Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175.202
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2309244121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968115

RESUMO

DNA is organized into chromatin-like structures that support the maintenance and regulation of genomes. A unique and poorly understood form of DNA organization exists in chloroplasts, which are organelles of endosymbiotic origin responsible for photosynthesis. Chloroplast genomes, together with associated proteins, form membrane-less structures known as nucleoids. The internal arrangement of the nucleoid, molecular mechanisms of DNA organization, and connections between nucleoid structure and gene expression remain mostly unknown. We show that Arabidopsis thaliana chloroplast nucleoids have a unique sequence-specific organization driven by DNA binding to the thylakoid membranes. DNA associated with the membranes has high protein occupancy, has reduced DNA accessibility, and is highly transcribed. In contrast, genes with low levels of transcription are further away from the membranes, have lower protein occupancy, and have higher DNA accessibility. Membrane association of active genes relies on the pattern of transcription and proper chloroplast development. We propose a speculative model that transcription organizes the chloroplast nucleoid into a transcriptionally active membrane-associated core and a less active periphery.


Assuntos
Arabidopsis , Cloroplastos , Tilacoides , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Tilacoides/metabolismo , Tilacoides/genética , Tilacoides/ultraestrutura , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcrição Gênica , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(28): e2322066121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968125

RESUMO

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid ß-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid ß-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid ß-oxidation.


Assuntos
Proteínas de Drosophila , Via de Sinalização Wnt , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adipócitos/metabolismo , Mobilização Lipídica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Lipólise , Lipogênese/genética , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos/genética , Larva/metabolismo , Larva/genética , Transcrição Gênica , Homeostase
3.
Proc Natl Acad Sci U S A ; 121(28): e2319772121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968124

RESUMO

Transcription has a mechanical component, as the translocation of the transcription machinery or RNA polymerase (RNAP) on DNA or chromatin is dynamically coupled to the chromatin torsion. This posits chromatin mechanics as a possible regulator of eukaryotic transcription, however, the modes and mechanisms of this regulation are elusive. Here, we first take a statistical mechanics approach to model the torsional response of topology-constrained chromatin. Our model recapitulates the experimentally observed weaker torsional stiffness of chromatin compared to bare DNA and proposes structural transitions of nucleosomes into chirally distinct states as the driver of the contrasting torsional mechanics. Coupling chromatin mechanics with RNAP translocation in stochastic simulations, we reveal a complex interplay of DNA supercoiling and nucleosome dynamics in governing RNAP velocity. Nucleosomes play a dual role in controlling the transcription dynamics. The steric barrier aspect of nucleosomes in the gene body counteracts transcription via hindering RNAP motion, whereas the chiral transitions facilitate RNAP motion via driving a low restoring torque upon twisting the DNA. While nucleosomes with low dissociation rates are typically transcriptionally repressive, highly dynamic nucleosomes offer less of a steric barrier and enhance the transcription elongation dynamics of weakly transcribed genes via buffering DNA twist. We use the model to predict transcription-dependent levels of DNA supercoiling in segments of the budding yeast genome that are in accord with available experimental data. The model unveils a paradigm of DNA supercoiling-mediated interaction between genes and makes testable predictions that will guide experimental design.


Assuntos
RNA Polimerases Dirigidas por DNA , Nucleossomos , Transcrição Gênica , Nucleossomos/metabolismo , Nucleossomos/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , DNA/metabolismo , DNA/química , DNA/genética , Cromatina/metabolismo , Cromatina/genética , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nature ; 631(8021): 670-677, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987591

RESUMO

In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Modelos Moleculares , Bacteriófagos/metabolismo , Bacteriófagos/genética , Bacteriófagos/química , Sistemas CRISPR-Cas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Biossíntese de Proteínas , Sequências Hélice-Volta-Hélice , Ribossomos/metabolismo , Ribossomos/química , Sítios de Ligação , Domínios Proteicos , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , RNA Viral/metabolismo , RNA Viral/genética , RNA Viral/química , Transcrição Gênica
5.
Sci Rep ; 14(1): 16302, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009627

