Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 41(39): 8126-8133, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34400517

RESUMO

Neurotransmitter spillover is a form of communication not readily predicted by anatomic structure. In the cerebellum, glutamate spillover from climbing fibers recruits molecular layer interneurons in the absence of conventional synaptic connections. Spillover-mediated signaling is typically limited by transporters that bind and reuptake glutamate. Here, we show that patterned expression of the excitatory amino acid transporter 4 (EAAT4) in Purkinje cells regulates glutamate spillover to molecular layer interneurons. Using male and female Aldolase C-Venus knock-in mice to visualize zebrin microzones, we find larger climbing fiber-evoked spillover EPSCs in regions with low levels of EAAT4 compared with regions with high EAAT4. This difference is not explained by presynaptic glutamate release properties or postsynaptic receptor density but rather by differences in the glutamate concentration reaching receptors on interneurons. Inhibiting glutamate transport normalizes the differences between microzones, suggesting that heterogeneity in EAAT4 expression is a primary determinant of differential spillover. These results show that neuronal glutamate transporters limit extrasynaptic transmission in a non-cell-autonomous manner and provide new insight into the functional specialization of cerebellar microzones.SIGNIFICANCE STATEMENT Excitatory amino acid transporters (EAATs) help maintain the fidelity and independence of point-to-point synaptic transmission. Whereas glial transporters are critical to maintain low ambient levels of extracellular glutamate to prevent excitotoxicity, neuronal transporters have more subtle roles in shaping excitatory synaptic transmission. Here we show that the patterned expression of neuronal EAAT4 in cerebellar microzones controls glutamate spillover from cerebellar climbing fibers to nearby interneurons. These results contribute to fundamental understanding of neuronal transporter functions and specialization of cerebellar microzones.


Assuntos
Cerebelo/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Transportador 4 de Aminoácido Excitatório/genética , Camundongos , Células de Purkinje/metabolismo , Sinapses/metabolismo
2.
Cell Physiol Biochem ; 51(5): 2275-2289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30537735

RESUMO

BACKGROUND/AIMS: Parkinson's disease (PD) is a frequently occurring condition that resulted from the loss of midbrain neurons, which synthesize the neurotransmitter dopamine. In this study, we established mouse models of PD to investigate the expression of microRNA-128 (miR-128) and mechanism through which it affects apoptosis of dopamine (DA) neurons and the expression of excitatory amino acid transporter 4 (EAAT4) via binding to axis inhibition protein 1 (AXIN1). METHODS: Gene expression microarray analysis was performed to screen differentially expressed miRNAs that are associated with PD. The targeting relationship between miR-128 and AXIN1 was verified via a bioinformatics prediction and dual-luciferase reporter gene assay. After separation, DA neurons were subjected to a series of inhibitors, activators and shRNAs to validate the mechanisms of miR-128 in controlling of AXIN1 in PD. Positive protein expression of AXIN1 and EAAT4 in DA neurons was determined using immunocytochemistry. miR-128 expression and the mRNA and protein levels of AXIN1 and EAAT4 were evaluated via RT-qPCR and Western blot analysis, respectively. DA neuron apoptosis was evaluated using TUNEL staining. RESULTS: We identified AXIN1 as an upregulated gene in PD based on the microarray data of GSE7621. AXIN1 was targeted and negatively mediated by miR-128. In the DA neurons, upregulated miR-128 expression or sh-AXIN1 increased the positive expression rate of EAAT4 together with mRNA and protein levels, but decreased the mRNA and protein levels of AXIN1, apoptosis rate along with the positive expression rate of AXIN1; however, the opposite trend was found in response to transfection with miR-128 inhibitors. CONCLUSION: Evidence from experimental models revealed that miR-128 might reduce apoptosis of DA neurons while increasing the expression of EAAT4 which might be related to the downregulation of AXIN1. Thus, miR-128 may serve as a potential target for the treatment of PD.


