Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Environ Sci Pollut Res Int ; 30(17): 49108-49124, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773254

RESUMO

The leaves of Ficus johannis Boiss (F. johannis), commonly known as Fig tree, Anjir, and Teen, are used by the folk medicinal practitioners in Iran for controlling hyperglycemia in diabetic patients. This study investigated the pharmacological basis for antidiabetic effect of the ethanolic extract of F. johannis leaves using in vitro and in vivo experimental models. Qualitative screening of phytochemicals, estimation of total phenolic and flavonoid contents, and in vitro antioxidant and α-amylase inhibition assays were performed. Moreover, the High-performance liquid chromatography (HPLC) quantification, acute toxicity, glucose tolerance, and in vivo antidiabetic effect along with the evaluation of gene expressions involved in diabetes mellitus were carried out. Significant quantities of phenolic (71.208 ± 2.89 mgg-1 GAE) and flavonoid (26.38 ± 3.53 mgg-1 QE) were present. Inhibitory concentration (IC50) of the plant extract exhibited an excellent in vitro antioxidant (IC50 = 33.81 µg/mL) and α-amylase (IC50 = 12.18 µg/mL) inhibitory potential. The HPLC analysis confirmed the gallic acid (257.79 mgg-1) as main constituent of the extract followed by kaempferol (22.86 mgg-1), myricetin (0.16 mgg-1), and quercetin (3.22 mgg-1). Ethanolic extract displayed glucose tolerance in normo-glycemic rats. Streptozotocin-induced hyperglycemia declined dose dependently in the extract treated rats with improvement in lipid profile and liver and renal function biomarkers. The F. johannis-treated groups showed an increase in mRNA expressions of glucose transporter 4 (GLUT-4), glucokinase, insulin growth like factor 1 and peroxisomal proliferator activating receptor gamma in pancreas. However, the Glucose-6-phosphatase was downregulated. Present study suggests that the ethanolic extract of F. johannis leaves demonstrates a good anti-diabetic profile by improving insulin sensitivity, GLUT-4 translocation, and carbohydrate metabolism while inhibiting lipogenesis.


Assuntos
Diabetes Mellitus Experimental , Ficus , Hiperglicemia , Extratos Vegetais , Animais , Ratos , alfa-Amilases , Antioxidantes/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Etanol , Ficus/química , Ficus/metabolismo , Flavonoides/farmacologia , Glucose , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fenóis , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Estreptozocina , Quinases do Centro Germinativo/efeitos dos fármacos , Transportador de Glucose Tipo 4/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Glucose-6-Fosfatase/efeitos dos fármacos
2.
J Diabetes Res ; 2022: 5636499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224107

RESUMO

Our recent studies have shown that glucose-dependent insulinotropic polypeptide (GIP), but not glucagon-like peptide 1 (GLP-1), augments Na-glucose transporter 1- (SGLT1-) mediated glucose absorption in mouse jejunum. Na-dependent glucose absorption sharply rose and peaked in 3 months of high-fat (i.e., obese) compared to normal (i.e., normal weight) diet fed animals. Previous studies have shown that GIP-augmented SGLT1 and PEPT1 (peptide transporter 1) are regulated by protein kinase A (PKA) signaling in mouse jejunum. Additional studies have indicated that cAMP and PI3 kinase signaling augment PEPT1 through EPAC and AKT activation pathways, respectively, through increased apical PEPT1 trafficking in intestinal epithelial cells. However, little is known about how the signaling glucose transport paradigm is altered over a long period. Early on, increased glucose absorption occurs through SGLT1, but as the obesity and diabetes progress, there is a dramatic shift towards a Na-independent mechanism. Surprisingly, at the peak of glucose absorption during the fifth month of the progression of obesity, the SGLT1 activity was severely depressed, while a Na-independent glucose absorptive process begins to appear. Since glucose transporter 2 (GLUT2) is expressed on the apical membrane of the small intestine in obese patients and animal models of obesity, it was hypothesized to be the new more efficient route. Western blot analyses and biotinylation of the apical membrane revealed that the GIP expression increases in the obese animals and its trafficking to the apical membrane increases with the GIP treatment.


