Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.586
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 568-576, jul. 2024. ilus
Artigo em Espanhol | LILACS | ID: biblio-1538065

RESUMO

This study aimed to determine the repellent and insecticidal activity of four essential oils (EOs) from plants collected in the Chocó rain forest, Colombia, against T. castaneum . Conventional hydrodistillation was used to obtain the EOs. The repellent and insecticidal activities were evaluated by the preference area and gas dispersion methods, espectively. Statistical differences (p<0.05) were determined by applying a student's t-test. EOs of Siparuna guianensis, S. conica, Piper marginatum, and Nectandra acutifolia showed excellent repellent properties as the main findings, highlighting S. conicaEO with 84% repellency (1-hµL/cm2), while P. marginatum showed to be bioactive to the dose of 500 µL/mL (72 h), inducing mortality of 100% of the exposed population. In conclusion, the results evidenced the repellent properties of the EOs evaluated against T. castaneum , which allows us to conclude that these plant species are potential natural sources producing bio-repellents that contribute to the integrated control of T. castaneum.


Se evaluaron cuatro aceites esenciales (AEs) de plantas recolectadas en la selva pluvial del Chocó, Colombia, para determinar su actividad repelente e insecticida contra T. castaneum. Los AEs fueron obtenidos por hidrodestilación convencional. Las actividades repelentes e insecticidas se evaluaron por los métodos de área de preferencia y dispersión de gas, respectivamente. Las diferencias significativas (p<0,05) fueron determinadas aplicando una prueba t de student. Los AEs de Siparuna guianensis, S. conica, Piper marginatum y Nectandra acutifolia mostraron excelentes propiedades repelentes, destacando el AE de S. conicacon un 84% de repelencia (1µL/cm2), mientras que el AE de P. marginatummostró ser bioactivo a la dosis de 500 µL/mL (72 h) al inducir la mortalidad del 100% de la población expuesta. Se concluye que estas especies de plantas son fuentes naturales potencialmente viables para la producción de biorepelentes que contribuyan en el control integrado de T. castaneum.


Assuntos
Tribolium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Inseticidas/farmacologia , Colômbia , Repelentes de Insetos/farmacologia
2.
Sci Rep ; 14(1): 13951, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886531

RESUMO

The thrust of the study was to determine the chemical composition of the essential oils extracted from Thymus pallescens de Noé and Cymbogon citratus Stapf. as well as to evaluate their efficacy in controlling Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst) in either single or combined populations. Carvacrol (56.04%) and geraniol (20.86%) were identified as the major constituents of T. pallescens and C. citratus respectively. The tested essential oils showed pronounced insecticidal activity against the pest species in relation with the applied doses. T. pallescens EO had the highest efficacy and S. zeamais was found to be more susceptible to both individual and combined treatments. With reference to the contact and fumigation assessments, T. pallescens EO effectuated corrected mortality rates ranging from 42.5-100% to 25-100% in S. zeamais with corresponding lethal concentration (LC50) values of 17.7 µl/ml and 15µL/L air respectively. Whereas, the T. pallescens EO exhibited corrected mortality rates of 42.5-100% and 20-100% with corresponding LC50 values of 18.1 µl/ml and 15.5 µL/L air against T. castaneum in contact and fumigation assessments, respectively. The corrected mortality rates increased for both insect species when using combination treatments, with significant increases in the LC50 values, ranging from 8.59 to 49.9% for both pest species. Analysis of energy biomarkers in the treated insects indicate significantly increased protein and carbohydrate contents and decreased lipids levels. The study therefore demonstrated the bio-insecticidal toxicity of the EOs from T. pallescens and C. citratus against two important maize post-harvest pests, concurrently revealing significant positive and negative insecticidal activity gradients in relation to single or combined populations.