RESUMO

Androgen insensitivity syndrome (AIS) is a difference of sex development (DSD) characterized by different degrees of undervirilization in individuals with a 46,XY karyotype despite normal to high gonadal testosterone production. Classically, AIS is explained by hemizygous mutations in the X-chromosomal androgen receptor (AR) gene. Nevertheless, the majority of individuals with clinically diagnosed AIS do not carry an AR gene mutation. Here, we present a patient with a 46,XY karyotype, born with undervirilized genitalia, age-appropriate testosterone levels and no uterus, characteristic for AIS. Diagnostic whole exome sequencing (WES) showed a maternally inherited LINE1 (L1) retrotransposon insertion in the 5' untranslated region (5'UTR) of the AR gene. Long-read nanopore sequencing confirmed this as an insertion of a truncated L1 element of ≈ 2.7 kb and showed an increased DNA methylation at the L1 insertion site in patient-derived genital skin fibroblasts (GSFs) compared to healthy controls. The insertion coincided with reduced AR transcript and protein levels in patient-derived GSFs confirming the clinical diagnosis AIS. Our results underline the relevance of retrotransposons in human disease, and expand the growing list of human diseases associated with them.


Assuntos
Síndrome de Resistência a Andrógenos , Metilação de DNA , Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos , Receptores Androgênicos , Humanos , Síndrome de Resistência a Andrógenos/genética , Síndrome de Resistência a Andrógenos/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Masculino , Elementos Nucleotídeos Longos e Dispersos/genética , Feminino , Sequenciamento do Exoma , Transcrição Gênica
6.
Subcell Biochem ; 104: 17-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963481

RESUMO

The copper efflux regulator (CueR) is a classical member of the MerR family of metalloregulators and is common in gram-negative bacteria. Through its C-terminal effector-binding domain, CueR senses cytoplasmic copper ions to regulate the transcription of genes contributing to copper homeostasis, an essential process for survival of all cells. In this chapter, we review the regulatory roles of CueR in the model organism Escherichia coli and the mechanisms for CueR in copper binding, DNA recognition, and interplay with RNA polymerase in regulating transcription. In light of biochemical and structural analyses, we provide molecular details for how CueR represses transcription in the absence of copper ions, how copper ions mediate CueR conformational change to form holo CueR, and how CueR bends and twists promoter DNA to activate transcription. We also characterize the functional domains and key residues involved in these processes. Since CueR is a representative member of the MerR family, elucidating its regulatory mechanisms could help to understand the CueR-like regulators in other organisms and facilitate the understanding of other metalloregulators in the same family.


Assuntos
Cobre , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas , Transativadores
8.
J Med Virol ; 96(7): e29787, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988177

RESUMO

Chronic hepatitis C virus infection (HCV) causes liver inflammation and fibrosis, leading to the development of severe liver disease, such as cirrhosis or hepatocellular carcinoma (HCC). Approval of direct-acting antiviral drug combinations has revolutionized chronic HCV therapy, with virus eradication in >98% of the treated patients. The efficacy of these treatments is such that it is formally possible for cured patients to carry formerly infected cells that display irreversible transcriptional alterations directly caused by chronic HCV Infection. Combining differential transcriptomes from two different persistent infection models, we observed a major reversion of infection-related transcripts after complete infection elimination. However, a small number of transcripts were abnormally expressed in formerly infected cells. Comparison of the results obtained in proliferating and growth-arrested cell culture models suggest that permanent transcriptional alterations may be established by several mechanisms. Interestingly, some of these alterations were also observed in the liver biopsies of virologically cured patients. Overall, our data suggest a direct and permanent impact of persistent HCV infection on the host cell transcriptome even after virus elimination, possibly contributing to the development of HCC.


