Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
Front Immunol ; 12: 662594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177901

RESUMO

Cancer-associated fibroblasts (CAFs) participate actively in tumor development and affect treatment responses, by among other mechanisms, promoting an immunosuppressive tumor microenvironment. In contrast to normal fibroblasts, reactive CAFs secrete a myriad of immunomodulatory soluble factors at high levels, i.e. growth factors, cytokines, and chemokines, which directly influence tumor immunity and inflammation. CAFs have been identified as important players in tumor radioresistance. However, knowledge on the immunomodulatory functions of CAFs during/after radiotherapy is still lacking. In this study, we investigated the effects of ionizing radiation on CAF-mediated regulation of dendritic cells (DCs). CAFs were obtained from freshly operated lung cancer tissues, while DCs were procured from peripheral blood of healthy donors. Experimental settings comprised both co-cultures and incubations with conditioned medium from control and irradiated CAFs. Functional assays to study DC differentiation/activation consisted on cytokine release, expression of cell-surface markers, antigen uptake, migration rates, T cell priming, and DC-signaling analysis. We demonstrate that CAFs induce a tolerogenic phenotype in DCs by promoting down-regulation of: i) signature DC markers (CD14, CD1a, CD209); ii) activation markers (CD80, CD86, CD40, and HLA-DR) and iii) functional properties (migration, antigen uptake, and CD4+ T cell priming). Notably, some of these effects were lost in conditioned medium from CAFs irradiated at fractionated medium-dose regimens (3x6 Gy). However, the expression of relevant CAF-derived regulatory agents like thymic stromal lymphopoietin (TSLP) or tryptophan 2,3-dioxygenase (TDO2) was unchanged upon irradiation. This study demonstrates that CAFs interfere with DC immune functions and unveil that certain radiation regimens may reverse CAF-mediated immunosuppressive effects.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/efeitos da radiação , Células Dendríticas/imunologia , Tolerância Imunológica/efeitos da radiação , Radiação Ionizante , Diferenciação Celular/imunologia , Técnicas de Cocultura , Células Dendríticas/fisiologia , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Transdução de Sinais/imunologia
2.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33830943

RESUMO

A complete carcinogen, ultraviolet B (UVB) radiation (290-320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF receptor (PAFR) activation in keratinocytes induce the release of large numbers of microvesicle particles (MVPs; extracellular vesicles ranging from 100 to 1000 nm in size). MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVPs) are dependent on the keratinocyte PAFR. Here, we used both pharmacologic and genetic approaches in cells and mice to show that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Our discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVPs leaving the keratinocyte can be found systemically in mice and humans following UVB exposure. Moreover, we found that UVB-MVPs contained bioactive contents including PAFR agonists that allowed them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.


Assuntos
Micropartículas Derivadas de Células/imunologia , Tolerância Imunológica/efeitos da radiação , Queratinócitos/imunologia , Raios Ultravioleta , Animais , Linhagem Celular , Micropartículas Derivadas de Células/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/imunologia , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/imunologia
3.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720046

RESUMO

Continued thinning of the atmospheric ozone, which protects the earth from damaging ultraviolet radiation (UVR), will result in elevated levels of UVR reaching the earth's surface, leading to a drastic increase in the incidence of skin cancer. In addition to promoting carcinogenesis in skin cells, UVR is a potent extrinsic driver of age-related changes in the skin known as "photoaging." We are in the preliminary stages of understanding of the role of intrinsic aging in melanoma, and the tumor-permissive effects of photoaging on the skin microenvironment remain largely unexplored. In this Review, we provide an overview of the impact of UVR on the skin microenvironment, addressing changes that converge or diverge with those observed in intrinsic aging. Intrinsic and extrinsic aging promote phenotypic changes to skin cell populations that alter fundamental processes such as melanogenesis, extracellular matrix deposition, inflammation, and immune response. Given the relevance of these processes in cancer, we discuss how photoaging might render the skin microenvironment permissive to melanoma progression.


