RESUMO
PURPOSE: To determine whether the absence of transglutaminase 2 enzyme (TG2) in TG2 knockout mice (TG2-/-) protect them against early age-related functional and histological arterial changes. METHODS: Pulse wave velocity (PWV) was measured using non-invasive Doppler and mean arterial pressure (MAP) was measured in awake mice using tail-cuff system. Thoracic aortas were excised for evaluation of endothelial dependent vasodilation (EDV) by wire myography, as well as histological analyses. RESULTS: PWV and MAP were similar in TG2-/-mice to age-matched wild type (WT) control mice. Old WT mice exhibited a markedly attenuated EDV as compared to young WT animals. The TG2-/-young and old mice had enhanced EDV responses (p<0.01) as compared to WT mice. There was a significant increase in TG2 crosslinks by IHC in WT old group compared to Young, with no stain in the TG2-/-animals. Optical microscopy examination of Old WT mice aorta showed thinning and fragmentation of elastic laminae. Young WT mice, old and young TG2-/-mice presented regularly arranged and parallel elastic laminae of the tunica media. CONCLUSION: The genetic suppression of TG2 delays the age-induced endothelial dysfunction and histological modifications.
Assuntos
Envelhecimento/fisiologia , Aorta Torácica/fisiologia , Endotélio Vascular/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Transglutaminases/fisiologia , Fatores Etários , Animais , Pressão Arterial/fisiologia , Imuno-Histoquímica , Masculino , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Análise de Onda de Pulso , Rigidez Vascular/fisiologia , Vasodilatação/fisiologiaRESUMO
Abstract Purpose: To determine whether the absence of transglutaminase 2 enzyme (TG2) in TG2 knockout mice (TG2-/-) protect them against early age-related functional and histological arterial changes. Methods: Pulse wave velocity (PWV) was measured using non-invasive Doppler and mean arterial pressure (MAP) was measured in awake mice using tail-cuff system. Thoracic aortas were excised for evaluation of endothelial dependent vasodilation (EDV) by wire myography, as well as histological analyses. Results: PWV and MAP were similar in TG2-/-mice to age-matched wild type (WT) control mice. Old WT mice exhibited a markedly attenuated EDV as compared to young WT animals. The TG2-/-young and old mice had enhanced EDV responses (p<0.01) as compared to WT mice. There was a significant increase in TG2 crosslinks by IHC in WT old group compared to Young, with no stain in the TG2-/-animals. Optical microscopy examination of Old WT mice aorta showed thinning and fragmentation of elastic laminae. Young WT mice, old and young TG2-/-mice presented regularly arranged and parallel elastic laminae of the tunica media. Conclusion: The genetic suppression of TG2 delays the age-induced endothelial dysfunction and histological modifications.
Assuntos
Animais , Masculino , Aorta Torácica/fisiologia , Envelhecimento/fisiologia , Endotélio Vascular/fisiologia , Transglutaminases/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Vasodilatação/fisiologia , Imuno-Histoquímica , Fatores Etários , Camundongos Knockout , Rigidez Vascular/fisiologia , Análise de Onda de Pulso , Pressão Arterial/fisiologiaRESUMO
Tissue transglutaminase (type II, TG2) has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14) to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC) mRNA, bone morphogenetic protein-2 (BMP-2) and collagen I, significantly high alkaline phosphatase (ALP) activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.
Assuntos
Humanos , Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Osteoblastos/citologia , Transglutaminases/fisiologia , /metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Osteoblastos/metabolismo , Osteocalcina/metabolismo , RNA Mensageiro/metabolismo , Fatores de TempoRESUMO
Tissue transglutaminase (type II, TG2) has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14) to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC) mRNA, bone morphogenetic protein-2 (BMP-2) and collagen I, significantly high alkaline phosphatase (ALP) activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.
Assuntos
Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Osteoblastos/citologia , Transglutaminases/fisiologia , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Humanos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , RNA Mensageiro/metabolismo , Fatores de TempoRESUMO
We have studied the activity of a calcium dependent transglutaminase (EC 2.3.2.13) during the growth of the parasite Plasmodium falciparum inside the infected human erythrocyte. There is only one detectable transglutaminase in the two-cell-system, and its origin is erythrocytic. No activity was detected in preparations of the parasite devoid of erythrocyte cytoplasm. The Michaelis Menten constants (Km) of the enzyme for the substrates N'N' dimethylcaseine and putrescine were undistinguishable whether the cell extracts used in their determination were obtained from normal or from infected red cells. The total activity of transglutaminase in stringently synchronized cultures, measured at 0.5 mM Ca2+, decreased with the maturation of the parasite. However, a fraction which became irreversibly activated and independent of calcium concentration was detected. The proportion of this fraction grew with maturation; it represented only 20% of the activity in 20 hr-old-trophozoites while in 48-hr-schizonts it was more than 85% of the total activity. The activation of this fraction of transglutaminase did not depend on an increase in the erythrocyte cytoplasmic calcium, since most of the calcium was shown to be located in the parasite.