Assuntos
Antivirais , Hepacivirus , Hepatite C Crônica , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepacivirus/genética , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Transcriptoma , Infecção Persistente/virologia , Perfilação da Expressão Gênica , Fígado/virologia , Fígado/patologia , Carcinoma Hepatocelular/virologia , Transcrição Gênica/efeitos dos fármacos
9.
Mol Cell ; 84(13): 2405-2406, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996456

RESUMO

In this issue of Molecular Cell, Razew et al.1 and Sabath et al.2 assign function to an unexplored module of the Integrator (INT) complex, expanding the toolbox of this genome-wide attenuator of RNA polymerase II (RNAPII) transcription.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Polimerase II/genética
11.
Int J Biol Sci ; 20(9): 3544-3556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993564

RESUMO

Hepatic progenitor cells (HPCs) have a bidirectional potential to differentiate into hepatocytes and bile duct epithelial cells and constitute a second barrier to liver regeneration in the adult liver. They are usually located in the Hering duct in the portal vein region where various cells, extracellular matrix, cytokines, and communication signals together constitute the niche of HPCs in homeostasis to maintain cellular plasticity. In various types of liver injury, different cellular signaling streams crosstalk with each other and point to the inducible transcription factor set, including FoxA1/2/3, YB-1, Foxl1, Sox9, HNF4α, HNF1α, and HNF1ß. These transcription factors exert different functions by binding to specific target genes, and their products often interact with each other, with diverse cascades of regulation in different molecular events that are essential for homeostatic regulation, self-renewal, proliferation, and selective differentiation of HPCs. Furthermore, the tumor predisposition of adult HPCs is found to be significantly increased under transcriptional factor dysregulation in transcriptional analysis, and the altered initial commitment of the differentiation pathway of HPCs may be one of the sources of intrahepatic tumors. Related transcription factors such as HNF4α and HNF1 are expected to be future targets for tumor treatment.


Assuntos
Diferenciação Celular , Humanos , Animais , Células-Tronco/metabolismo , Células-Tronco/citologia , Fígado/metabolismo , Fígado/citologia , Hepatócitos/metabolismo , Hepatócitos/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
12.
Cells ; 13(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38995010

RESUMO

The transcription factor Sox10 is an important determinant of oligodendroglial identity and influences oligodendroglial development and characteristics at various stages. Starting from RNA-seq data, we here show that the expression of several voltage-gated ion channels with known expression and important function in oligodendroglial cells depends upon Sox10. These include the Nav1.1, Cav2.2, Kv1.1, and Kir4.1 channels. For each of the four encoding genes, we found at least one regulatory region that is activated by Sox10 in vitro and at the same time bound by Sox10 in vivo. Cell-specific deletion of Sox10 in oligodendroglial cells furthermore led to a strong downregulation of all four ion channels in a mouse model and thus in vivo. Our study provides a clear functional link between voltage-gated ion channels and the transcriptional regulatory network in oligodendroglial cells. Furthermore, our study argues that Sox10 exerts at least some of its functions in oligodendrocyte progenitor cells, in myelinating oligodendrocytes, or throughout lineage development via these ion channels. By doing so, we present one way in which oligodendroglial development and properties can be linked to neuronal activity to ensure crosstalk between cell types during the development and function of the central nervous system.


Assuntos
Oligodendroglia , Fatores de Transcrição SOXE , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/genética , Animais , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Camundongos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Transcrição Gênica , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Humanos
13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000174

RESUMO

Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.


Assuntos
Regulação da Expressão Gênica de Plantas , Luz , Fenóis , Plantas , Fenóis/metabolismo , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
14.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000206

RESUMO

The development of vaccines has drastically reduced the mortality and morbidity of several diseases. Despite the great success of vaccines, the immunological processes involved in protective immunity are not fully understood and several issues remain to be elucidated. Recently, the advent of high-throughput technologies has enabled a more in-depth investigation of the immune system as a whole and the characterization of the interactions of numerous components of immunity. In the field of vaccinology, these tools allow for the exploration of the molecular mechanisms by which vaccines can induce protective immune responses. In this review, we aim to describe current data on transcriptional responses to vaccination, focusing on similarities and differences of vaccine-induced transcriptional responses among vaccines mostly in healthy adults, but also in high-risk populations, such as the elderly and children. Moreover, the identification of potential predictive biomarkers of vaccine immunogenicity, the effect of age on transcriptional response and future perspectives for the utilization of transcriptomics in the field of vaccinology will be discussed.