Assuntos
Proteína Axina/genética , Neurônios Dopaminérgicos/patologia , Transportador 4 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Doença de Parkinson/genética , Animais , Apoptose , Neurônios Dopaminérgicos/metabolismo , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Regulação para Cima
3.
Hum Mol Genet ; 27(15): 2614-2627, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741614

RESUMO

Loss of excitatory amino acid transporters (EAATs) has been implicated in a number of human diseases including spinocerebellar ataxias, Alzhiemer's disease and motor neuron disease. EAAT4 and GLAST/EAAT1 are the two predominant EAATs responsible for maintaining low extracellular glutamate levels and preventing neurotoxicity in the cerebellum, the brain region essential for motor control. Here using genetically modified mice we identify new critical roles for EAAT4 and GLAST/EAAT1 as modulators of Purkinje cell (PC) spontaneous firing patterns. We show high EAAT4 levels, by limiting mGluR1 signalling, are essential in constraining inherently heterogeneous firing of zebrin-positive PCs. Moreover mGluR1 antagonists were found to restore regular spontaneous PC activity and motor behaviour in EAAT4 knockout mice. In contrast, GLAST/EAAT1 expression is required to sustain normal spontaneous simple spike activity in low EAAT4 expressing (zebrin-negative) PCs by restricting NMDA receptor activation. Blockade of NMDA receptor activity restores spontaneous activity in zebrin-negative PCs of GLAST knockout mice and furthermore alleviates motor deficits. In addition both transporters have differential effects on PC survival, with zebrin-negative PCs more vulnerable to loss of GLAST/EAAT1 and zebrin-positive PCs more vulnerable to loss of EAAT4. These findings reveal that glutamate transporter dysfunction through elevated extracellular glutamate and the aberrant activation of extrasynaptic receptors can disrupt cerebellar output by altering spontaneous PC firing. This expands our understanding of disease mechanisms in cerebellar ataxias and establishes EAATs as targets for restoring homeostasis in a variety of neurological diseases where altered cerebellar output is now thought to play a key role in pathogenesis.


Assuntos
Cerebelo/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Células de Purkinje/fisiologia , Animais , Ataxia/genética , Sobrevivência Celular/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/citologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Sci Rep ; 8(1): 3318, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463856

RESUMO

Niemann-Pick disease Type C1 (NPC1) is a rare hereditary neurodegenerative disease. NPC1-patients suffer, amongst others, from ataxia, based on a loss of cerebellar Purkinje cells (PCs). Impaired expression/function of excitatory amino acid transporters (EAATs) are suspected of contributing to PC-degeneration in hereditary spinocerebellar ataxias (SCAs). Thus, we studied EAAT-expression and its impact to PC-activity in NPC1-/-mice. Western blot revealed reduced EAAT1, EAAT2, EAAT4, and ßIII-spectrin levels in NPC1-/-mice. EAATs play a crucial role in synaptic transmission, thus we were interested in the impact of the reduced EAAT-expression on the function of PCs. Patch-clamp recordings of PCs showed no differences in the firing patterns of NPC1+/+and NPC1-/-mice using a low internal chloride concentration. Because EAAT4 also comprises a chloride permeable ion pore, we perturbed the chloride homeostasis using a high internal chloride concentration. We observed differences in the firing patterns of NPC1+/+and NPC1-/-mice, suggesting an impact of the altered EAAT4-expression. Additionally, the EAAT-antagonist DL-TBOA acts differently in NPC1+/+and NPC1-/-mice. Our data support the line of evidence that an altered EAAT-expression/function is involved in neurodegeneration of PCs observed in SCAs. Thus, we suggest that similar pathogenic mechanisms contribute the loss of PCs in NPC1.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Proteínas/fisiologia , Células de Purkinje/fisiologia , Sistema X-AG de Transporte de Aminoácidos/genética , Animais , Células Cultivadas , Cerebelo/citologia , Cloretos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Proteína C1 de Niemann-Pick , Células de Purkinje/citologia , Transmissão Sináptica
5.
Brain Pathol ; 28(2): 240-263, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28268246

RESUMO

In prion diseases, the brain lesion profile is influenced by the prion "strain" properties, the invasion route to the brain, and still unknown host cell-specific parameters. To gain insight into those endogenous factors, we analyzed the histopathological alterations induced by distinct prion strains in the mouse cerebellum. We show that 22L and ME7 scrapie prion proteins (PrP22L , PrPME7 ), but not bovine spongiform encephalopathy PrP6PB1 , accumulate in a reproducible parasagittal banding pattern in the cerebellar cortex of infected mice. Such banding pattern of PrP22L aggregation did not depend on the neuroinvasion route, but coincided with the parasagittal compartmentation of the cerebellum mostly defined by the expression of zebrins, such as aldolase C and the excitatory amino acid transporter 4, in Purkinje cells. We provide evidence that Purkinje cells display a differential, subtype-specific vulnerability to 22L prions with zebrin-expressing Purkinje cells being more resistant to prion toxicity, while in stripes where PrP22L accumulated most zebrin-deficient Purkinje cells are lost and spongiosis accentuated. In addition, in PrP22L stripes, enhanced reactive astrocyte processes associated with microglia activation support interdependent events between the topographic pattern of Purkinje cell death, reactive gliosis and PrP22L accumulation. Finally, we find that in preclinically-ill mice prion infection promotes at the membrane of astrocytes enveloping Purkinje cell excitatory synapses, upregulation of tumor necrosis factor-α receptor type 1 (TNFR1), a key mediator of the neuroinflammation process. These overall data show that Purkinje cell sensitivity to prion insult is locally restricted by the parasagittal compartmentation of the cerebellum, and that perisynaptic astrocytes may contribute to prion pathogenesis through prion-induced TNFR1 upregulation.