Assuntos
Melanoma/etiologia , Envelhecimento da Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Microambiente Tumoral/efeitos da radiação , Envelhecimento/imunologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Progressão da Doença , Matriz Extracelular/efeitos da radiação , Humanos , Tolerância Imunológica/efeitos da radiação , Melaninas/biossíntese , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/efeitos da radiação , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta/efeitos adversos , Ácido Urocânico/metabolismo , Vitamina D/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669452

RESUMO

Susceptibility to photoimmune suppression and photocarcinogenesis is greater in male than in female humans and mice and is exacerbated in female estrogen receptor-beta knockout (ER-ß-/-) mice. We previously reported that the active vitamin D hormone, 1,25-dihydroxyvitamin D3 (1,25(OH)2D), applied topically protects against the ultraviolet radiation (UV) induction of cutaneous cyclobutane pyrimidine dimers (CPDs) and the suppression of contact hypersensitivity (CHS) in female mice. Here, we compare these responses in female versus male Skh:hr1 mice, in ER-ß-/-/-- versus wild-type C57BL/6 mice, and in female ER-blockaded Skh:hr1 mice. The induction of CPDs was significantly greater in male than female Skh:hr1 mice and was more effectively reduced by 1,25(OH)2D in female Skh:hr1 and C57BL/6 mice than in male Skh:hr1 or ER-ß-/- mice, respectively. This correlated with the reduced sunburn inflammation due to 1,25(OH)2D in female but not male Skh:hr1 mice. Furthermore, although 1,25(OH)2D alone dose-dependently suppressed basal CHS responses in male Skh:hr1 and ER-ß-/- mice, UV-induced immunosuppression was universally observed. In female Skh:hr1 and C57BL/6 mice, the immunosuppression was decreased by 1,25(OH)2D dose-dependently, but not in male Skh:hr1, ER-ß-/-, or ER-blockaded mice. These results reveal a sex bias in genetic, inflammatory, and immune photoprotection by 1,25(OH)2D favoring female mice that is dependent on the presence of ER-ß.


Assuntos
Calcitriol/administração & dosagem , Receptor beta de Estrogênio/metabolismo , Transdução de Sinais/efeitos da radiação , Queimadura Solar/tratamento farmacológico , Queimadura Solar/metabolismo , Protetores Solares/administração & dosagem , Raios Ultravioleta , Administração Cutânea , Animais , Dermatite de Contato/tratamento farmacológico , Modelos Animais de Doenças , Receptor beta de Estrogênio/genética , Feminino , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/efeitos da radiação , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/efeitos da radiação , Fatores Sexuais , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Neoplasias Cutâneas/prevenção & controle , Queimadura Solar/prevenção & controle
5.
Adv Exp Med Biol ; 1244: 205-213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32301016

RESUMO

Radiation is an essential tool in cancer therapy, both in the definitive and palliative setting. Radiation therapy can drive the cancer immune cycle via several mechanisms, but it also has immune suppressive effects that might be overcome via radiation/immunotherapy combination approaches. Understanding this underlying biology will lead to improved combination therapy approaches. Although clinical evidence of radiation and immunotherapy combination approaches in the metastatic setting to induce an abscopal response is limited, combination approaches in the oligometastatic and definitive setting are extremely promising.


Assuntos
Tolerância Imunológica/efeitos da radiação , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Terapia Combinada , Humanos , Neoplasias/imunologia
6.
Front Immunol ; 11: 612072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569059

RESUMO

Hypofractionated radiotherapy is external beam irradiation delivered at higher doses in fewer fractions than conventional standard radiotherapy, which can stimulate innate and adaptive immunity to enhance the body's immune response against cancer. The enhancement effect of hypofractionated irradiation to immune response has been widely investigated, which is considered an approach to expand the benefit of immunotherapy. Meanwhile, increasing evidence suggests that hypofractionated irradiation may induce or enhance the suppression of immune microenvironments. However, the suppressive effects of hypofractionated irradiation on immunomicroenvironment and the molecular mechanisms involved in these conditions are largely unknown. In this context, we summarized the immune mechanisms associated with hypofractionated irradiation, highlighted the advances in its immunosuppressive effect, and further discussed the potential mechanism behind this effect. In our opinion, besides its immunogenic activity, hypofractionated irradiation also triggers homeostatic immunosuppressive mechanisms that may counterbalance antitumor effects. And this may suggest that a combination with immunotherapy could possibly improve the curative potential of hypofractionated radiotherapy.