Assuntos
Medicina de Precisão , Vacinação , Vacinas , Humanos , Medicina de Precisão/métodos , Vacinas/imunologia , Perfilação da Expressão Gênica/métodos , Transcriptoma , Transcrição Gênica , Animais
15.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000482

RESUMO

Plesiomonas shigelloides, a Gram-negative bacillus, is the only member of the Enterobacteriaceae family able to produce polar and lateral flagella and cause gastrointestinal and extraintestinal illnesses in humans. The flagellar transcriptional hierarchy of P. shigelloides is currently unknown. In this study, we identified FlaK, FlaM, FliA, and FliAL as the four regulators responsible for polar and lateral flagellar regulation in P. shigelloides. To determine the flagellar transcription hierarchy of P. shigelloides, the transcriptomes of the WT and ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were carried out for comparison in this study. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and luminescence screening assays were used to validate the RNA-seq results, and the Electrophoretic Mobility Shift Assay (EMSA) results revealed that FlaK can directly bind to the promoters of fliK, fliE, flhA, and cheY, while the FlaM protein can bind directly to the promoters of flgO, flgT, and flgA. Meanwhile, we also observed type VI secretion system (T6SS) and type II secretion system 2 (T2SS-2) genes downregulated in the transcriptome profiles, and the killing assay revealed lower killing abilities for ΔflaK, ΔflaM, ΔfliA, and ΔfliAL compared to the WT, indicating that there was a cross-talk between the flagellar hierarchy system and bacterial secretion system. Invasion assays also showed that ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were less effective in infecting Caco-2 cells than the WT. Additionally, we also found that the loss of flagellar regulators causes the differential expression of some of the physiological metabolic genes of P. shigelloides. Overall, this study aims to reveal the transcriptional hierarchy that controls flagellar gene expression in P. shigelloides, as well as the cross-talk between motility, virulence, and physiological and metabolic activity, laying the groundwork for future research into P. shigelloides' coordinated survival in the natural environment and the mechanisms that infect the host.


Assuntos
Proteínas de Bactérias , Flagelos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Plesiomonas , Flagelos/metabolismo , Flagelos/genética , Plesiomonas/genética , Plesiomonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transcriptoma , Regiões Promotoras Genéticas , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Transcrição Gênica , Humanos
16.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998908

RESUMO

Cooperation between catabolism and anabolism is crucial for maintaining homeostasis in living cells. The most fundamental systems for catabolism and anabolism are the glycolysis of sugars and the transcription-translation (TX-TL) of DNA, respectively. Despite their importance in living cells, the in vitro reconstitution of their cooperation through purified factors has not been achieved, which hinders the elucidation of the design principle in living cells. Here, we reconstituted glycolysis using sugars and integrated it with the PURE system, a commercial in vitro TX-TL kit composed of purified factors. By optimizing key parameters, such as glucokinase and initial phosphate concentrations, we determined suitable conditions for their cooperation. The optimized system showed protein synthesis at up to 33% of that of the original PURE system. We observed that ATP consumption in upstream glycolysis inhibits TX-TL and that this inhibition can be alleviated by the co-addition of glycolytic intermediates, such as glyceraldehyde 3-phosphate, with glucose. Moreover, the system developed here simultaneously synthesizes a subset of its own enzymes, that is, glycolytic enzymes, in a single test tube, which is a necessary step toward self-replication. As glycolysis and TX-TL provide building blocks for constructing cells, the integrated system can be a fundamental material for reconstituting living cells from purified factors.


Assuntos
Sistema Livre de Células , Glicólise , Biossíntese de Proteínas , Transcrição Gênica , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo , Açúcares/metabolismo , Glucoquinase/metabolismo , Glucoquinase/genética
17.
Adv Neurobiol ; 38: 111-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008013

RESUMO

Memory traces for behavioral experiences, such as fear conditioning or taste aversion, are believed to be stored through biophysical and molecular changes in distributed neuronal ensembles across various brain regions. These ensembles are known as engrams, and the cells that constitute them are referred to as engram cells. Recent advancements in techniques for labeling and manipulating neural activity have facilitated the study of engram cells throughout different memory phases, including acquisition, allocation, long-term storage, retrieval, and erasure. In this chapter, we will explore the application of next-generation sequencing methods to engram research, shedding new light on the contribution of transcriptional and epigenetic mechanisms to engram formation and stability.