Assuntos
Cerebelo/metabolismo , Cerebelo/patologia , Proteínas Priônicas/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Transportador 4 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Scrapie/metabolismo , Scrapie/patologia , Sinapses/metabolismo , Sinapses/patologia
6.
Epilepsia ; 57(6): 984-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27153812

RESUMO

OBJECTIVE: Posttraumatic seizures (PTS) commonly occur following severe traumatic brain injury (sTBI). Risk factors for PTS have been identified, but variability in who develops PTS remains. Excitotoxicity may influence epileptogenesis following sTBI. Glutamate transporters manage glutamate levels and excitatory neurotransmission, and they have been associated with both epilepsy and TBI. Therefore, we aimed to determine if genetic variation in neuronal glutamate transporter genes is associated with accelerated epileptogenesis and increased PTS risk after sTBI. METHODS: Individuals (N = 253) 18-75 years of age with sTBI were assessed for genetic relationships with PTS. Single nucleotide polymorphisms (SNPs) within SLC1A1 and SLC1A6 were assayed. Kaplan-Meier estimates and log-rank statistics were used to compare seizure rates from injury to 3 years postinjury for SNPs by genotype. Hazard ratios (HRs) were estimated using Cox proportional hazards regression for SNPs significant in Kaplan-Meier analyses adjusting for known PTS risk factors. RESULTS: Thirty-two tagging SNPs were examined (SLC1A1: n = 28, SLC1A6: n = 4). Forty-nine subjects (19.37%) had PTS. Of these, 18 (36.7%) seized within 7 days, and 31 (63.3%) seized between 8 days and 3 years post-TBI. With correction for multiple comparisons, genotypes at SNP rs10974620 (SLC1A1) were significantly associated with time to first seizure across the full 3-year follow-up (seizure rates: 77.1% minor allele homozygotes, 24.8% heterozygotes, 16.6% major allele homozygotes; p = 0.001). When seizure follow-up began day 2 postinjury, genotypes at SNP rs7858819 (SLC1A1) were significantly associated with PTS risk (seizure rates: 52.7% minor allele homozygotes, 11.8% heterozygotes, 21.1% major allele homozygotes; p = 0.002). After adjusting for covariates, we found that rs10974620 remained significant (p = 0.017, minor allele versus major allele homozygotes HR 3.4, 95% confidence interval [CI] 1.3-9.3). rs7858819 also remained significant in adjusted models (p = 0.023, minor allele versus major allele homozygotes HR 3.4, 95%CI 1.1-10.5). SIGNIFICANCE: Variations within SLC1A1 are associated with risk of epileptogenesis following sTBI. Future studies need to confirm findings, but variation within neuronal glutamate transporter genes may represent a possible pharmaceutical target for PTS prevention and treatment.


Assuntos
Epilepsia Pós-Traumática/genética , Transportador 3 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Feminino , Seguimentos , Estudos de Associação Genética , Genótipo , Escala de Coma de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Modelos de Riscos Proporcionais , Estatísticas não Paramétricas , Adulto Jovem
7.
Mol Cell Endocrinol ; 424: 34-41, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26774511