Assuntos
Tolerância Imunológica/efeitos da radiação , Hospedeiro Imunocomprometido , Neoplasias/radioterapia , Hipofracionamento da Dose de Radiação , Microambiente Tumoral , Animais , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Radioterapia/efeitos adversos , Medição de Risco , Fatores de Risco , Resultado do Tratamento , Evasão Tumoral/efeitos da radiação
7.
Immunology ; 159(2): 133-141, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31593303

RESUMO

The majority of human vaccines are administered above the deltoid muscle of the arm, a site that is chronically sun-exposed in many people. It is known that exposure of the skin to the UV wavelengths in sunlight stimulates systemic immunosuppression, an outcome that is associated with reduced immunity to microbial infections in animal models. Here we consider whether immunization of humans through a UV-irradiated skin site will lead to a less effective immune response compared with immunization through an unexposed site. Studies showing that the efficacy of vaccination can be reduced when surrogates of increased levels of sun exposure, such as latitude of residence and season of the year, are considered. Results from a limited number of intervention experiments in humans demonstrate a similar pattern. To provide an explanation for these findings, changes in the number and functional potential of immune cells in chronically sun-exposed compared with unexposed skin are outlined. UV radiation-induced changes to skin cells are also relevant when considering skin sites for administration of immune-tolerizing peptides. The review provides the basis for further research into the effects of acute and chronic UV radiation exposure on skin cells in the context of vaccination.


Assuntos
Tolerância Imunológica/efeitos da radiação , Imunogenicidade da Vacina , Pele/efeitos da radiação , Luz Solar , Vacinação , Vacinas/administração & dosagem , Animais , Células Dendríticas/imunologia , Células Dendríticas/efeitos da radiação , Humanos , Memória Imunológica/efeitos da radiação , Injeções Intradérmicas , Mastócitos/imunologia , Mastócitos/efeitos da radiação , Estações do Ano , Pele/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos da radiação
8.
Cytotherapy ; 21(10): 1025-1032, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444049

RESUMO

BACKGROUND: Bone marrow (BM) is as an alternative site for islet transplantation, but it is not an immunoprotected microenvironment and allogeneic islets are rejected. However, the BM, for its structure and anatomic position, offers the possibility to modulate microenvironment by local interventions. We here investigate whether local irradiation is able to improve islet engraftment and prevent rejection in BM in the absence of immunosuppression. METHODS: A model of BM local irradiation was set up. Islets were transplanted in syngeneic and fully major histocompatibility complex-mismatched recipients in control and locally irradiated BM; gain of normoglycemia and time to rejection were evaluated. RESULTS: BM local irradiation proved to be a selective and safe procedure. Syngeneic islet transplantation into locally irradiated BM had better outcome compared with not irradiated recipients in terms of capacity to gain normoglycemia (100% versus 56% in irradiated versus not irradiated mice). In the allogenic setting, glycemia was significantly lower in the first days after transplantation in the group of irradiated mice and local irradiation also delayed time to graft rejection (from 4 ± 1 days for not irradiated to 11 ± 1 days for locally irradiated mice). DISCUSSION: These data indicate that local immunosuppression by irradiation before islet transplantation in BM favors islet engraftment and delays time to rejection.


Assuntos
Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Sobrevivência de Enxerto/efeitos da radiação , Transplante das Ilhotas Pancreáticas/métodos , Radioterapia/métodos , Condicionamento Pré-Transplante/métodos , Animais , Células Cultivadas , Tolerância Imunológica/efeitos da radiação , Terapia de Imunossupressão/métodos , Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Radioterapia/efeitos adversos , Transplante Homólogo , Transplante Isogênico , Irradiação Corporal Total
9.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813253

RESUMO

Substantial improvements in cancer treatment have resulted in longer survival and increased quality of life in cancer survivors with minimized long-term toxicity. However, infertility and gonadal dysfunction continue to be recognized as adverse effects of anticancer therapy. In particular, alkylating agents and irradiation induce testicular damage that results in prolonged azoospermia. Although damage to and recovery of spermatogenesis after cancer treatment have been extensively studied, there is little information regarding the role of differences in testicular immunology in cancer treatment-induced male infertility. In this review, we briefly summarize available rodent and human data on immunological differences in chemotherapy or radiotherapy.


