Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.207
Filtrar
1.
Front Immunol ; 15: 1403070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015575

RESUMO

Background: The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods: Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results: To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions: Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.


Assuntos
Herpesvirus Suídeo 1 , Imunidade Inata , Proteínas de Membrana , Nucleotidiltransferases , Pseudorraiva , Transdução de Sinais , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Transdução de Sinais/imunologia , Herpesvirus Suídeo 1/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Camundongos , Pseudorraiva/imunologia , Pseudorraiva/virologia , Humanos , Ubiquitinação , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/metabolismo , Evasão da Resposta Imune , Interações Hospedeiro-Patógeno/imunologia , Células HEK293
2.
Cell Mol Life Sci ; 81(1): 290, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970666

RESUMO

Pattern recognition receptors (PRRs) play a crucial role in innate immunity, and a complex network tightly controls their signaling cascades to maintain immune homeostasis. Within the modification network, posttranslational modifications (PTMs) are at the core of signaling cascades. Conventional PTMs, which include phosphorylation and ubiquitination, have been extensively studied. The regulatory role of unconventional PTMs, involving unanchored ubiquitination, ISGylation, SUMOylation, NEDDylation, methylation, acetylation, palmitoylation, glycosylation, and myristylation, in the modulation of innate immune signaling pathways has been increasingly investigated. This comprehensive review delves into the emerging field of unconventional PTMs and highlights their pivotal role in innate immunity.


Assuntos
Imunidade Inata , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Humanos , Animais , Transdução de Sinais/imunologia , Ubiquitinação , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Acetilação , Metilação , Fosforilação , Sumoilação , Glicosilação
3.
Allergol Immunopathol (Madr) ; 52(4): 60-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970266

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a familiar disease, and owns high morbidity and mortality, which critically damages the health of patients. Ubiquitin-specific peptidase 8 (USP8) is a pivotal protein to join in the regulation of some diseases. In a previous report, it was determined that USP8 expression is down-regulated in LPS-treated BEAS-2B cells, and USP8 restrains inflammatory response and accelerates cell viability. However, the regulatory roles of USP8 on ferroptosis in COPD are rarely reported, and the associated molecular mechanisms keep vague. OBJECTIVE: To investigate the regulatory functions of USP8 in COPD progression. MATERIAL AND METHODS: The lung functions were measured through the Buxco Fine Pointe Series Whole Body Plethysmography (WBP). The Fe level was tested through the Fe assay kit. The protein expressions were assessed through western blot. The levels of tumor necrosis -factor-α, interleukin 6, and interleukin 8 were evaluated through enzyme-linked immunosorbent serologic assay. Cell viability was tested through CCK-8 assay. RESULTS: In this work, it was discovered that overexpression of USP8 improved lung function in COPD mice. In addition, overexpression of USP8 repressed ferroptosis by regulating glutathione peroxidase 4 and acyl-CoA synthetase long-chain family 4 expressions in COPD mice. Overexpression of USP8 suppressed inflammation in COPD mice. Furthermore, overexpression of USP8 suppressed ferroptosis in COPD cell model. At last, it was verified that overexpression of USP8 accelerated ubiquitin aldehyde-binding protein 1 (OTUB1)/solute carrier family 7 member 11 (SLC7A11) pathway. CONCLUSION: This study manifested that overexpression of USP8 restrained inflammation and ferroptosis in COPD by regulating the OTUB1/SLC7A11 signaling pathway. This discovery hinted that USP8 could be a potential target for COPD treatment.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Doença Pulmonar Obstrutiva Crônica , Transdução de Sinais , Ubiquitina Tiolesterase , Ferroptose/fisiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Animais , Humanos , Camundongos , Transdução de Sinais/imunologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Masculino , Inflamação/metabolismo , Inflamação/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Linhagem Celular , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Endopeptidases
4.
Proc Natl Acad Sci U S A ; 121(29): e2402126121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980902

RESUMO

Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Transdução de Sinais , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Transdução de Sinais/imunologia , Intestinos/imunologia , Intestinos/virologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/imunologia , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , RNA Viral/imunologia , RNA Viral/metabolismo , RNA Viral/genética
5.
Immunity ; 57(7): 1445-1448, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986437

RESUMO

Interleukin-1 (IL-1) family cytokines are key immunological regulators that achieve their signaling prowess after post-translational proteolytic processing. In this issue of Immunity, Dong et al. reveal the structural consequences of this process on proinflammatory IL-18, demonstrating that pro-IL-18 and mature IL-18 are structurally distinct.