RESUMO

Genomic profiling of immortalized human mammary epithelial (hTERT-HME1) cells identified several metabolic genes, including the membrane glutamate transporter, SLC1A1, as 1,25-dihydroxyvitamin D3 (1,25D) regulated. In these studies we have surveyed the effects of 1,25D on known glutamate transporters and evaluated its impact on cellular glutamate handling. We confirm that expression of SLC1A1 and all of its known transcript variants are significantly upregulated in hTERT-HME1 cells following 1,25D treatment. Expression of the full-length cognate protein, EAAT3, is correspondingly increased in 1,25D treated hTERT-HME1 cells. Under the same conditions, the expression of two other glutamate transporters--SLC1A6 (EAAT4) and SLC1A2 (EAAT2 or GLT-1)--is enhanced by 1,25D while that of SLC1A3 (EAAT1 or GLAST) and SLC7A11 (xCT) is decreased. Glutamate is not essential for growth of hTERT-HME1 cells, and supplemental glutamate (up to 0.5 mM) does not abrogate the growth inhibitory effects of 1,25D. These data suggest that extracellular glutamate is not a major contributor to cellular energy metabolism in hTERT-HME1 cells under basal conditions and that the growth inhibitory effects of 1,25D are not secondary to its effects on glutamate handling. Instead, the effects of 1,25D on glutamate transporters translated to a decrease in cellular glutamate concentration and an increase in media glutamate concentration, suggesting that one or more of these transporters functions to export glutamate in response to 1,25D exposure. The reduced cellular glutamate concentration may also reflect its incorporation into the cellular glutathione (GSH) pool, which is increased upon 1,25D treatment. In support of this concept, the expression of GCLC (which codes for the rate-limiting enzyme in GSH synthesis) and genes which generate reducing equivalents in the form of NADPH (ie, G6PD, PGD, IDH2) are elevated in 1,25D-treated cells. Taken together, these data identify 1,25D as a physiological regulator of multiple membrane glutamate transporters that impacts on overall cellular glutamate handling.


Assuntos
Células Epiteliais/efeitos dos fármacos , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/farmacologia , Glândulas Mamárias Humanas/citologia , Vitamina D/análogos & derivados , Sistema y+ de Transporte de Aminoácidos/genética , Linhagem Celular , Meios de Cultura/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório , Transportador 4 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Isoformas de Proteínas/metabolismo , Vitamina D/farmacologia
8.
J Membr Biol ; 249(3): 239-49, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26690923

RESUMO

Excitatory amino acid transporters EAAT1 (SLC1A3), EAAT2 (SLC1A2), EAAT3 (SLC1A1), and EAAT4 (SLC1A6) serve to clear L-glutamate from the synaptic cleft and are thus important for the limitation of neuronal excitation. EAAT3 has previously been shown to form complexes with caveolin-1, a major component of caveolae, which participate in the regulation of transport proteins. The present study explored the impact of caveolin-1 on electrogenic transport by excitatory amino acid transporter isoforms EAAT1-4. To this end cRNA encoding EAAT1, EAAT2, EAAT3, or EAAT4 was injected into Xenopus oocytes without or with additional injection of cRNA encoding caveolin-1. The L-glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1-, EAAT2-, EAAT3-, or EAAT4-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of caveolin-1. Caveolin-1 decreased significantly the maximal transport rate. Treatment of EAATs-expressing oocytes with brefeldin A (5 µM) was followed by a decrease in conductance, which was similar in oocytes expressing EAAT together with caveolin-1 as in oocytes expressing EAAT1-4 alone. Thus, caveolin-1 apparently does not accelerate transporter protein retrieval from the cell membrane. In conclusion, caveolin-1 is a powerful negative regulator of the excitatory glutamate transporters EAAT1, EAAT2, EAAT3, and EAAT4.


Assuntos
Caveolina 1/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Animais , Transporte Biológico , Caveolina 1/genética , Transportador 1 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Oócitos/metabolismo , Xenopus laevis
9.
PLoS One ; 8(7): e70988, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23923038

RESUMO

Klotho, a transmembrane protein, which can be cleaved off as ß-glucuronidase and hormone, is released in both, kidney and choroid plexus and encountered in blood and cerebrospinal fluid. Klotho deficiency leads to early appearance of age-related disorders and premature death. Klotho may modify transport by inhibiting 1,25(OH)2D3 formation or by directly affecting channel and carrier proteins. The present study explored whether Klotho influences the activity of the Na(+)-coupled excitatory amino acid transporters EAAT3 and EAAT4, which are expressed in kidney (EAAT3), intestine (EAAT3) and brain (EAAT3 and EAAT4). To this end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho. EAAT expressing Xenopus oocytes were further treated with recombinant human ß-Klotho protein with or without ß-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL). Electrogenic excitatory amino acid transport was determined as L-glutamate-induced current (Iglu) in two electrode voltage clamp experiments. EAAT3 and EAAT4 protein abundance in the Xenopus oocyte cell membrane was visualized by confocal microscopy and quantified utilizing chemiluminescence. As a result, coexpression of Klotho cRNA significantly increased Iglu in both, EAAT3 or EAAT4-expressing Xenopus oocytes. Klotho cRNA coexpression significantly increased the maximal current and cell membrane protein abundance of both EAAT3 and EAAT4. The effect of Klotho coexpression on EAAT3 and EAAT4 activity was mimicked by treating EAAT3 or EAAT4-expressing Xenopus oocytes with recombinant human ß-Klotho protein. The effects of Klotho coexpression and of treatment with recombinant human ß-Klotho protein were both abrogated in the presence of DSAL (10 µM). In conclusion, Klotho is a novel, powerful regulator of the excitatory amino acid transporters EAAT3 and EAAT4.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Glucuronidase/metabolismo , Neurônios/metabolismo , Potenciais de Ação , Animais , Transporte Biológico , Transportador 3 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Expressão Gênica , Glucuronidase/genética , Ácido Glutâmico/metabolismo , Proteínas Klotho , Oócitos/metabolismo , Xenopus laevis
10.
J Neurosci ; 33(3): 1068-87, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325245