Assuntos
Antineoplásicos/farmacologia , Radioterapia , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Testículo/imunologia , Animais , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/efeitos da radiação , Masculino , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/efeitos da radiação , Testículo/efeitos dos fármacos , Testículo/efeitos da radiação
10.
J Dermatol Sci ; 93(2): 116-122, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30709685

RESUMO

BACKGROUND: Ultraviolet B (UVB) is commonly used for treating dermatologic conditions. Recently, high irradiance UVB (HIUVB) has been suggested to be more effective for treating skin conditions as compared to its low irradiance (LI) counterpart. The biological impact of UVB radiation emitted at different irradiance on cutaneous immunity remains obscure. OBJECTIVE: This study aimed to explore the impacts of UVB radiation administered at equivalent fluence (mJ/cm2) but different irradiance (mW/cm2) on cutaneous immune response. METHODS: Cultured bone marrow derived dendritic cell (BMDC) were treated with equivalent fluence of UVB radiation with HIUVB or LIUVB. The phenotypic and functional alterations of BMDCs were documented. Animal models were used to validate the in vitro results in vivo and explore the mechanisms involved. RESULTS: After equivalent fluence of UVB radiation, the HIUVB treated BMDC showed significantly lower MHCII and CD86 expressions, reduced capacity to stimulate T cell proliferation, and enhanced activation of aryl hydrocarbon receptor (AhR)-activated genes as compared to control while their LIUVB treated counterpart showed no significant change. Using animal model, the HIUVB induced significantly higher immune suppressive effect in mice as compared to their LIUVB counterpart after equivalent fluence of UVB treatment. The superior immune suppressive effect of HIUVB over LIUVB radiation was not observed when similar experiments were performed using AhR-deficient mice. CONCLUSION: We propose irradiance played an important role modulating UVB-induced cutaneous immune suppression. Future works on UVB phototherapy, both clinical and research, should incorporate this important parameter into consideration.


Assuntos
Células Dendríticas/efeitos da radiação , Dermatite Alérgica de Contato/radioterapia , Tolerância Imunológica/efeitos da radiação , Terapia Ultravioleta/métodos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/efeitos da radiação , Células Cultivadas , Células Dendríticas/imunologia , Dermatite Alérgica de Contato/etiologia , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Cultura Primária de Células , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos da radiação , Pele/citologia , Pele/imunologia , Pele/efeitos da radiação , Organismos Livres de Patógenos Específicos , Linfócitos T/imunologia , Linfócitos T/efeitos da radiação , Resultado do Tratamento
11.
Br J Dermatol ; 180(3): 604-614, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30307614

RESUMO

BACKGROUND: Sun protection factor (SPF) is assessed with sunscreen applied at 2 mg cm-2 . People typically apply around 0·8 mg cm-2 and use sunscreen daily for holidays. Such use results in erythema, which is a risk factor for skin cancer. OBJECTIVES: To determine (i) whether typical sunscreen use resulted in erythema, epidermal DNA damage and photoimmunosuppression during a sunny holiday, (ii) whether optimal sunscreen use inhibited erythema and (iii) whether erythema is a biomarker for photoimmunosuppression in a laboratory study. METHODS: Holidaymakers (n = 22) spent a week in Tenerife (very high ultraviolet index) using their own sunscreens without instruction (typical sunscreen use). Others (n = 40) were given SPF 15 sunscreens with instructions on how to achieve the labelled SPF (sunscreen intervention). Personal ultraviolet radiation (UVR) exposure was monitored electronically as the standard erythemal dose (SED) and erythema was quantified. Epidermal cyclobutane pyrimidine dimers (CPDs) were determined by immunostaining, and immunosuppression was assessed by contact hypersensitivity (CHS) response. RESULTS: There was no difference between personal UVR exposure in the typical sunscreen use and sunscreen intervention groups (P = 0·08). The former had daily erythema on five UVR-exposed body sites, increased CPDs (P < 0·001) and complete CHS suppression (20 of 22). In comparison, erythema was virtually absent (P < 0·001) when sunscreens were used at ≥ 2 mg cm-2 . A laboratory study showed that 3 SED from three very different spectra suppressed CHS by around ~50%. CONCLUSIONS: Optimal sunscreen use prevents erythema during a sunny holiday. Erythema predicts suppression of CHS (implying a shared action spectrum). Given that erythema and CPDs share action spectra, the data strongly suggest that optimal sunscreen use will also reduce CPD formation and UVR-induced immunosuppression.