Assuntos
Interleucina-18 , Transdução de Sinais , Interleucina-18/metabolismo , Interleucina-18/imunologia , Humanos , Transdução de Sinais/imunologia , Animais , Processamento de Proteína Pós-Traducional
6.
J Clin Invest ; 134(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949019

RESUMO

Type 3 innate lymphoid cells (ILC3s) are key regulators of intestinal homeostasis and epithelial barrier integrity. In this issue of the JCI, Cao and colleagues found that a sensor of endoplasmic reticulum (ER) stress, the inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1) pathway, fine-tuned the functions of ILC3s. Activation of IRE1α and XBP1 in ILC3s limited intestinal inflammation in mice and correlated with the efficacy of ustekinumab, an IL-12/IL-23 blocker, in patients with Crohn's disease. These results advance our understanding in the use of ILCs as biomarkers not only to predict disease outcomes but also to indicate the response to biologicals in patients with inflammatory bowel disease.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/imunologia , Animais , Endorribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Humanos , Camundongos , Estresse do Retículo Endoplasmático/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Transdução de Sinais/imunologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia
7.
JCI Insight ; 9(13)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38973611

RESUMO

Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity. However, whether endogenous IFN-λ signaling has an effect on SARS-CoV-2 antiviral immunity and long-term immune protection in vivo is unknown. In this study, we identified a requirement for IFN-λ signaling in promoting viral clearance and protective immune programming in SARS-CoV-2 infection of mice. Expression of both IFN and IFN-stimulated gene (ISG) in the lungs were minimally affected by the absence of IFN-λ signaling and correlated with transient increases in viral titers. We found that IFN-λ supported the generation of protective CD8 T cell responses against SARS-CoV-2 by facilitating accumulation of CD103+ DC in lung draining lymph nodes (dLN). IFN-λ signaling specifically in DCs promoted the upregulation of costimulatory molecules and the proliferation of CD8 T cells. Intriguingly, antigen-specific CD8 T cell immunity to SARS-CoV-2 was independent of type I IFN signaling, revealing a nonredundant function of IFN-λ. Overall, these studies demonstrate a critical role for IFN-λ in protective innate and adaptive immunity upon infection with SARS-CoV-2 and suggest that IFN-λ serves as an immune adjuvant to support CD8 T cell immunity.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Interferon Tipo I , SARS-CoV-2 , Animais , Linfócitos T CD8-Positivos/imunologia , SARS-CoV-2/imunologia , Camundongos , COVID-19/imunologia , COVID-19/virologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Pulmão/imunologia , Pulmão/virologia , Transdução de Sinais/imunologia , Modelos Animais de Doenças , Interferon lambda , Interferons/imunologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Dendríticas/imunologia , Humanos
8.
Immunohorizons ; 8(7): 478-491, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007717

RESUMO

IκB kinase (IKK)α controls noncanonical NF-κB signaling required for lymphoid organ development. We showed previously that lymph node formation is ablated in IkkαLyve-1 mice constitutively lacking IKKα in lymphatic endothelial cells (LECs). We now reveal that loss of IKKα in LECs leads to the formation of BALT in the lung. Tertiary lymphoid structures appear only in the lungs of IkkαLyve-1 mice and are not present in any other tissues, and these highly organized BALT structures form after birth and in the absence of inflammation. Additionally, we show that IkkαLyve-1 mice challenged with influenza A virus (IAV) exhibit markedly improved survival and reduced weight loss compared with littermate controls. Importantly, we determine that the improved morbidity and mortality of IkkαLyve-1 mice is independent of viral load and rate of clearance because both mice control and clear IAV infection similarly. Instead, we show that IFN-γ levels are decreased, and infiltration of CD8 T cells and monocytes into IkkαLyve-1 lungs is reduced. We conclude that ablating IKKα in LECs promotes BALT formation and reduces the susceptibility of IkkαLyve-1 mice to IAV infection through a decrease in proinflammatory stimuli.


Assuntos
Homeostase , Quinase I-kappa B , Vírus da Influenza A , Pulmão , Infecções por Orthomyxoviridae , Animais , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Camundongos , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Infecções por Orthomyxoviridae/imunologia , Vírus da Influenza A/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Interferon gama/metabolismo
9.
Sci Immunol ; 9(97): eadm7908, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996009

RESUMO

Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-ß (Aß42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.