RESUMO

In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the "trimerization domain" of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its "transport domain."


Assuntos
Regulação Alostérica/efeitos dos fármacos , Benzopiranos/farmacologia , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Animais , Transporte Biológico/fisiologia , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/metabolismo , Humanos , Ratos
11.
World J Biol Psychiatry ; 14(7): 490-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22424243

RESUMO

OBJECTIVES: The glutamatergic hypothesis of schizophrenia proposes alterations of excitatory amino acid transporters (solute carrier family, SLCs) expression and cerebellar dysfunctions. The influence of the neuregulin-1 (NRG1) risk genotype or effects of antipsychotics on expression of EAATs are unknown. METHODS: We compared post-mortem samples from the cerebellar hemispheres and vermis of 10 schizophrenia patients with nine normal subjects by investigating gene expression of SLC1A3, SLC1A1 and SLC1A6 by in-situ hybridization. We further assessed the allelic composition regarding the polymorphism rs35753505 (SNP8NRG221533) near the NRG1 gene. To control for effects due to antipsychotic treatment, we chronically treated rats with the antipsychotics haloperidol or clozapine and assessed gene expression of SLCs. RESULTS: Schizophrenia patients showed increased expression of SLC1A3 in the molecular layer of the vermis. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of SLC1A6 in the molecular layer of both hemispheres, compared to individuals homozygous for the T allele. The animal model revealed suppression of SLC1A6 by clozapine. CONCLUSIONS: Increased SLC1A3 expression indicates facilitated transport and may result in reduced glutamate neurotransmission. Decreased SLC1A6 expression in NRG1 risk variant may be an adaptive effect to restore glutamate signalling, but treatment effects cannot be excluded.


Assuntos
Cerebelo/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica/genética , Esquizofrenia/metabolismo , Idoso , Alelos , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/uso terapêutico , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Clozapina/uso terapêutico , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/biossíntese , Transportador 3 de Aminoácido Excitatório/biossíntese , Transportador 4 de Aminoácido Excitatório/biossíntese , Feminino , Haloperidol/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Neuregulina-1/genética , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
12.
PLoS One ; 7(9): e46261, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049999

RESUMO

Glutamate is the neurotransmitter released from hair cells. Its clearance from the synaptic cleft can shape neurotransmission and prevent excitotoxicity. This may be particularly important in the inner ear and in other sensory organs where there is a continually high rate of neurotransmitter release. In the case of most cochlear and type II vestibular hair cells, clearance involves the diffusion of glutamate to supporting cells, where it is taken up by EAAT1 (GLAST), a glutamate transporter. A similar mechanism cannot work in vestibular type I hair cells as the presence of calyx endings separates supporting cells from hair-cell synapses. Because of this arrangement, it has been conjectured that a glutamate transporter must be present in the type I hair cell, the calyx ending, or both. Using whole-cell patch-clamp recordings, we demonstrate that a glutamate-activated anion current, attributable to a high-affinity glutamate transporter and blocked by DL-TBOA, is expressed in type I, but not in type II hair cells. Molecular investigations reveal that EAAT4 and EAAT5, two glutamate transporters that could underlie the anion current, are expressed in both type I and type II hair cells and in calyx endings. EAAT4 has been thought to be expressed almost exclusively in the cerebellum and EAAT5 in the retina. Our results show that these two transporters have a wider distribution in mice. This is the first demonstration of the presence of transporters in hair cells and provides one of the few examples of EAATs in presynaptic elements.


Assuntos
Transportador 4 de Aminoácido Excitatório/metabolismo , Transportador 5 de Aminoácido Excitatório/metabolismo , Células Ciliadas Vestibulares/metabolismo , Terminações Nervosas/metabolismo , Animais , Western Blotting , Eletrofisiologia , Transportador 4 de Aminoácido Excitatório/genética , Transportador 5 de Aminoácido Excitatório/genética , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Biol Chem ; 286(27): 23780-8, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21572047

RESUMO

EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.