Assuntos
Inseticidas , Óleos Voláteis , Thymus (Planta) , Tribolium , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Tribolium/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Thymus (Planta)/química , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Gorgulhos/efeitos dos fármacos , Cimenos/farmacologia , Cimenos/química
3.
Proc Natl Acad Sci U S A ; 121(25): e2318229121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865277

RESUMO

Animals from all major clades have evolved a segmented trunk, reflected in the human spine or the insect segments. These units emerge during embryogenesis from a posterior segment addition zone (SAZ), where repetitive gene activity is regulated by a mechanism described by the clock and wavefront/speed gradient model. In the red flour beetle Tribolium castaneum, RNA interference (RNAi) has been used to continuously knock down the function of primary pair-rule genes (pPRGs), caudal or Wnt pathway components, which has led to the complete breakdown of segmentation. However, it has remained untested, if this breakdown was reversible by bringing the missing gene function back to the system. To fill this gap, we established a transgenic system in T. castaneum, which allows blocking an ongoing RNAi effect with temporal control by expressing a viral inhibitor of RNAi via heat shock. We show that the T. castaneum segmentation machinery was able to reestablish after RNAi targeting the pPRGs Tc-eve, Tc-odd, and Tc-runt was blocked. However, we observed no rescue after blocking RNAi targeting Wnt pathway components. We conclude that the insect segmentation system contains both robust feedback loops that can reestablish and labile feedback loops that break down irreversibly. This combination may reconcile conflicting needs of the system: Labile systems controlling initiation and maintenance of the SAZ ensure that only one SAZ is formed. Robust feedback loops confer developmental robustness toward external disturbances.


Assuntos
Padronização Corporal , Interferência de RNA , Tribolium , Animais , Tribolium/genética , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Retroalimentação Fisiológica , Animais Geneticamente Modificados , Relógios Biológicos/genética
4.
Pestic Biochem Physiol ; 202: 105970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879314

RESUMO

This study aimed to develop a relatively natural and safe botanical insecticide for controlling the storage pest Tribolium castaneum in the egg and pupal stages. It examined how Elsholtzia densa Benth. essential oil (EO) and its primary components, ß-caryophyllene and limonene, affected T. castaneum eggs and pupae through contact and fumigation. Among th, the contact activities of ß-caryophyllene against T. castaneum eggs and pupae are LD50 (median lethal dose, 50%) = 0.156 mg/cm2 and ED50 (median effective dose, 50%) = 16.35 mg/pupa respectively. The study also investigated the effect of ß-caryophyllene and limonene on T. castaneum eggs and pupae through synergistic contact and fumigation. When the mixing ratio of ß-caryophyllene and limonene was 7:1, the LD50 value of contact activity against T. castaneum eggs was reduced to 0.100 mg/cm2, displaying an obvious synergistic effect. Experiments were conducted to investigate the antitoxic effect of ß-caryophyllene on T. castaneum eggs and pupae, as well as its effects on the enzymatic activity of acetylcholinesterase, succinate dehydrogenase, glutathione S-transferase and carboxylesterase in T. castaneum pupae. Finally, the molecular docking techniques were employed to confirm the aforementioned effects on enzyme function. The findings of this study might help improve storage pest control with T. castaneum and create eco-friendly insecticides using E. densa EO, ß-caryophyllene, and limonene.


Assuntos
Inseticidas , Lamiaceae , Óleos Voláteis , Pupa , Tribolium , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Tribolium/efeitos dos fármacos , Lamiaceae/química , Inseticidas/farmacologia , Inseticidas/química , Pupa/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Limoneno/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química
5.
Arch Insect Biochem Physiol ; 116(1): e22122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783685

