Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 81(11): 2824-2832, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33762358

RESUMO

Clinical localization of primary tumors and sites of metastasis by PET is based on the enhanced cellular uptake of 2-deoxy-2-[18F]-fluoro-D-glucose (FDG). In prostate cancer, however, PET-FDG imaging has shown limited clinical applicability, suggesting that prostate cancer cells may utilize hexoses other than glucose, such as fructose, as the preferred energy source. Our previous studies suggested that prostate cancer cells overexpress fructose transporters, but not glucose transporters, compared with benign cells. Here, we focused on validating the functional expression of fructose transporters and determining whether fructose can modulate the biology of prostate cancer cells in vitro and in vivo. Fructose transporters, Glut5 and Glut9, were significantly upregulated in clinical specimens of prostate cancer when compared with their benign counterparts. Fructose levels in the serum of patients with prostate cancer were significantly higher than healthy subjects. Functional expression of fructose transporters was confirmed in prostate cancer cell lines. A detailed kinetic characterization indicated that Glut5 represents the main functional contributor in mediating fructose transport in prostate cancer cells. Fructose stimulated proliferation and invasion of prostate cancer cells in vitro. In addition, dietary fructose increased the growth of prostate cancer cell line-derived xenograft tumors and promoted prostate cancer cell proliferation in patient-derived xenografts. Gene set enrichment analysis confirmed that fructose stimulation enriched for proliferation-related pathways in prostate cancer cells. These results demonstrate that fructose promotes prostate cancer cell growth and aggressiveness in vitro and in vivo and may represent an alternative energy source for prostate cancer cells. SIGNIFICANCE: This study identifies increased expression of fructose transporters in prostate cancer and demonstrates a role for fructose as a key metabolic substrate supporting prostate cancer cells, revealing potential therapeutic targets and biomarkers.


Assuntos
Biomarcadores Tumorais/metabolismo , Dieta/efeitos adversos , Frutose/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Neoplasias da Próstata/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 5/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Cell Biochem ; 113(2): 553-62, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21938742

RESUMO

Over-expression of hexose transporters (Gluts), specifically Glut-1, is a common event in human malignancies. In prostate cancer (CaP), however, expression of Gluts has been characterized poorly. In this study, expression and distribution of Glut-1 and Glut-5 proteins were characterized using immunohistochemistry in 76 specimens of benign prostate, 10 specimens of high-grade intraepithelial neoplasia (HGPIN), and 28 specimens of CaP. In addition, mRNA expression of Glut-2, Glut-7, Glut-9, and Glut-11 was analyzed in a set of five specimens of benign prostate and CaP. In benign prostate, Glut-1 localized to the basal cells and to the basolateral membrane of secretory/luminal epithelial cells. Glut-5, however, localized to the apical membrane of secretory/luminal epithelial cells. In HGPIN, Glut-1 was immunohistochemically undetectable. Glut-5, however, localized to the apical membrane of the neoplastic epithelial cells. In CaP, Glut-1 and Glut-5, were immunohistochemically undetectable. However, over-expression of GLUT1 was observed in some specimens of highly proliferative intraductal CaP. Glut-7, Glut-9, and Glut-11 mRNAs were detected in benign prostate and CaP, however, only Glut-11 mRNA was consistently up-regulated in CaP compared to benign prostate. Low levels of expression of Glut-1 protein in the majority of CaP could explain, at least in part, the limited clinical applicability of positron emission tomography using 2-[18F]-fluoro-2-deoxy-D-glucose for imaging CaP. Moreover, expression of Glut-5 in HGPIN suggested that fructose could be utilized as potential metabolic substrate in HGPIN. Understanding the molecular mechanisms involved in regulation/dysregulation of Gluts in CaP could provide insight in the understanding of hexose metabolism in CaP.


Assuntos
Biomarcadores Tumorais/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Próstata/metabolismo , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasias da Próstata/metabolismo , Idoso , Idoso de 80 Anos ou mais , Membrana Celular/metabolismo , Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 5/genética , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Especificidade de Órgãos , Próstata/patologia , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia , Transporte Proteico
3.
Reprod Fertil Dev ; 17(5): 487-96, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15907273

RESUMO

In vitro fertilisation (IVF) and somatic cell nuclear transfer (SCNT) have been implicated in a variety of developmental abnormalities. Aberrant gene expression is likely to account for much of the diminished viability and developmental abnormalities observed. In the present study, the expression of multiple genes in IVF and SCNT bovine blastocyst-stage embryos were evaluated and compared with in vivo-produced embryos. Eleven genes expressed at and following maternal-zygotic transcription transition were evaluated in individual blastocysts by real-time polymerase chain reaction following RNA amplification. A subset of those genes was also evaluated in individual IVF and SCNT eight-cell embryos. A fibroblast-specific gene, expressed by nuclear donor cells, was also evaluated in IVF and SCNT embryos. The observed gene expression pattern at the eight-cell stage was not different between IVF and SCNT embryos (P > 0.05). In vitro fertilisation and SCNT blastocyst expression was lower (P < 0.01) for all genes compared with their in vivo-produced counterparts, except for lactate dehydrogenase isoenzyme A (P < 0.001). The patterns of gene expression of the IVF and SCNT blastocysts were indistinguishable. Neither SCNT eight-cell nor blastocyst-stage embryos expressed the gene used as a fibroblast marker (collagen VIalpha1). For the genes evaluated, the level of expression was influenced more by the environment than by the method used to produce the embryos. These results support the notion that if developmental differences observed in IVF- and SCNT-produced fetuses and neonates are the result of aberrant gene expression during the preimplantation stage, those differences in expression are subtle.


Assuntos
Blastocisto/metabolismo , Bovinos/embriologia , Clonagem de Organismos , Fertilização in vitro/veterinária , Perfilação da Expressão Gênica , Técnicas de Transferência Nuclear , Animais , Técnicas de Cultura Embrionária/veterinária , Fibroblastos/metabolismo , Transportador de Glucose Tipo 5/genética , L-Lactato Desidrogenase/genética , Fator 3 de Transcrição de Octâmero/genética , Reação em Cadeia da Polimerase , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA