RESUMO
Bacillus thuringiensis is a potential control agent for plant-parasitic nematodes. Nematode intestinal receptors for Cry21-type toxins are poorly known. Therefore, a strategy was tested as a primary screening tool to find possible Cry toxin receptors, using a nematicidal Bt strain and the RNAi technique on Caenorhabditis elegans. Six genes encoding intestinal membrane proteins were selected (abt-4, bre-1, bre-2, bre-3, asps-1, abl-1) as possible targets for Cry proteins. Fractions of each selected gene were amplified by PCR. Amplicons were cloned into the L4440 vector to transform the E. coli HT155 (DE3) strain. Transformed bacteria were used to silence the selected genes using the RNAi feeding method. Nematodes with silenced genes were tested with the Bt strain LBIT-107, which harbors the nematicidal protein Cry21Aa3, among others. Results indicated that nematodes with the silenced abt-4 gene were 69.5% more resistant to the LBIT-107 strain, in general, and 79% to the Cry21Aa3 toxin, specifically.
Assuntos
Antinematódeos , Toxinas de Bacillus thuringiensis , Caenorhabditis elegans , Interferência de RNA , Animais , Antinematódeos/química , Antinematódeos/metabolismo , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/genéticaRESUMO
Cry proteins produced by Bacillus thuringiensis are pore-forming toxins that disrupt the membrane integrity of insect midgut cells. The structure of such pore is unknown, but it has been shown that domain I is responsible for oligomerization, membrane insertion and pore formation activity. Specifically, it was proposed that some N-terminal α-helices are lost, leading to conformational changes that trigger oligomerization. We designed a series of mutants to further analyze the molecular rearrangements at the N-terminal region of Cry1Ab toxin that lead to oligomer assembly. For this purpose, we introduced Cys residues at specific positions within α-helices of domain I for their specific labeling with extrinsic fluorophores to perform Föster resonance energy transfer analysis to fluorescent labeled Lys residues located in Domains II-III, or for disulfide bridges formation to restrict mobility of conformational changes. Our data support that helix α-1 of domain I is cleaved out and swings away from the toxin core upon binding with Manduca sexta brush border membrane vesicles. That movement of helix α-2b is also required for the conformational changes involved in oligomerization. These observations are consistent with a model proposing that helices α-2b and α-3 form an extended helix α-3 necessary for oligomer assembly of Cry toxins.