Assuntos
Epigênese Genética , Memória , Neurônios , Memória/fisiologia , Humanos , Animais , Neurônios/metabolismo , Encéfalo/metabolismo , Medo/fisiologia , Transcrição Gênica
18.
Methods Mol Biol ; 2805: 137-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008179

RESUMO

Transcription in developing metazoans is inherently stochastic, involving transient and dynamic interactions among transcriptional machinery. A fundamental challenge with traditional techniques, including fixed-tissue protein and RNA staining, is the lack of temporal resolution. Quantifying kinetic changes in transcription can elucidate underlying mechanisms of interaction among regulatory modules. In this protocol, we describe the successful implementation of a combination of MS2/MCP and PP7/PCP systems in living Drosophila embryos to further our understanding of transcriptional dynamics during development. Our technique can be extended to visualize transcriptional activities of multiple genes or alleles simultaneously, characterize allele-specific expression of a target gene, and quantitatively analyze RNA polymerase II activity in a single-cell resolution.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Desenvolvimento Embrionário/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Embrião não Mamífero/metabolismo , Drosophila/embriologia , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Transcrição Gênica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
19.
J Med Virol ; 96(7): e29805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011773

RESUMO

Heterogeneous nuclear protein U (HNRNPU) plays a pivotal role in innate immunity by facilitating chromatin opening to activate immune genes during host defense against viral infection. However, the mechanism by which HNRNPU is involved in Hepatitis B virus (HBV) transcription regulation through mediating antiviral immunity remains unknown. Our study revealed a significant decrease in HNRNPU levels during HBV transcription, which depends on HBx-DDB1-mediated degradation. Overexpression of HNRNPU suppressed HBV transcription, while its knockdown effectively promoted viral transcription, indicating HNRNPU as a novel host restriction factor for HBV transcription. Mechanistically, HNRNPU inhibits HBV transcription by activating innate immunity through primarily the positive regulation of the interferon-stimulating factor 2'-5'-oligoadenylate synthetase 3, which mediates an ribonuclease L-dependent mechanism to enhance innate immune responses. This study offers new insights into the host immune regulation of HBV transcription and proposes potential targets for therapeutic intervention against HBV infection.


Assuntos
2',5'-Oligoadenilato Sintetase , Vírus da Hepatite B , Imunidade Inata , Transcrição Gênica , Humanos , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/genética , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Células Hep G2 , Hepatite B/imunologia , Hepatite B/virologia , Hepatite B/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/imunologia , Transativadores
20.
Methods Mol Biol ; 2842: 79-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012591

RESUMO

To achieve exquisite control over the epigenome, we need a better predictive understanding of how transcription factors, chromatin regulators, and their individual domain's function, both as modular parts and as full proteins. Transcriptional effector domains are one class of protein domains that regulate transcription and chromatin. These effector domains either repress or activate gene expression by interacting with chromatin-modifying enzymes, transcriptional cofactors, and/or general transcriptional machinery. Here, we discuss important design considerations for high-throughput investigations of effector domains, recent advances in discovering new domains in human cells and testing how domain function depends on amino acid sequence. For every effector domain, we would like to know the following: What role does the cell type, signaling state, and targeted context have on activation, silencing, and epigenetic memory? Large-scale measurements of transcriptional activities can help systematically answer these questions and identify general rules for how all these parameters affect effector domain activities. Last, we discuss what steps need to be taken to turn a newly discovered effector domain into a robust, precise epigenome editor. With more carefully considered high-throughput investigations, soon we will have better predictive control over the epigenome.


Assuntos
Epigênese Genética , Humanos , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Cromatina/genética , Cromatina/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Domínios Proteicos , Epigenômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...