Assuntos
Polipeptídeo Inibidor Gástrico/efeitos dos fármacos , Transportador de Glucose Tipo 4/efeitos dos fármacos , Jejuno/metabolismo , Fragmentos de Peptídeos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Polipeptídeo Inibidor Gástrico/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Jejuno/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL/metabolismo , Camundongos Obesos/metabolismo , Fragmentos de Peptídeos/metabolismo
3.
Brain Res Bull ; 181: 12-20, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065184

RESUMO

Type 2 diabetes is a major factor contributing to cognitive decline and Alzheimer's disease (AD). Treadmill running is considered to be a critical approach for mice and rats to lower blood sugar and improve learning and memory capacity. The growth factor receptor-bound protein 10 (Grb10) has been proposed to inhibit insulin signaling and defective brain insulin signaling resulted in the cognitive deficits in patients with AD. However, the positive roles of treadmill training on diabetic- related impaired cognitive function and their molecular mechanisms remain unclear. Here, to investigate whether there was neuroprotective effects of treadmill training on impaired cognitive function caused by diabetes, the rats were injected intraperitoneally with streptozotocin at a dose of 30 mg/kg to establish diabetic model (DM). We found that higher Grb10, BACE1 and PHF10 protein levels in the hippocampus of DM rats, lower phosphorylation IGF-1Rß and IRS-1(ser307). However, 8 weeks treadmill training effectively reduced abnormal Grb10, enhanced postsynaptic density protein PSD-93, PSD-95, SYN expressions of hippocampus, restored PI3K/Akt/ERK and mTOR/AMPK signaling, thus alleviated spatial learning and memory deficit, compared with DM group. Additionally, treadmill training also increased GLUT4 transportation. Overall, our findings suggest that treadmill intervention improved cognitive impairments caused by diabetes disease partly through modulating Grb10/ PI3K/Akt/ERK as well as mTOR/AMPK signaling.


Assuntos
Disfunção Cognitiva/terapia , Complicações do Diabetes/terapia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Terapia por Exercício , Proteína Adaptadora GRB10/metabolismo , Transportador de Glucose Tipo 4/efeitos dos fármacos , Condicionamento Físico Animal , Corrida , Animais , Antibióticos Antineoplásicos/administração & dosagem , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Complicações do Diabetes/induzido quimicamente , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Corrida/fisiologia , Estreptozocina/administração & dosagem
4.
Am J Chin Med ; 49(6): 1473-1491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34240660

RESUMO

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diterpenos/farmacologia , Proteínas Ativadoras de GTPase/metabolismo , Intolerância à Glucose/tratamento farmacológico , Transportador de Glucose Tipo 4/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
5.
Molecules ; 26(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299455

RESUMO

An unprecedented novel flavanone davidone F (1) with a seven-membered ring side chain, and a novel flavanonol davidone G (2), along with 11 known flavonoids, were isolated from the ethyl acetate fraction of Sophora davidii (Franch.) Skeels. Their planar structures were established by UV, IR, HRESIMS, 1D and 2D NMR data. The relative configurations of 1 and 2 were determined by calculation of NMR chemical shift values, the absolute configuration of 1 and 2 were assigned by comparing their experimental and calculated electronic circular dichroism (ECD) spectra. Moreover, compounds 1-13 were screened for the translocation activity of glucose transporter 4 (GLUT-4), and the fluorescence intensity was increased to the range of 1.56 and 2.79 folds. Compounds 1 and 2 showed moderate GLUT-4 translocation activity with 1.64 and 1.79 folds enhancement, respectively, at a concentration of 20 µg/mL.