RESUMO

The zona pellucida domain protein piopio (Pio) was only reported to mediate the adhesion of the apical epithelial surface and the overlying apical extracellular matrix in Drosophila melanogaster, but the developmental roles of Pio were poorly understood in insects. To address this issue, we comprehensively analyzed the function of Pio in Tribolium castaneum. Phylogenetic analysis indicated that pio exhibited one-to-one orthologous relationship among insects. T. castaneum pio had a 1236-bp ORF and contained eight exons. During development pio was abundantly expressed from larva to adult and lowly expressed at the late stage of embryo and adult, while it had more transcripts in the head, epidermis, and gut but fewer in the fat body of late-stage larvae. Knockdown of pio inhibited the pupation, eclosion, and reproduction of T. castaneum. The expression of vitellogenin 1 (Vg1), Vg2, and Vg receptor (VgR) largely decreased in pio-silenced female adults. Silencing pio increased the 20-hydroxyecdysone titer by upregulating phm and spo expression but decreased the juvenile hormone (JH) titer through downregulating JHAMT3 and promoting JHE, JHEH-r4, and JHDK transcription. These results suggested that Pio might regulate the metamorphosis and reproduction via modulating the ecdysone and JH metabolism in T. castaneum. This study found the novel roles of pio in insect metamorphosis and reproduction, and provided the new insights for analyzing other zona pellucida proteins functions in insects.


Assuntos
Proteínas de Insetos , Metamorfose Biológica , Tribolium , Animais , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Feminino , Reprodução , Filogenia , Hormônios Juvenis/metabolismo , Zona Pelúcida/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo
6.
Sci Rep ; 14(1): 12259, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806558

RESUMO

Tribolium castaneum and Rhyzopertha dominica are cosmopolitan, destructive postharvest pests. Although research has investigated how high densities of T. castaneum affect attraction to the aggregation pheromone by conspecifics, research into the behavioral response of both species to food cues after high density exposure has been lacking despite its importance to foraging ecology. Our goal was to manipulate and observe the effects of crowding on the behavioral response of both species to common food and pheromonal stimuli and to determine how the headspace emission patterns from grain differed under increasing densities. Densities of colonies for both species was altered (10-500 adults) on a fixed quantity of food (10 g of flour or whole wheat), then the behavioral response to common food and pheromonal cues was evaluated in a wind tunnel and release-recapture experiment, while volatiles were examined through gas chromatography coupled with mass spectrometry. Importantly, at least for T. castaneum, crowded conditions attenuate attraction to food-based stimuli, but not pheromonal stimuli. Crowding seemed to have no effect on R. dominica attraction to food and pheromonal stimuli in the wind tunnel, but exposure to high density cues did elicit 2.1-3.8-fold higher captures in traps. The relative composition and abundance of headspace volatiles emitted varied significantly with different densities of beetles and was also species-specific. Overall, our results have implications for expanding our understanding of the foraging ecology of two economically important pests.


Assuntos
Besouros , Comportamento Alimentar , Feromônios , Tribolium , Animais , Tribolium/fisiologia , Besouros/fisiologia , Comportamento Alimentar/fisiologia , Feromônios/metabolismo , Densidade Demográfica , Comportamento Animal/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38759531

RESUMO

Depending on the respective research question, LC-MS/MS based bottom-up proteomics poses challenges from the initial biological sample all the way to data evaluation. The focus of this study was to investigate the influence of sample preparation techniques and data analysis parameters on protein identification in Tribolium castaneum by applying free software proteomics platform Max Quant. Multidimensional protein extraction strategies in combination with electrophoretic or chromatographic off-line protein pre-fractionation were applied to enhance the spectrum of isolated proteins from T. castaneum and reduce the effect of co-elution and ion suppression effects during nano-LC-MS/MS measurements of peptides. For comprehensive data analysis, MaxQuant was used for protein identification and R for data evaluation. A wide range of parameters were evaluated to gain reproducible, reliable, and significant protein identifications. A simple phosphate buffer, pH 8, containing protease and phosphatase inhibitor cocktail and application of gentle extraction conditions were used as a first extraction step for T.castaneum proteins. Furthermore, a two-dimensional extraction procedure in combination with electrophoretic pre-fractionation of extracted proteins and subsequent in-gel digest resulted in almost 100% increase of identified proteins when compared to chromatographic fractionation as well as one-pot-analysis. The additionally identified proteins could be assigned to new molecular functions or cell compartments, emphasizing the positive effect of extended sample preparation in bottom-up proteomics. Besides the number of peptides during post-processing, MaxQuant's Match between Runs exhibited a crucial effect on the number of identified proteins. A maximum relative standard deviation of 2% must be considered for the data analysis. Our work with Tribolium castaneum larvae demonstrates that sometimes - depending on matrix and research question - more complex and time-consuming sample preparation can be advantageous for isolation and identification of additional proteins in bottom-up proteomics.