Assuntos
Transportador 4 de Aminoácido Excitatório/metabolismo , Ativação do Canal Iônico/fisiologia , Lítio/metabolismo , Sódio/metabolismo , Animais , Transportador 4 de Aminoácido Excitatório/genética , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Conformação Proteica , Ratos
14.
Asian J Androl ; 13(2): 254-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21170079

RESUMO

Glutamate is a regulated molecule in the mammalian testis. Extracellular regulation of glutamate in the body is determined largely by the expression of plasmalemmal glutamate transporters. We have examined by PCR, western blotting and immunocytochemistry the expression of a panel of sodium-dependent plasmalemmal glutamate transporters in the rat testis. Proteins examined included: glutamate aspartate transporter (GLAST), glutamate transporter 1 (GLT1), excitatory amino acid carrier 1 (EAAC1), excitatory amino acid transporter 4 (EAAT4) and EAAT5. We demonstrate that many of the glutamate transporters in the testis are alternately spliced. GLAST is present as exon-3- and exon-9-skipping forms. GLT1 was similarly present as the alternately spliced forms GLT1b and GLT1c, whereas the abundant brain form (GLT1a) was detectable only at the mRNA level. EAAT5 was also strongly expressed, whereas EAAC1 and EAAT4 were absent. These patterns of expression were compared with the patterns of endogenous glutamate localization and with patterns of d-aspartate accumulation, as assessed by immunocytochemistry. The presence of multiple glutamate transporters in the testis, including unusually spliced forms, suggests that glutamate homeostasis may be critical in this organ. The apparent presence of many of these transporters in the testis and sperm may indicate a need for glutamate transport by such cells.


Assuntos
Processamento Alternativo , Sistema X-AG de Transporte de Aminoácidos/genética , Testículo/metabolismo , Sequência de Aminoácidos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Ácido Aspártico/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Primers do DNA/genética , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/metabolismo , Transportador 5 de Aminoácido Excitatório/genética , Transportador 5 de Aminoácido Excitatório/metabolismo , Expressão Gênica , Ácido Glutâmico/metabolismo , Homeostase , Imuno-Histoquímica , Masculino , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Retina/metabolismo
15.
J Biol Chem ; 286(5): 3935-43, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21127051

RESUMO

Excitatory amino acid transporters (EAATs) mediate the uptake of glutamate into neuronal and glial cells of the mammalian central nervous system. Two transporters expressed primarily in glia, EAAT1 and EAAT2, are crucial for glutamate homeostasis in the adult mammalian brain. Three neuronal transporters (EAAT3, EAAT4, and EAAT5) appear to have additional functions in regulating and processing cellular excitability. EAATs are assembled as trimers, and the existence of multiple isoforms raises the question of whether certain isoforms can form hetero-oligomers. Co-expression and pulldown experiments of various glutamate transporters showed that EAAT3 and EAAT4, but neither EAAT1 and EAAT2, nor EAAT2 and EAAT3 are capable of co-assembling into heterotrimers. To study the functional consequences of hetero-oligomerization, we co-expressed EAAT3 and the serine-dependent mutant R501C EAAT4 in HEK293 cells and Xenopus laevis oocytes and studied glutamate/serine transport and anion conduction using electrophysiological methods. Individual subunits transport glutamate independently of each other. Apparent substrate affinities are not affected by hetero-oligomerization. However, polarized localization in Madin-Darby canine kidney cells was different for homo- and hetero-oligomers. EAAT3 inserts exclusively into apical membranes of Madin-Darby canine kidney cells when expressed alone. Co-expression with EAAT4 results in additional appearance of basolateral EAAT3. Our results demonstrate the existence of heterotrimeric glutamate transporters and provide novel information about the physiological impact of EAAT oligomerization.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Neurônios/metabolismo , Multimerização Proteica , Animais , Transporte Biológico , Linhagem Celular , Fenômenos Eletrofisiológicos , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Transportador 5 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Mutação de Sentido Incorreto , Neuroglia/metabolismo , Isoformas de Proteínas , Ratos , Especificidade por Substrato , Transfecção
16.
J Neurosci ; 30(21): 7290-9, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20505095