Assuntos
Flavonoides/química , Flavonoides/isolamento & purificação , Sophora/metabolismo , China , Dicroísmo Circular/métodos , Flavanonas/química , Flavanonas/isolamento & purificação , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Raízes de Plantas/química , Sophora/química
6.
Neuropharmacology ; 196: 108685, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34175325

RESUMO

Targeting the common molecular mechanism of type 2 diabetes mellitus and Alzheimer's disease (AD), including dysregulation of glucose metabolism, insulin resistance, and neuroinflammation, might be an efficient treatment strategy for AD. Previous studies have shown that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), an endogenous PPARγ agonist, has anti-inflammatory, insulin sensitizing and anti-diabetic effects. However, whether 15d-PGJ2 has beneficial effects on AD remains to be elucidated. In the present study, we found that intranasal administration of 15d-PGJ2 (300 ng/30 µL/day) for 3 months significantly inhibited Aß plaques, suppressed neuroinflammation, and attenuated cognitive deficits in APP/PS1 transgenic mice. Interestingly, 15d-PGJ2 treatment could increase brain glucose uptake, as detected by 18F-FDG microPET imaging, and co-localization of GLUT4 and NeuN in the hippocampus of APP/PS1 mice. Furthermore, 15d-PGJ2 markedly increased the expression of PPARγ and PGC-1α, upregulated GLUT4, and decreased the phosphorylation of IRS-1 (Ser616) in the hippocampus of APP/PS1 mice. Importantly, co-administration of a PPARγ antagonist GW9662 abrogated these protective effects of 15d-PGJ2. Collectively, intranasal 15d-PGJ2 conferred protective effects against AD by activating PPARγ-dependent PGC-1α/GLUT4 signalling. The PPARγ agonist 15d-PGJ2 might be a potential therapeutic drug for AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/efeitos dos fármacos , Glucose/metabolismo , Fatores Imunológicos/farmacologia , Neurônios/efeitos dos fármacos , PPAR gama/efeitos dos fármacos , Prostaglandina D2/análogos & derivados , Administração Intranasal , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Anilidas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Fluordesoxiglucose F18 , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris , Neurônios/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Fragmentos de Peptídeos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Tomografia por Emissão de Pósitrons , Presenilina-1/genética , Prostaglandina D2/farmacologia , Compostos Radiofarmacêuticos , Transdução de Sinais
7.
Nutr Res ; 74: 52-61, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31945607

RESUMO

Coumarins have been shown to reduce blood glucose levels and improve insulin sensitivity in other studies. The purpose of this study was to investigate the effects of scopoletin, which is a type of coumarin family, on glucose uptake in 3T3-L1 cells to test the hypothesis that scopoletin exerts an antidiabetic function on adipocytes. Scopoletin significantly increased glucose uptake, which was associated with increased expression of the plasma membrane glucose transporter type 4 (PM-GLUT4) in 3T3-L1 adipocytes. This increase in PM-GLUT4 expression was promoted by phosphorylation of protein kinase B, activation of phosphatidylinositol-3-kinase (PI3K), and enhanced intracellular glucose uptake. Scopoletin also promoted phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced PM-GLUT4 expression. Scopoletin-induced glucose uptake in 3T3-L1 adipocytes was inhibited by treatment with the PI3K inhibitor wortmannin and the AMPK inhibitor compound C. These results suggest that scopoletin has an antidiabetic effect by stimulating GLUT4 translocation to the PM through activation of the PI3K and AMPK pathways in 3T3-L1 adipocytes, thereby upregulating glucose uptake.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Desoxiglucose/metabolismo , Resistência à Insulina , Fosfatidilinositol 3-Quinase/metabolismo , Escopoletina/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Adipócitos/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
Afr Health Sci ; 19(2): 2219-2229, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31656507