Assuntos
Proteínas de Insetos , Proteômica , Espectrometria de Massas em Tandem , Tribolium , Animais , Proteômica/métodos , Tribolium/química , Espectrometria de Massas em Tandem/métodos , Proteínas de Insetos/análise , Proteínas de Insetos/química , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Proteoma/análise , Proteoma/química
8.
Commun Biol ; 7(1): 521, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702540

RESUMO

Histone acetylation, a crucial epigenetic modification, is governed by histone acetyltransferases (HATs), that regulate many biological processes. Functions of HATs in insects are not well understood. We identified 27 HATs and determined their functions using RNA interference (RNAi) in the model insect, Tribolium castaneum. Among HATs studied, N-alpha-acetyltransferase 40 (NAA40) knockdown caused a severe phenotype of arrested larval development. The steroid hormone, ecdysone induced NAA40 expression through its receptor, EcR (ecdysone receptor). Interestingly, ecdysone-induced NAA40 regulates EcR expression. NAA40 acetylates histone H4 protein, associated with the promoters of ecdysone response genes: EcR, E74, E75, and HR3, and causes an increase in their expression. In the absence of ecdysone and NAA40, histone H4 methylation by arginine methyltransferase 1 (ART1) suppressed the above genes. However, elevated ecdysone levels at the end of the larval period induced NAA40, promoting histone H4 acetylation and increasing the expression of ecdysone response genes. NAA40 is also required for EcR, and steroid-receptor co-activator (SRC) mediated induction of E74, E75, and HR3. These findings highlight the key role of ecdysone-induced NAA40-mediated histone acetylation in the regulation of metamorphosis.


Assuntos
Ecdisona , Histona Acetiltransferases , Histonas , Metamorfose Biológica , Receptores de Esteroides , Tribolium , Animais , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Tribolium/enzimologia , Histonas/metabolismo , Ecdisona/metabolismo , Acetilação , Metamorfose Biológica/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Interferência de RNA
9.
J Oleo Sci ; 73(5): 761-772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692898

RESUMO

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Assuntos
Inseticidas , Óleos Voláteis , Folhas de Planta , Tribolium , Animais , Inseticidas/isolamento & purificação , Inseticidas/análise , Folhas de Planta/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Tribolium/efeitos dos fármacos , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/análise , Repelentes de Insetos/análise , Repelentes de Insetos/isolamento & purificação , Repelentes de Insetos/farmacologia , Temperatura
10.
Environ Sci Pollut Res Int ; 31(24): 35455-35469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38730215

RESUMO

Plant volatilomics such as essential oils (EOs) and volatile phytochemicals (PCs) are known as potential natural sources for the development of biofumigants as an alternative to conventional fumigant pesticides. This present work was aimed to evaluate the fumigant toxic effect of five selected EOs (cinnamon, garlic, lemon, orange, and peppermint) and PCs (citronellol, limonene, linalool, piperitone, and terpineol) against the Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults. Furthermore, for the estimation of the relationship between molecular descriptors and fumigant toxicity of plant volatiles, quantitative structural activity relationship (QSAR) models were developed using principal component analysis and multiple linear regression. Amongst the tested EOs, garlic EO was found to be the most toxic fumigant. The PCs toxicity analysis revealed that terpineol, limonene, linalool, and piperitone as potential fumigants to C. maculatus (< 20 µL/L air of LC50), limonene and piperitone as potential fumigants to T. castaneum (14.35 and 154.11 µL/L air of LC50, respectively), and linalool and piperitone as potential fumigants to S. oryzae (192.27 and 69.10 µL/L air of LC50, respectively). QSAR analysis demonstrated the role of various molecular descriptors of EOs and PCs on the fumigant toxicity in insect pest species. In specific, dipole and Randic index influence the toxicity in C. maculatus, molecular weight and maximal projection area influence the toxicity in S. oryzae, and boiling point and Dreiding energy influence the toxicity in T. castaneum. The present findings may provide insight of a new strategy to select effective EOs and/or PCs against stored product insect pests.


