, 612TDC revealed maximal activity at pH 5.5, whereas 615TDC revealed maximal activity at pH 6.0. Kinetic studies showed that 612TDC and 615TDC exhibited higher specificity for tyrosine than for phenylalanine. The catalysis abilities of both 612TDC and 615TDC for phenylalanine were restrained significantly with the increase in NaCl concentration, but this was not the case for tyrosine. This study revealed that the enzyme properties of the purified recombinant 612TDC and 615TDC were similar, although their amino acid sequences had 84% identity.


Assuntos
Enterococcus faecalis/enzimologia , Enterococcus faecium/enzimologia , Proteínas Recombinantes/metabolismo , Tirosina Descarboxilase/metabolismo , Sequência de Aminoácidos , Animais , Patos/microbiologia , Manipulação de Alimentos , Microbiologia de Alimentos , Cinética , Peso Molecular , Fenetilaminas/metabolismo , Tiramina/biossíntese , Tirosina Descarboxilase/genética
20.
Meat Sci ; 95(2): 272-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23743032

RESUMO

Technological and safety-related properties were analyzed in lactic acid bacteria isolated from Spanish dry-cured sausages in order to select them as starter cultures. In relation to technological properties, all the strains showed significative nitrate reductase activity; Lactobacillus plantarum, Lactobacillus paracasei and 52% of the Enterococcus faecium strains showed lipolytic activity and only Lactobacillus sakei strains (43%) were able to form biofilms. Related to safety aspects, E. faecium strains were the most resistant to antibiotics, whereas, L. sakei strains were the most sensitive. In relation to virulence factors, in the E. faecium strains analyzed, only the presence of efaA gene was detected. The analysis of biogenic amine production showed that most E. faecium strains and L. sakei Al-142 produced tyramine. In conclusion, L. paracasei Al-128 and L. sakei Al-143 strains possess the best properties to be selected as adequate and safe meat starter cultures.


Assuntos
Microbiologia de Alimentos , Lactobacillus/isolamento & purificação , Produtos da Carne/microbiologia , Animais , Antibacterianos , Antígenos de Bactérias/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Biofilmes/efeitos dos fármacos , Aminas Biogênicas/biossíntese , Qualidade de Produtos para o Consumidor , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Inocuidade dos Alimentos , Lactobacillus/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/isolamento & purificação , Suínos , Tetraciclina/farmacologia , Tiramina/biossíntese , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...