RESUMO

BACKGROUND: Annona stenophylla is a folk medicine popularly used in Zimbabwe for the treatment of many ailments. This study was carried out to determine some of the possible anti diabetic mechanisms of its action using in vitro cell culturing methods. METHODS: A. stenophylla's effects on glucose uptake were tested using muscle cells (C2Cl2). Expression of glucose 4 transporters was determined by treating cell lines with plant extract. Total RNA was isolated and using RT-PCR, GLUT 4 expression levels were quantified. Translocation of GLUT 4 was assessed using FITC fluorescence measured by flow cytometry. RESULTS: Treatment of cells with plant extract significantly increased glucose uptake in a concentration dependent manner, with the highest concentration (250 µg/ml) giving 28% increased uptake compared to the negative control. The increase in glucose uptake (2.5 times more than control) was coupled to increase in GLUT 4 mRNA and subsequently GLUT 4 translocation. Wortmannin expunged the A. stenophylla induced increase in GLUT 4 mRNA and glucose uptake. CONCLUSION: The results suggest that A. stenophylla aqueous extract increases glucose uptake partly through increasing the GLUT 4 mRNA and translocation potentially acting via the PI-3-K pathway. This study confirms the ethnopharmacological uses of A. stenophylla indicating potential for anti-diabetic products formulation.


Assuntos
Annona/química , Glicemia/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células Musculares/metabolismo , Extratos Vegetais/farmacologia , Glicemia/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Transportador de Glucose Tipo 4/efeitos dos fármacos , RNA Mensageiro/metabolismo , Wortmanina/farmacologia , Zimbábue
9.
Life Sci ; 213: 226-235, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343126

RESUMO

AIM: The present study was undertaken to develop a Curcumin nanoparticle system with chitosan as a hydrophilic carrier. In addition, the anti-diabetic potential of curcumin loaded chitosan nanoparticles were assessed in comparison to those of free curcumin by examining the anti-hyperglycemic efficacy using in vitro assays. METHODS: Curcumin loaded chitosan nanoparticles were prepared and characterized for particle size by transmission electron microscopy, FT-IR, differential scanning calorimetry and therapeutic effects of curcumin loaded chitosan nanoparticles were evaluated by measuring the level of GLUT-4 present at the plasma membrane in L6myc myotubes followed by western blotting. Additionally, anti-inflammatory potential of curcumin loaded chitosan nanoparticles were assessed by enzyme immunoassay using appropriate ELISA kits. KEY FINDINGS: Transmission electron microscopy revealed an average nanocurcumin particle size of 74 nm. Under in vitro conditions, treatment with chitosan-nanocurcumin (CS-NC) caused a substantial increase in the GLUT-4 translocation to the cell surface in L6 skeletal muscle cells and the effect was associated with increased phosphorylation of AKT (Ser-473) and its downstream target GSK-3ß (Ser-9). SIGNIFICANCE: The therapeutic potential of nanocurcumin is prominent than that of curcumin alone. Nanocurcumin could improve the solubility of curcumin and may prolong its retention in the systemic circulation.


Assuntos
Quitosana/farmacologia , Curcumina/farmacologia , Transportador de Glucose Tipo 4/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Quitosana/química , Portadores de Fármacos/química , Transportador de Glucose Tipo 4/genética , Hipoglicemiantes/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Músculo Esquelético/efeitos dos fármacos , Nanopartículas/química , Tamanho da Partícula , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
10.
Am J Physiol Endocrinol Metab ; 315(4): E583-E593, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29944391