Assuntos
Besouros , Fumigação , Óleos Voláteis , Animais , Besouros/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Relação Quantitativa Estrutura-Atividade , Inseticidas/química , Inseticidas/farmacologia , Tribolium/efeitos dos fármacos
11.
Sci Rep ; 14(1): 10078, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698030

RESUMO

Comparative analyses between traditional model organisms, such as the fruit fly Drosophila melanogaster, and more recent model organisms, such as the red flour beetle Tribolium castaneum, have provided a wealth of insight into conserved and diverged aspects of gene regulation. While the study of trans-regulatory components is relatively straightforward, the study of cis-regulatory elements (CREs, or enhancers) remains challenging outside of Drosophila. A central component of this challenge has been finding a core promoter suitable for enhancer-reporter assays in diverse insect species. Previously, we demonstrated that a Drosophila Synthetic Core Promoter (DSCP) functions in a cross-species manner in Drosophila and Tribolium. Given the over 300 million years of divergence between the Diptera and Coleoptera, we reasoned that DSCP-based reporter constructs will be useful when studying cis-regulation in a variety of insect models across the holometabola and possibly beyond. To this end, we sought to create a suite of new DSCP-based reporter vectors, leveraging dual compatibility with piggyBac and PhiC31-integration, the 3xP3 universal eye marker, GATEWAY cloning, different colors of reporters and markers, as well as Gal4-UAS binary expression. While all constructs functioned properly with a Tc-nub enhancer in Drosophila, complications arose with tissue-specific Gal4-UAS binary expression in Tribolium. Nevertheless, the functionality of these constructs across multiple holometabolous orders suggests a high potential compatibility with a variety of other insects. In addition, we present the piggyLANDR (piggyBac-LoxP AttP Neutralizable Destination Reporter) platform for the establishment of proper PhiC31 landing sites free from position effects. As a proof-of-principle, we demonstrated the workflow for piggyLANDR in Drosophila. The potential utility of these tools ranges from molecular biology research to pest and disease-vector management, and will help advance the study of gene regulation beyond traditional insect models.


Assuntos
Drosophila melanogaster , Genes Reporter , Vetores Genéticos , Regiões Promotoras Genéticas , Tribolium , Animais , Vetores Genéticos/genética , Tribolium/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Sequências Reguladoras de Ácido Nucleico/genética , Insetos/genética , Animais Geneticamente Modificados
12.
Pestic Biochem Physiol ; 201: 105861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685215

RESUMO

Tribolium castaneum is a worldwide pest of stored grain that mainly damages flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. OBPs can interact with small molecule compounds and thereby modulate variation in insecticide susceptibility in insects. In this study, a total of 65 small molecule compounds are selected to investigate the bound effect with TcOBP C12. The molecular docking results showed that ß-caryophyllene, (-)-catechin, butylated hydroxytoluene, diphenyl phthalate and quercetin were the top five compounds, with docking binding energies of -6.11, -5.25, -5.09, -5.05, and - 5.03 Kcal/mol, respectively. Molecular dynamics analysis indicated that odorant binding protein C12 (TcOBP C12) exhibited high binding affinity to all five tested chemical ligands, evidenced by fluorescence quenching assay in vitro. In addition, the contact toxicity assay results suggested that these chemical agents caused a dose-dependent increase in mortality rate for T. castaneum adults. The TcOBP C12 gene was upregulated >2 times after a 24-h exposure, indicating that OBP C12 may play an important role for T. castaneum in response to these chemical agents. In conclusion, our results provide a theoretical basis for future insecticide experiments and pest management.