RESUMO

Purkinje cells in the mammalian cerebellum are remarkably homogeneous in shape and orientation, yet they exhibit regional differences in gene expression. Purkinje cells that express high levels of zebrin II (aldolase C) and the glutamate transporter EAAT4 cluster in parasagittal zones that receive input from distinct groups of climbing fibers (CFs); however, the physiological properties of CFs that target these molecularly distinct Purkinje cells have not been determined. Here we report that CFs that innervate Purkinje cells in zebrin II-immunoreactive (Z(+)) zones release more glutamate per action potential than CFs in Z(-) zones. CF terminals in Z(+) zones had larger pools of release-ready vesicles, exhibited enhanced multivesicular release, and produced larger synaptic glutamate transients. As a result, CF-mediated EPSCs in Purkinje cells decayed more slowly in Z(+) zones, which triggered longer-duration complex spikes containing a greater number of spikelets. The differences in the duration of CF EPSCs between Z(+) and Z(-) zones persisted in EAAT4 knock-out mice, indicating that EAAT4 is not required for maintaining this aspect of CF function. These results indicate that the organization of the cerebellum into discrete longitudinal zones is defined not only by molecular phenotype of Purkinje cells within zones, but also by the physiological properties of CFs that project to these distinct regions. The enhanced release of glutamate from CFs in Z(+) zones may alter the threshold for synaptic plasticity and prolong inhibition of cerebellar output neurons in deep cerebellar nuclei.


Assuntos
Cerebelo/citologia , Ácido Glutâmico/metabolismo , Fibras Nervosas/metabolismo , Células de Purkinje/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Transportador 4 de Aminoácido Excitatório/genética , Antagonistas GABAérgicos/farmacologia , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/efeitos dos fármacos , Piridazinas/farmacologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Zinco/farmacologia
17.
Neurosci Lett ; 474(1): 42-5, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20211693

RESUMO

EAAT4-eGFP BAC reporter transgenic adult mice were used to detect EAAT4 gene expression in individual cells of cerebral cortex, and eGFP fluorescence was measured to compare EAAT4 promoter activity in different cells. Most eGFP+ cells were neurons; only rare GFAP+ profiles were eGFP+. About 10% of NeuN+ cells was eGFP+, and the percentage of NeuN/eGFP co-localization varied from 2 to 20% of NeuN+ cells throughout cortical layers: layers I and II-III showed the highest values of co-localization, layer IV the lowest. The intensity of eGFP fluorescence did not exhibit laminar variations. Finally, we observed that EAAT4 promoter activity in cortical neurons was 10% of that measured in cerebellar Purkinje cells, i.e., the cells displaying the highest intensity in the CNS. These results extend our knowledge on EAAT4 expression in the cerebral cortex of adult mice, and suggest that the role of EAAT4 in cortical glutamatergic transmission may be more important than previously thought.


Assuntos
Astrócitos/metabolismo , Transportador 4 de Aminoácido Excitatório/biossíntese , Neurônios/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Transportador 4 de Aminoácido Excitatório/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Células de Purkinje/metabolismo
18.
J Neurochem ; 113(6): 1426-35, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20218975

RESUMO

The glutamate transporters EAAT3 and EAAT4 are expressed in neurons. They contribute to the cellular uptake of glutamate and aspartate and thus to the clearance of the excitatory transmitters from the extracellular space. During ischemia, extracellular accumulation of glutamate may trigger excitotoxicity. Energy depletion leads to activation of the AMP-activated protein kinase (AMPK), a kinase enhancing energy production and limiting energy expenditure. The present study thus explored the possibility that AMPK regulates EAAT3 and/or EAAT4. To this end, EAAT3 or EAAT4 were expressed in Xenopus oocytes with or without AMPK and electrogenic glutamate transport determined by dual electrode voltage clamp. In EAAT3- and in EAAT4-expressing oocytes glutamate generated a current (I(g)), which was half maximal (K(M)) at 74 microM (EAAT3) or at 4 microM (EAAT4) glutamate. Co-expression of constitutively active (gammaR70Q)AMPK or of wild type AMPK did not affect K(M) but significantly decreased the maximal I(g) in both EAAT3- (by 34%) and EAAT4- (by 49%) expressing oocytes. Co-expression of the inactive mutant (alphaK45R)AMPK [alpha1(K45R)beta1gamma1] did not appreciably affect I(g). According to confocal microscopy and chemiluminescence co-expression of (gammaR70Q)AMPK or of wild type AMPK reduced the membrane abundance of EAAT3 and EAAT4. The observations show that AMPK down-regulates Na(+)-coupled glutamate transport.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação para Baixo/fisiologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Arginina/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Complexos Endossomais de Distribuição Requeridos para Transporte/farmacologia , Transportador 3 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Ácido Glutâmico/farmacologia , Glutamina/genética , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Microscopia Confocal/métodos , Mutação/genética , Ubiquitina-Proteína Ligases Nedd4 , Óxidos de Nitrogênio/farmacologia , Oócitos , Técnicas de Patch-Clamp/métodos , Transdução Genética , Tirosina/genética , Ubiquitina-Proteína Ligases/farmacologia , Xenopus
19.
J Cell Physiol ; 221(3): 677-87, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19725054