RESUMO

ErbB4, a member of the EGF receptor family, plays a variety of roles in physiological and pathological states. Genetic studies have indicated a link between ErbB4 and type 2 diabetes and obesity, but its role in metabolic syndrome (MetS) has not been reported. In the current study we found that mice with ErbB4 deletion developed MetS after 24 wk on a medium-fat diet (MFD), as indicated by development of obesity, dyslipidemia, hepatic steatosis, hyperglycemia, hyperinsulinemia, and insulin resistance, compared with wild-type mice. ErbB4 deletion mice also exhibited increased amounts of subcutaneous and visceral fat, with increased serum leptin levels, compared with wild-type mice, whereas levels of adiponectin were not significantly different. Histologically, severe inflammation, indicated by F4/80 immunostaining and M1 macrophage polarization, was detected in inguinal and epididymal white adipose tissue in ErbB4 deletion mice. ErbB4 expression decreased during 3T3-L1 preadipocyte differentiation. Administration of neuroregulin 4, a specific ligand for ErbB4, to 3T3-L1 adipocytes had no effect on adipogenesis and lipolysis but significantly inhibited lipogenesis, promoted browning, induced GLUT4 redistribution to the cell membrane, and increased glucose uptake. Neuroregulin 4 also significantly increased glucose uptake in adipocytes isolated from wild-type mice, while these effects were significantly decreased in adipocytes isolated from ErbB4 deletion mice. In conclusion, our results indicate that ErbB4 may play an important role in glucose homeostasis and lipogenesis. ErbB4 deficiency-related obesity and adipose tissue inflammation may contribute to the development of MetS.


Assuntos
Gorduras na Dieta , Dislipidemias/genética , Fígado Gorduroso/genética , Hiperglicemia/genética , Resistência à Insulina/genética , Síndrome Metabólica/genética , Obesidade/genética , Receptor ErbB-4/genética , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Adiponectina/metabolismo , Tecido Adiposo Branco/imunologia , Animais , Deleção de Genes , Predisposição Genética para Doença , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Hiperinsulinismo/genética , Inflamação , Gordura Intra-Abdominal , Leptina/metabolismo , Lipogênese/efeitos dos fármacos , Macrófagos , Masculino , Camundongos , Neurregulinas/farmacologia , Gordura Subcutânea
11.
Braz J Med Biol Res ; 51(6): e7238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694509

RESUMO

Ulomoides dermestoides is a beetle traditionally consumed to treat diabetes. In this study, we performed a composition analysis of U. dermestoides to obtain the principal fractions, which were used to assess the effect on glycemia, liver and pancreatic architecture, and PPARγ and GLUT4 expression. Normal mice and alloxan-induced diabetic mice were administered fractions of chitin, protein or fat, and the acute hypoglycemic effect was evaluated. A subacute study involving daily administration of these fractions to diabetic mice was also performed over 30 days, after which the liver and pancreas were processed by conventional histological techniques and stained with hematoxylin and eosin to evaluate morphological changes. The most active fraction, the fat fraction, was analyzed by gas chromatography-mass spectrometry (GC-MS), and PPARγ and GLUT4 mRNA expressions were determined in 3T3-L1 adipocytes. The protein and fat fractions exhibited hypoglycemic effects in the acute as well as in the 30-day study. Only the fat fraction led to elevated insulin levels and reduced glycemia, as well as lower intake of water and food. In the liver, we observed recovery of close hepatic cords in the central lobule vein following treatment with the fat fraction, while in the pancreas there was an increased density and percentage of islets and number of cells per islet, suggesting cellular regeneration. The GC-MS analysis of fat revealed three fatty acids as the major components. Finally, increased expression of PPARγ and GLUT4 was observed in 3T3-L1 adipocytes, indicating an antidiabetic effect.


Assuntos
Besouros/química , Corpo Adiposo/química , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Extratos de Tecidos/uso terapêutico , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/isolamento & purificação , Fígado/metabolismo , Fígado/patologia , Masculino , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Extratos de Tecidos/isolamento & purificação
12.
Endocrinology ; 159(5): 1950-1963, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635345

RESUMO

Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole-derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.