Assuntos
Eritema/prevenção & controle , Luz Solar/efeitos adversos , Protetores Solares/administração & dosagem , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/efeitos da radiação , Adulto , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Eritema/etiologia , Eritema/imunologia , Feminino , Férias e Feriados , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Espanha , Fator de Proteção Solar , Protetores Solares/química
13.
Am J Transplant ; 19(5): 1344-1355, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30500995

RESUMO

Dendritic cells (DCs) are key targets for immunity and tolerance induction; they present donor antigens to recipient T cells by donor- and recipient-derived pathways. Donor-derived DCs, which are critical during the acute posttransplant period, can be depleted in graft tissue by forced migration via ultraviolet B light (UVB) irradiation. Here, we investigated the tolerogenic potential of donor-derived DC depletion through in vivo and ex vivo UVB preirradiation (UV) combined with the injection of anti-CD154 antibody (Ab) into recipients in an MHC-mismatched hair follicle (HF) allograft model in humanized mice. Surprisingly, human HF allografts achieved long-term survival with newly growing pigmented hair shafts in both Ab-treated groups (Ab-only and UV plus Ab) and in the UV-only group, whereas the control mice rejected all HF allografts with no hair regrowth. Perifollicular human CD3+ T cell and MHC class II+ cell infiltration was significantly diminished in the presence of UV and/or Ab treatment. HF allografts in the UV-only group showed stable maintenance of the immune privilege in the HF epithelium without evidence of antigen-specific T cell tolerance, which is likely promoted by normal HFs in vivo. This immunomodulatory strategy targeting the donor tissue exhibited novel biological relevance for clinical allogeneic transplantation without generalized immunosuppression.


Assuntos
Células Dendríticas/imunologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Folículo Piloso/crescimento & desenvolvimento , Tolerância Imunológica/imunologia , Doadores de Tecidos , Raios Ultravioleta , Animais , Células Dendríticas/efeitos da radiação , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos da radiação , Folículo Piloso/imunologia , Folículo Piloso/efeitos da radiação , Humanos , Tolerância Imunológica/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante Homólogo
14.
Radiother Oncol ; 128(3): 498-504, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859754

RESUMO

PURPOSE: Studies have associated increased radiation therapy (RT) heart dose with cardiac toxicity. Others have correlated RT-related immunosuppression with worsened survival. Given the large vascular volumes irradiated during locally advanced non-small cell lung cancer (LA-NSCLC) treatment, we hypothesized an association between increased heart dose and immunosuppression. METHODS: We identified 400 LA-NSCLC patients treated with definitive RT ±â€¯chemotherapy between 2001 and 2016. Absolute lymphocyte counts (ALC), absolute neutrophil counts (ANC), and neutrophil-to-lymphocyte ratio (NLR = ANC/ALC) were analyzed pre-RT, during RT, and post-RT. Multivariable analysis (MVA) was performed to correlate Clinical factors with both hematologic toxicity and overall survival. An upper tertile threshold to increase specificity of NLR was chosen to dichotomize continuous hematologic variables. RESULTS: Median follow up was 17 months (range 0.2-174 months) in all patients and 46 months (range 0.2-161 months) in survivors. A total of 94% of patients had stage III disease and 77% received concurrent chemo radiation. Two-year overall survival (OS), freedom from local recurrence (FFLR), and freedom from distant metastases (FFDM) was 42%, 60% and 45%, respectively. Median survival was 18 months. On MVA for OS (n = 207), male gender (Hazard Ratio [HR] 1.7; 95% CI 1.2-2.3), RT alone (HR 2.1; 95% CI 1.9-4.0), the percentage of heart receiving ≥50 Gy (V50) (HR 1.02; 95% CI 1.01-1.03), and higher NLR at 4 months (HR 1.02, 95% CI 1.01-1.03) were associated with reduced OS. ALC nadir was not associated with treatment outcomes. NLR >10.5 was associated with decreased OS (p < 0.001) and decreased FFDM (p = 0.04). On MVA evaluating factors associated with hematological toxicity (n = 247), adjuvant chemotherapy (HR 2.6; 95% CI 1.3-5.0; p = 0.006), RT alone (HR 3.6; 95% CI 1.1-12; p = 0.04), and heart V50 >25% (HR 2.0; 95% CI 1.1-3.5; p = 0.02) were associated with a NLR >10.5 4 months post-RT. CONCLUSION: RT related immunosuppression is associated with worse patient outcomes, and may represent a source of increased mortality beyond cardiac toxicity alone.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Coração/efeitos da radiação , Tolerância Imunológica/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Cardiotoxicidade , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Estudos Retrospectivos
15.
Endocrinology ; 159(5): 1992-2007, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546369