RESUMO

Bradykinin (BK) is a potent modulator of biological processes in the retina, and retinal pigment epithelial cells (RPE) and the regulation of glutamate are believed to be important in the pathogenesis of diabetic retinopathy. However, the mechanism by which BK regulates glutamate uptake in RPE cells in diabetic retinopathy is unknown. Here, we examined the involvement of BK receptors in high glucose-induced dysfunction of glutamate uptake in human ARPE cells. High glucose stimulated glutamate uptake and the expression of excitatory amino acid transporter-4 (EAAT4) mRNA, and these were blocked by treatment with small interfering RNA (siRNA) for BK1 receptor (B1R) and BK2 receptor (B2R), but not scrambled siRNA, supporting an involvement of B1R and B2R in this process. High glucose-stimulated glutamate uptake was also blocked by the B1R antagonist [des-Arg(10)]-HOE 140 and the B2R antagonist HOE 140. High glucose increased B1R and B2R mRNA and protein expression in a time-dependent manner, increased B1R and B2R translocation from the cytosol to the nucleus, and stimulated kininogen, kallikrein, and kininase I mRNA expression. We examined whether BK receptors were involved in high glucose-induced signaling pathways. High glucose stimulated arachidonic acid release, cytosolic phospholipase A(2) and cyclooxygenase-2 proteins, nuclear factor-kappaB activation, and inhibitor-kappaB activation; these events were blocked by treatment with B1R and B2R siRNAs, but not scrambled siRNA. In addition, high glucose-induced stimulation of glutamate uptake was blocked by the cyclooxygenase-2 inhibitors arachidonyl trifluoromethyl ketone, mepacrine, 5-bromo-2-(4-fluorophenyl)-3-[4-(methyl-sulfonyl)phenyl]-thiophene, and N-[2-cyclohexyloxy-4-nitrophenyl] methane-sulfonamide, and by the nuclear factor-kappaB inhibitors pyrrolidine dithiocarbamate and SN-50.


Assuntos
Células Epiteliais/metabolismo , Glucose/farmacologia , Ácido Glutâmico/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais/fisiologia , Ácido Araquidônico/metabolismo , Ácido Aspártico/metabolismo , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B1 da Bradicinina , Antagonistas de Receptor B2 da Bradicinina , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Células Epiteliais/efeitos dos fármacos , Transportador 4 de Aminoácido Excitatório/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Calicreínas/metabolismo , Cininogênios/metabolismo , Lisina Carboxipeptidase/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/genética , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Transdução de Sinais/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia
20.
J Comp Neurol ; 511(2): 155-72, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-18770868

RESUMO

Excitatory amino acid transporter 4 (EAAT4), a member of the high-affinity Na+/K+-dependent glutamate transporter family, is highly enriched in Purkinje cells of the cerebellum, although it is not restricted to these cells. The detailed expression of EAAT4 protein in different adult rat fore- and midbrain regions was examined. Despite moderate expression levels compared with the cerebellum, EAAT4 protein was omnipresent throughout the fore- and midbrain. With antibodies raised against the N-terminal mouse EAAT4 sequence, the highest protein expression levels were observed in the substantia nigra pars compacta, ventral tegmental area, paranigral nucleus, habenulo-interpeduncular system, supraoptic nucleus, lateral posterior thalamic nucleus, subiculum, and superficial layers of the superior colliculus. Relatively high levels of EAAT4 protein were also detected in the hippocampal principal cells, in the glutamatergic, gamma-aminobutyric acid (GABA)ergic, dopaminergic and most likely cholinergic cells of all nuclei of the basal ganglia, and in neurons of layers II/III and V of the cerebral cortex. The expression of EAAT4 was confirmed at the mRNA level in some important fore- and midbrain structures by in situ hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR) and estimated to range from 6.7 to 1.6% of the amount in the cerebellum as measured by real-time PCR.


Assuntos
Transportador 4 de Aminoácido Excitatório/metabolismo , Mesencéfalo/metabolismo , Prosencéfalo/metabolismo , Animais , Transportador 4 de Aminoácido Excitatório/genética , Humanos , Hibridização In Situ , Masculino , Mesencéfalo/anatomia & histologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Prosencéfalo/anatomia & histologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...