Assuntos
Proteínas de Insetos , Simulação de Acoplamento Molecular , Receptores Odorantes , Tribolium , Animais , Tribolium/efeitos dos fármacos , Tribolium/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Inseticidas/farmacologia , Inseticidas/toxicidade , Sesquiterpenos Policíclicos/farmacologia , Simulação de Dinâmica Molecular
13.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685211

RESUMO

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Assuntos
Imunidade Celular , Imunidade Humoral , Proteínas de Insetos , Lectinas Tipo C , Staphylococcus aureus , Tribolium , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Staphylococcus aureus/imunologia , Tribolium/imunologia , Tribolium/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Hemócitos/imunologia , Hemócitos/metabolismo , Escherichia coli , Fagocitose , Larva/imunologia , Larva/microbiologia
14.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473803

RESUMO

Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/ß conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors.


Assuntos
Besouros , Fosfotransferases (Aceptor do Grupo Álcool) , Tribolium , Animais , Tribolium/genética , Besouros/metabolismo , Ácido Mevalônico/metabolismo , Hormônios Juvenis/metabolismo
15.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38491952

RESUMO

Modified atmosphere is effective in controlling Tribolium castaneum Herbst, but it has adaptations. Comprehending the potential mechanism of resistance to T. castaneum in a modified atmosphere will help advance related management methods. This study conducted a comparative transcriptomic and metabolomic analysis to understand the physiological mechanism of T. castaneum in adapting to CO2 stress. Results showed that there were a large number of differentially expressed genes (DEGs) in T. castaneum treated with different concentrations of CO2. Gene ontology (GO) analysis revealed significant enrichment of DEGs mainly in binding, catalytic activity, cell, membrane, membrane part, protein-containing complex, biological regulation, and cellular and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that different treatments had different effects on the metabolic pathways of T. castaneum. DEGs induced by 25% CO2 were involved in arginine and proline metabolism, and 50% air + 50% CO2 treatment affected most kinds of metabolic pathways, mainly the signal transduction pathway, including PI3K-Akt signaling pathway, AMPK signaling pathway, neurotrophin signaling pathway, insulin signaling pathway, and thyroid hormone signaling. Ribosome and DNA replication were enriched under high CO2 stress (75% and 95%). The metabolomics revealed that different concentrations of CO2 treatments might inhibit the growth of T. castaneum through acidosis, or they may adapt to anoxic conditions through histamine and N-acetylhistamine. Multiple analyses have shown significant changes in histamine and N-acetylhistamine levels, as well as their associated genes, with increasing CO2 concentration. In conclusion, this study comprehensively revealed the molecular mechanism of T. castaneum responding to CO2 stress and provided the basis for an effectively modified atmosphere in the T. castaneum.


Assuntos
Besouros , Histamina/análogos & derivados , Tribolium , Animais , Besouros/genética , Tribolium/genética , Histamina/farmacologia , Dióxido de Carbono/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/farmacologia , Perfilação da Expressão Gênica
16.
Arch Insect Biochem Physiol ; 115(3): e22098, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500442

RESUMO

In the current study, we investigated the insecticidal efficacy of two borates, disodium octaborate tetrahydrate (Etidot-67) and calcium metaborate (CMB) via surface application or diet delivery on the red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae). The application method did not change the boron-related mortality, but CMB was more effective than Etidot-67. At the highest dose, it took around 13 days to reach the highest mortality (≥98.1%) for CMB, while it was 19 days for Etidot-67 (≥95.8%). Both boron compounds led to a significant reduction in triglyceride levels in parallel to the downregulation of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), the two primary genes involved in de novo lipogenesis, while they also induced body weight loss. In conclusion, the current study indicated the insecticidal potential of boron compounds but CMB is more promising and more effective in controlling T. castaneum, while lipogenesis is inhibited and weight loss is induced by boron compounds.