Assuntos
Glucose/metabolismo , Hipoglicemiantes/farmacologia , Indóis/farmacologia , Metformina/farmacologia , Mioblastos/efeitos dos fármacos , Fenóis/farmacologia , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Camundongos , Mioblastos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas rab4 de Ligação ao GTP/efeitos dos fármacos , Proteínas rab4 de Ligação ao GTP/genética , Proteínas rab4 de Ligação ao GTP/metabolismo
13.
Endocr Regul ; 52(1): 6-16, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453923

RESUMO

OBJECTIVE: We investigated the effects of magnesium supplementation on glucose tolerance, insulin sensitivity, oxidative stress as well as the concentration of insulin receptor and glucose transporter-4 in streptozotocin-nicotinamide induced type-2 diabetic (T2D) rats. METHODS: Rats were divided into four groups designated as: 1) control (CTR); 2) diabetic untreated (DU); 3) diabetic treated with 1 mg of Mg/kg diet (Mg1-D); and 4) diabetic treated with 2 mg of Mg/kg diet (Mg2-D). T2D was induced with a single intraperitoneal (i.p.) injection of freshly prepared streptozotocin (55 mg/kg) aft er an initial i.p. injection of nicotinamide (120 mg/kg). Glucose tolerance, insulin sensitivity, lipid profile, malondialdehyde (MAD) and glutathione content, insulin receptors (INSR) and glucose transporter-4 (GLUT4), fasting insulin and glucose levels were measured, and insulin resistance index was calculated using the homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS: Magnesium supplementation improved glucose tolerance and lowered blood glucose levels almost to the normal range. We also recorded a noticeable increase in insulin sensitivity in Mg-D groups when compared with DU rats. Lipid perturbations associated T2D were significantly attenuated by magnesium supplementation. Fasting glucose level was comparable to control values in the Mg-D groups while the HOMA-IR index was significantly lower compared with the DU rats. Magnesium reduced MDA but increased glutathione concentrations compared with DU group. Moreover, INSR and GLUT4 levels were elevated following magnesium supplementation in T2D rats. CONCLUSION: These findings demonstrate that magnesium may mediate effective metabolic control by stimulating the antioxidant defense, and increased levels of INSR and GLUT4 in diabetic rats.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transportador de Glucose Tipo 4/efeitos dos fármacos , Resistência à Insulina , Magnésio/farmacologia , Receptor de Insulina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Magnésio/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima
14.
Braz. j. med. biol. res ; 51(6): e7238, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889106

RESUMO

Ulomoides dermestoides is a beetle traditionally consumed to treat diabetes. In this study, we performed a composition analysis of U. dermestoides to obtain the principal fractions, which were used to assess the effect on glycemia, liver and pancreatic architecture, and PPARγ and GLUT4 expression. Normal mice and alloxan-induced diabetic mice were administered fractions of chitin, protein or fat, and the acute hypoglycemic effect was evaluated. A subacute study involving daily administration of these fractions to diabetic mice was also performed over 30 days, after which the liver and pancreas were processed by conventional histological techniques and stained with hematoxylin and eosin to evaluate morphological changes. The most active fraction, the fat fraction, was analyzed by gas chromatography-mass spectrometry (GC-MS), and PPARγ and GLUT4 mRNA expressions were determined in 3T3-L1 adipocytes. The protein and fat fractions exhibited hypoglycemic effects in the acute as well as in the 30-day study. Only the fat fraction led to elevated insulin levels and reduced glycemia, as well as lower intake of water and food. In the liver, we observed recovery of close hepatic cords in the central lobule vein following treatment with the fat fraction, while in the pancreas there was an increased density and percentage of islets and number of cells per islet, suggesting cellular regeneration. The GC-MS analysis of fat revealed three fatty acids as the major components. Finally, increased expression of PPARγ and GLUT4 was observed in 3T3-L1 adipocytes, indicating an antidiabetic effect.