Assuntos
Encéfalo , COVID-19 , Músculo Esquelético , Transdução de Sinais , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Transdução de Sinais/imunologia , Camundongos , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , COVID-19/imunologia , Doença Crônica , Interleucina-6/metabolismo , Interleucina-6/imunologia , Infecções por Escherichia coli/imunologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/imunologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/genética , SARS-CoV-2/imunologia , Drosophila melanogaster/imunologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Camundongos Endogâmicos C57BL
10.
Sci Immunol ; 9(97): eadm8185, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968338

RESUMO

The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.


Assuntos
Interferon Tipo I , Humanos , Interferon Tipo I/imunologia , Animais , Viroses/imunologia , Doenças Autoimunes/imunologia , Transdução de Sinais/imunologia
14.
J Immunol ; 213(2): 135-147, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38829130

RESUMO

FOXP3+ regulatory T cells (Treg) are required for maintaining immune tolerance and preventing systemic autoimmunity. PI3Kδ is required for normal Treg development and function. However, the impacts of dysregulated PI3Kδ signaling on Treg function remain incompletely understood. In this study, we used a conditional mouse model of activated PI3Kδ syndrome to investigate the role of altered PI3Kδ signaling specifically within the Treg compartment. Activated mice expressing a PIK3CD gain-of-function mutation (aPIK3CD) specifically within the Treg compartment exhibited weight loss and evidence for chronic inflammation, as demonstrated by increased memory/effector CD4+ and CD8+ T cells with enhanced IFN-γ secretion, spontaneous germinal center responses, and production of broad-spectrum autoantibodies. Intriguingly, aPIK3CD facilitated Treg precursor development within the thymus and an increase in peripheral Treg numbers. Peripheral Treg, however, exhibited an altered phenotype, including increased PD-1 expression and reduced competitive fitness. Consistent with these findings, Treg-specific aPIK3CD mice mounted an elevated humoral response following immunization with a T cell-dependent Ag, which correlated with a decrease in follicular Treg. Taken together, these findings demonstrate that an optimal threshold of PI3Kδ activity is critical for Treg homeostasis and function, suggesting that PI3Kδ signaling in Treg might be therapeutically targeted to either augment or inhibit immune responses.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Homeostase , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Homeostase/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Centro Germinativo/imunologia , Mutação com Ganho de Função , Doenças da Imunodeficiência Primária
15.
J Immunol ; 213(2): 187-203, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38829131

RESUMO

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Assuntos
Patos , Imunidade Inata , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Transdução de Sinais , Ubiquitina-Proteína Ligases , Replicação Viral , Animais , Patos/imunologia , Patos/virologia , Replicação Viral/imunologia , Transdução de Sinais/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/fisiologia , Imunidade Inata/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Fibroblastos/imunologia , Fibroblastos/virologia , Proteínas Aviárias/imunologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Ubiquitinação , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/imunologia
16.
Int Immunopharmacol ; 137: 112443, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38897124

RESUMO

Brucella is an intracellular parasitic bacterium lacking typical virulence factors, and its pathogenicity primarily relies on replication within host cells. In this study, we observed a significant increase in spleen weight in mice immunized with a Brucella strain deleted of the gene for alanine racemase (Alr), the enzyme responsible for alanine racemization (Δalr). However, the bacterial load in the spleen markedly decreased in the mutant strain. Concurrently, the ratio of white pulp to red pulp in the spleen was increased, serum IgG levels were elevated, but no significant damage to other organs was observed. In addition, the inflammatory response was potentiated and the NF-κB-NLRP3 signaling pathway was activated in macrophages (RAW264.7 Cells and Bone Marrow-Derived Cells) infect ed with the Δalr mutant. Further investigation revealed that the Δalr mutant released substantial amounts of protein in a simulated intracellular environment which resulted in heightened inflammation and activation of the TLR4-NF-κB-NLRP3 pathway in macrophages. The consequent cytoplasmic exocytosis reduced intracellular Brucella survival. In summary, cytoplasmic exocytosis products resulting from infection with a Brucella strain deleted of the alr gene effectively activated the TLR4-NFκB-NLRP3 pathway, triggered a robust inflammatory response, and reduced bacterial survival within host cells. Moreover, the Δalr strain exhibits lower toxicity and stronger immunogenicity in mice.