RESUMO

The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Sistemas Neurossecretores/efeitos da radiação , Sistema Hipófise-Suprarrenal/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Núcleo Arqueado do Hipotálamo/metabolismo , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/efeitos da radiação , Citocinas/metabolismo , Citocinas/efeitos da radiação , Encefalinas/metabolismo , Encefalinas/efeitos da radiação , Homeostase , Humanos , Tolerância Imunológica/efeitos da radiação , Sistemas Neurossecretores/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/efeitos da radiação , Urocortinas/metabolismo , Urocortinas/efeitos da radiação
16.
Strahlenther Onkol ; 194(6): 509-519, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29500551

RESUMO

BACKGROUND: Radiotherapy (RT) has been known for decades as a local treatment modality for malign and benign disease. In order to efficiently exploit the therapeutic potential of RT, an understanding of the immune modulatory properties of ionizing radiation is mandatory. These should be used for improvement of radioimmunotherapies for cancer in particular. METHODS: We here summarize the latest research and review articles about immune modulatory properties of RT, with focus on radiation dose and on combination of RT with selected immunotherapies. Based on the knowledge of the manifold immune mechanisms that are triggered by RT, thought-provoking impulse for multimodal radioimmunotherapies is provided. RESULTS: It has become obvious that ionizing radiation induces various forms of cell death and associated processes via DNA damage initiation and triggering of cellular stress responses. Immunogenic cell death (ICD) is of special interest since it activates the immune system via release of danger signals and via direct activation of immune cells. While RT with higher single doses in particular induces ICD, RT with a lower dose is mainly responsible for immune cell recruitment and for attenuation of an existing inflammation. The counteracting immunosuppression emanating from tumor cells can be overcome by combining RT with selected immunotherapies such as immune checkpoint inhibition, TGF-ß inhibitors, and boosting of immunity with vaccination. CONCLUSION: In order to exploit the full power of RT and thereby develop efficient radioimmunotherapies, the dose per fraction used in RT protocols, the fractionation, the quality, and the quantity of certain immunotherapies need to be qualitatively and chronologically well-matched to the individual immune status of the patient.


Assuntos
Imunomodulação/efeitos da radiação , Neoplasias/radioterapia , Radioimunoterapia/métodos , Morte Celular/imunologia , Morte Celular/efeitos da radiação , Citocinas/sangue , Fracionamento da Dose de Radiação , Tolerância Imunológica/imunologia , Tolerância Imunológica/efeitos da radiação , Imunidade Celular/imunologia , Imunidade Celular/efeitos da radiação , Inflamação/imunologia , Inflamação/radioterapia , Neoplasias/imunologia , Dosagem Radioterapêutica
17.
Radiat Oncol ; 13(1): 10, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357886

RESUMO

BACKGROUND: Tumor immune-evasion and associated failure of immunotherapy can potentially be overcome by radiotherapy, which however also has detrimental effects on tumor-infiltrating and circulating lymphocytes (CL). We therefore established a model to simulate the radiation-dose delivered to CL. METHODS: A MATLAB-model was established to quantify the CL-dose during SBRT of liver metastases by considering the factors: hepatic blood-flow, -velocity and transition-time of individual hepatic segments, as well as probability-based recirculation. The effects of intra-hepatic tumor-location and size, fractionation and treatment planning parameters (VMAT, 3DCRT, photon-energy, dose-rate and beam-on-time) were analyzed. A threshold dose ≥0.5Gy was considered inactivating CL and CL0.5 (%) is the proportion of inactivated CL. RESULTS: Mean liver dose was mostly influenced by treatment-modality, whereas CL0.5 was mostly influenced by beam-on-time. 3DCRT and VMAT (10MV-FFF) resulted in lowest CL0.5 values of 16 and 19%. Metastasis location influenced CL0.5, with a mean of 19% for both apical and basal and 31% for the central location. PTV-volume significantly increased CL0.5 from 27 to 67% (10MV-FFF) and from 31 to 98% (6MV-FFF) for PTV-volumes ranging from 14cm3 to 268cm3. CONCLUSION: A simulation-model was established, quantifying the strong effects of treatment-technique, tumor-location and tumor-volume on dose to CL with potential implications for immune-optimized treatment-planning in the future.