Assuntos
Animais , Masculino , Pâncreas/efeitos dos fármacos , Extratos de Tecidos/uso terapêutico , Besouros/química , Corpo Adiposo/química , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Extratos de Tecidos/isolamento & purificação , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/isolamento & purificação , Fígado/metabolismo , Fígado/patologia , Cromatografia Gasosa-Espectrometria de Massas
15.
Molecules ; 22(7)2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28708105

RESUMO

Insulin resistance participates in the glycaemic control disruption in type 2 diabetes mellitus (T2DM), by reducing muscle glucose influx and increasing liver glucose efflux. GLUT4 (Slc2a4 gene) and GLUT2 (Slc2a2 gene) proteins play a fundamental role in the muscle and liver glucose fluxes, respectively. Resveratrol is a polyphenol suggested to have an insulin sensitizer effect; however, this effect, and related mechanisms, have not been clearly demonstrated in T2DM. We hypothesized that resveratrol can improve glycaemic control by restoring GLUT4 and GLUT2 expression in muscle and liver. Mice were rendered obese T2DM in adult life by neonatal injection of monosodium glutamate. Then, T2DM mice were treated with resveratrol for 60 days or not. Glycaemic homeostasis, GLUT4, GLUT2, and SIRT1 (sirtuin 1) proteins (Western blotting); Slc2a4, Slc2a2, and Pck1 (key gluconeogenic enzyme codifier) mRNAs (RT-qPCR); and hepatic glucose efflux were analysed. T2DM mice revealed: high plasma concentration of glucose, fructosamine, and insulin; insulin resistance (insulin tolerance test); decreased Slc2a4/GLUT4 content in gastrocnemius and increased Slc2a2/GLUT2 content in liver; and increased Pck1 mRNA and gluconeogenic activity (pyruvate tolerance test) in liver. All alterations were restored by resveratrol treatment. Additionally, in both muscle and liver, resveratrol increased SIRT1 nuclear content, which must participate in gene expression regulations. In sum, the results indisputably reveals that resveratrol improves glycaemic control in T2DM, and that involves an increase in muscle Slc2a4/GLUT4 and a decrease in liver Slc2a2/GLUT2 expression. This study contributes to our understanding how resveratrol might be prescribed for T2DM according to the principles of evidence-based medicine.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Estilbenos/metabolismo , Estilbenos/farmacologia , Animais , Glucose/metabolismo , Transportador de Glucose Tipo 2/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Humanos , Insulina/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo , RNA Mensageiro/efeitos dos fármacos , Resveratrol , Sirtuína 1
16.
Horm Behav ; 89: 13-22, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28025042

RESUMO

Chronic stress is associated with impaired neuronal functioning, altered insulin signaling, and behavioral dysfunction. Quercetin has shown neuroprotective and antidiabetic effects, besides modulating cognition and insulin signaling. Therefore, in the present study, we explored whether or not quercetin ameliorates stress-mediated cognitive dysfunction and explored the underlying mechanism. Swiss albino male mice were subjected to an array of unpredicted stressors for 21days, during which 30mg/kg quercetin treatment was given orally. The effect of chronic unpredicted stress (CUS) and quercetin treatment on cognition were evaluated using novel object recognition (NOR) and Morris water maze (MWM) tests. Hippocampal neuronal integrity was observed by histopathological examination. Blood glucose, serum corticosterone, and insulin levels were measured by commercial kits and insulin resistance was evaluated in terms of HOMA-IR index. Hippocampal insulin signaling was determined by immunofluorescence staining. CUS induced significant cognitive dysfunction (NOR and MWM) and severely damaged hippocampal neurons, especially in the CA3 region. Quercetin treatment alleviated memory dysfunction and rescued neurons from CUS-mediated damage. Fasting blood glucose, serum corticosterone, and serum insulin were significantly elevated in stressed animals, besides, having significantly higher HOMA-IR index, suggesting the development of insulin resistance. Quercetin treatment alleviated insulin resistance and attenuated altered biochemical parameters. CUS markedly down-regulated insulin signaling in CA3 region and quercetin treatment improved neuronal GLUT4 expression, which seemed to be independent of insulin and insulin receptor levels. These results suggest that intact insulin functioning in the hippocampus is essential for cognitive functions and quercetin improves CUS-mediated cognitive dysfunction by modulating hippocampal insulin signaling.