Assuntos
Brucella suis , Brucelose , Macrófagos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Brucelose/imunologia , Brucelose/microbiologia , Brucelose/genética , Células RAW 264.7 , Brucella suis/imunologia , Brucella suis/genética , Brucella suis/patogenicidade , Virulência/genética , Macrófagos/imunologia , Deleção de Genes , Transdução de Sinais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Baço/imunologia , Inflamação/imunologia
18.
J Immunol ; 213(3): 362-372, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847613

RESUMO

IL-1R-associated kinases (IRAKs) are signal transducers of the TLR/IL-1R-MyD88-TRAF6 pathways. Vertebrates possess two IRAK lineages, IRAK1/2/3 and IRAK4. In mammals, IRAK4/IRAK1 and IRAK4/IRAK2 are pathway enhancers, whereas IRAK3 is a repressor. However, in bony fish, IRAK2 is absent, and it remains elusive how fish IRAK1/3/4 functionally differ from their mammalian counterparts. In this study, we explored this using the zebrafish model. First, we showed that in human 293T cells, zebrafish IRAK1 and IRAK4 were components of the Myddosome (MyD88-IRAK4-IRAK1) complex, with IRAK1 serving as a potent pathway enhancer. Then, we discovered two zebrafish IRAK3 variants: one (IRAK3a) contains an N-terminal Death domain, a middle pseudokinase domain, and a C-terminal TRAF6-binding domain, whereas the other (IRAK3b) lost both the kinase and TRAF6-binding domains. This truncation of IRAK3 variants could be a conserved phenomenon in fish, because it is also observed in trout and grass carp. We proceeded to show that zebrafish IRAK3a acts as a pathway enhancer by binding with MyD88 and TRAF6, but its activity is milder than IRAK1, possibly because it has no kinase activity. Zebrafish IRAK3b, however, plays a sheer negative role, apparently because of its lack of kinase and TRAF6-binding domains. Moreover, zebrafish IRAK3a/3b inhibit the activity of IRAK1/4, not by interacting with IRAK1/4 but possibly by competing for MyD88 and TRAF6. Finally, we have verified the essential activities of zebrafish IRAK1/3a/3b/4 in zebrafish cells and embryos. In summary, to our knowledge, our findings provide new insights into the molecular functions of fish IRAKs and the evolution of the IRAK functional modes in vertebrates.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Humanos , Transdução de Sinais/imunologia , Células HEK293 , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
19.
J Immunol ; 213(3): 347-361, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847616

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-ß response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-ß response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-ß response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.


Assuntos
Trifosfato de Adenosina , Proteínas de Membrana , Nucleotídeos Cíclicos , Microambiente Tumoral , Animais , Nucleotídeos Cíclicos/metabolismo , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Microambiente Tumoral/imunologia , Interferon beta/metabolismo , Interferon beta/imunologia , Camundongos Endogâmicos C57BL , Humanos , Transdução de Sinais/imunologia , Camundongos Knockout , Linhagem Celular Tumoral , Cátions/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Nucleotidiltransferases/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
20.
J Immunol ; 213(3): 268-282, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856585

RESUMO

Recruitment of immune cells to the injury site plays a pivotal role in the pathology of radiation-associated diseases. In this study, we investigated the impact of the chemokine CCL22 released from alveolar type II epithelial (AT2) cells after irradiation on the recruitment and functional changes of dendritic cells (DCs) in the development of radiation-induced lung injury (RILI). By examining changes in CCL22 protein levels in lung tissue of C57BL/6N mice with RILI, we discovered that ionizing radiation increased CCL22 expression in irradiated alveolar AT2 cells, as did MLE-12 cells after irradiation. A transwell migration assay revealed that CCL22 promoted the migration of CCR4-positive DCs to the injury site, which explained the migration of pulmonary CCR4-positive DCs in RILI mice in vivo. Coculture experiments demonstrated that, consistent with the response of regulatory T cells in the lung tissue of RILI mice, exogenous CCL22-induced DCs promoted regulatory T cell proliferation. Mechanistically, we demonstrated that Dectin2 and Nr4a2 are key targets in the CCL22 signaling pathway, which was confirmed in pulmonary DCs of RILI mice. As a result, CCL22 upregulated the expression of PD-L1, IL-6, and IL-10 in DCs. Consequently, we identified a mechanism in which CCL22 induced DC tolerance through the CCR4-Dectin2-PLC-γ2-NFATC2-Nr4a2-PD-L1 pathway. Collectively, these findings demonstrated that ionizing radiation stimulates the expression of CCL22 in AT2 cells to recruit DCs to the injury site and further polarizes them into a tolerant subgroup of CCL22 DCs to regulate lung immunity, ultimately providing potential therapeutic targets for DC-mediated RILI.


Assuntos
Antígeno B7-H1 , Quimiocina CCL22 , Células Dendríticas , Lesão Pulmonar , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC , Receptores CCR4 , Transdução de Sinais , Animais , Camundongos , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Lesão Pulmonar/imunologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/imunologia , Antígeno B7-H1/imunologia , Tolerância Imunológica , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...