Assuntos
Terapia Combinada/métodos , Tolerância Imunológica/efeitos da radiação , Neoplasias Hepáticas/terapia , Linfócitos/efeitos da radiação , Simulação por Computador , Humanos , Imunoterapia/métodos , Neoplasias Hepáticas/secundário , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador
18.
J Dermatol Sci ; 89(1): 3-10, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29111181

RESUMO

The skin, thought initially to protect the body passively from pathogenic organisms and other environmental insults, is now recognised additionally as a sophisticated immune organ that actively regulates local immunity. Studies linking local innate and adaptive immunity to skin health and disease have revealed a complex network of cell communication and cytokine signalling. Here, we review the last 10 years of literature on this topic, and its relevance to skin immunity.


Assuntos
Citocinas/imunologia , Transdução de Sinais/imunologia , Neoplasias Cutâneas/imunologia , Pele/imunologia , Imunidade Adaptativa , Citocinas/metabolismo , Humanos , Tolerância Imunológica/efeitos da radiação , Imunidade Inata , Queratinócitos/imunologia , Queratinócitos/metabolismo , Pele/citologia , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
19.
Int J Radiat Biol ; 94(1): 28-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29185834

RESUMO

PURPOSE: Ionizing radiation has been associated with adverse effects on the immune system. Currently, there are no effective treatment options to ameliorate these effects. The aim of the present study was to investigate the protective effects of resveratrol against radiation-induced long-term immunosuppression in mice. MATERIALS AND METHODS: Mice were exposed to total body irradiation and treated with resveratrol or vehicle. Several immune parameters were measured, including thymus and spleen weights, T-lymphocyte and B-lymphocyte count in peripheral blood, concanavalin A and lipopolysaccharide induced lymphocyte proliferation. To explore the mechanism, we investigated intracellular ROS level of lymphocytes and mice plasma cytokine levels. RESULTS: Treatment with resveratrol ameliorated TBI-induced atrophy of the thymus and spleen, reduction of lymphocyte count and decline of lymphocyte proliferation. TBI exhibited significantly reduced level of IL-2, IL-4, IL-7 and IFN-γ compared with the control mice and treatment with resveratrol attenuated the reduction. CONCLUSION: The results of the present study suggest that treatment with resveratrol could ameliorate irradiation induced long-term immune malfunction at least partly via modulation of plasma cytokine.


Assuntos
Tolerância Imunológica/efeitos da radiação , Protetores contra Radiação/farmacologia , Estilbenos/farmacologia , Animais , Citocinas/fisiologia , Linfócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resveratrol , Baço/efeitos da radiação , Timo/efeitos dos fármacos , Timo/patologia , Irradiação Corporal Total
20.
Photochem Photobiol Sci ; 17(12): 1872-1884, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29136080

RESUMO

The realisation that UV radiation (UVR) exposure could induce a suppressed immune environment for the initiation of carcinogenesis in the skin was first described more than 40 years ago. Van der Leun and his colleagues contributed to this area in the 1980s and 90s by experiments in mice involving UV wavelength and dose-dependency in the formation of such tumours, in addition to illustrating both the local and systemic effect of the UVR on the immune system. Since these early days, many aspects of the complex pathways of UV-induced immunosuppression have been studied and are outlined in this review. Although most experimental work has involved mice, it is clear that UVR also causes reduced immune responses in humans. Evidence showing the importance of the immune system in determining the risk of human skin cancers is explained, and details of how UVR exposure can down-regulate immunity in the formation and progression of such tumours reviewed. With increasing knowledge of these links and the mechanisms of UVR-induced immunosuppression, novel approaches to enhance immunity to skin tumour antigens in humans are becoming apparent which, hopefully, will reduce the burden of UVR-induced skin cancers in the future.


Assuntos
Tolerância Imunológica/efeitos da radiação , Neoplasias Cutâneas/etiologia , Raios Ultravioleta , Animais , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/efeitos da radiação , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/efeitos da radiação , Neuropeptídeos/metabolismo , Receptores de Citocinas/agonistas , Receptores de Citocinas/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...