Assuntos
Antioxidantes/farmacologia , Região CA3 Hipocampal/metabolismo , Disfunção Cognitiva , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Transtornos da Memória , Quercetina/farmacologia , Receptor de Insulina/metabolismo , Estresse Psicológico , Animais , Comportamento Animal , Região CA3 Hipocampal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Transportador de Glucose Tipo 4/efeitos dos fármacos , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
17.
Biol Res ; 49(1): 38, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27604997

RESUMO

BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipogenic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV) by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-γ2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ2, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.


Assuntos
Células 3T3-L1/efeitos dos fármacos , Chlorella vulgaris/química , Extratos Vegetais/farmacologia , Alga Marinha/química , Células 3T3-L1/fisiologia , Proteínas Quinases Ativadas por AMP/análise , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adiponectina/análise , Adiponectina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo , Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/análise , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Camundongos , PPAR gama/análise , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Regulação para Cima
18.
Sci Rep ; 6: 25139, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27122001

RESUMO

Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P < 0.01). High dose of saffron stimulated insulin release in RIN-5F cells and improved glucose uptake in L6 myotubes. GLUT4 and AMPKα expressions increased in both doses of saffron (P < 0.01), whereas GLUT2 not changed (p > 0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p < 0.01). However, no significant differences were observed in the high-density lipoprotein, insulin, adiponectin, and leptin concentration levels in all groups (p > 0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Crocus/química , Diabetes Mellitus Experimental/terapia , Transportador de Glucose Tipo 4/metabolismo , Condicionamento Físico Animal , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Transporte Biológico , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Transportador de Glucose Tipo 4/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Ratos
19.
Food Chem Toxicol ; 91: 58-64, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26939912

RESUMO

Octaphlorethol A (OPA), a type of phlorotannin isolated from Ishige foliacea has been shown to have antidiabetic activities. However, the mechanism of action of OPA in type 2 diabetes has not been investigated extensively. Here, we investigated the antidiabetic effects and mechanism of OPA in C57BL/KsJ-db/db mice, a model of type 2 diabetes. Levels of postprandial blood glucose were significantly lower in OPAtreated db/db mice than in control db/db mice. In addition, the OPA supplements significantly improved fasting blood glucose level and impaired glucose tolerance compared to control db/db mice. OPA also significantly decreased the level of serum insulin, augmented the activation of AMP-activated protein kinase (AMPK), and increased the expression of glucose transporter 4 (GLUT4) protein in skeletal muscle. In addition, it significantly suppressed the increases in hepatic mRNA expression level of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), gluconeogenesis-related enzymes. Therefore, the mechanisms of OPA may involve suppression of gluconeogenesis by inhibiting PEPCK and G6Pase activity in the liver and affecting GLUT4-mediated glucose uptake in skeletal muscle through activation of AMPK. These findings provide a new insight into the antidiabetic clinical applications of OPA and demonstrate the potential of OPA as a new drug candidate for type 2 diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transportador de Glucose Tipo 4/efeitos dos fármacos , Phaeophyceae/química , Fenóis/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Animais , Masculino , Biologia Marinha , Camundongos , Camundongos Endogâmicos C57BL
20.
Biol. Res ; 49: 1-11, 2016. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-950864

RESUMO

BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipo-genic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV) by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-y2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.


Assuntos
Animais , Camundongos , Alga Marinha/química , Extratos Vegetais/farmacologia , Células 3T3-L1/efeitos dos fármacos , Chlorella vulgaris/química , Fatores de Tempo , Regulação para Baixo , Expressão Gênica , Diferenciação Celular/efeitos dos fármacos , Regulação para Cima , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células 3T3-L1/fisiologia , PPAR gama/análise , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Adiponectina/análise , Adiponectina/metabolismo , Transportador de Glucose Tipo 4/análise , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Proteínas Quinases Ativadas por AMP/análise , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...