Assuntos
Besouros , Inseticidas , Tribolium , Animais , Lipogênese , Inseticidas/farmacologia , Compostos de Boro , Cálcio
17.
Int J Biol Macromol ; 264(Pt 2): 130631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453114

RESUMO

Gram-negative bacteria binding proteins (GNBPs) have the ability to recognize molecular patterns associated with microbial pathogens (PAMPs), leading to the activation of immune responses downstream. In the genome of Tribolium castaneum, three GNBP genes have been identified; however, their immunological roles remain unexplored. In our study, a GNBP1, designated as TcGNBP1, were identified from the cDNA library of T. castaneum. The coding sequence of TcGNBP1 consisted of 1137 bps and resulted in the synthesis of a protein comprising 378 amino acids. This protein encompasses a signal peptide, a low-complexity region, and a glycoside hydrolase 16 domain. TcGNBP1 was strongly expressed in early adult stages, and mainly distributed in hemolymph and gut. Upon being challenged with Escherichia coli or Staphylococcus aureus, the transcript levels of TcGNBP1 were significantly changed at different time points. Through molecular docking and ELISA analysis, it was observed that TcGNBP1 has the ability to interact with lipopolysaccharides, peptidoglycan, and ß-1, 3-glucan. Based on these findings, it was further discovered that recombinant TcGNBP1 can directly bind to five different bacteria in a Ca2+-dependent manner. After knockdown of TcGNBP1 with RNA interference, expression of antimicrobial peptide genes and prophenoloxidase (proPO) activity were suppressed, the susceptibility of T. castaneum to E. coli or S. aureus infection was enhanced, leading to low survival rate. These results suggest a regulatory mechanism of TcGNBP1 in innate immunity of T. castaneum and provide a potential molecular target for dsRNA-based insect pest management.


Assuntos
Tribolium , Animais , Tribolium/genética , Tribolium/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Simulação de Acoplamento Molecular , Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
18.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513111

RESUMO

Spermatogenesis is critical to sexual reproduction yet evolves rapidly in many organisms. High-throughput single-cell transcriptomics promises unparalleled insight into this important process but understanding can be impeded in nonmodel systems by a lack of known genes that can reliably demarcate biologically meaningful cell populations. Tribolium castaneum, the red flour beetle, lacks known markers for spermatogenesis found in insect species like Drosophila melanogaster. Using single-cell sequencing data collected from adult beetle testes, we implement a strategy for elucidating biologically meaningful cell populations by using transient expression stage identification markers, weighted principal component clustering, and SNP-based haploid/diploid phasing. We identify populations that correspond to observable points in sperm differentiation and find species specific markers for each stage. Our results indicate that molecular pathways underlying spermatogenesis in Coleoptera are substantially diverged from those in Diptera. We also show that most genes on the X chromosome experience meiotic sex chromosome inactivation. Temporal expression of Drosophila MSL complex homologs coupled with spatial analysis of potential chromatin entry sites further suggests that the dosage compensation machinery may mediate escape from meiotic sex chromosome inactivation and postmeiotic reactivation of the X chromosome.


Assuntos
Besouros , Tribolium , Animais , Masculino , Tribolium/genética , Drosophila melanogaster/genética , Análise da Expressão Gênica de Célula Única , Sêmen , Cromossomos Sexuais , Espermatogênese/genética , Drosophila/genética , Besouros/genética
19.
Int J Biol Macromol ; 265(Pt 1): 130759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493810

RESUMO

The present study investigates the chitin properties of stored-product insect pests and their association with the fumigant toxicity of garlic essential oil. Chitin isolates of Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults were characterized using FT-IR, XRD, EA, SEM-EDS, and NMR techniques. Fumigant toxicity assay was performed under airtight condition in glass vial. The S. oryzae contains highest chitin content (19 %), followed by T. castaneum (10 %) and C. maculatus (8 %). The degree of crystallinity was lower in C. maculatus (67.13 %) than in S. oryzae (77.05 %) and T. castaneum (76.56 %). Morphologically, C. maculatus chitin displayed a flat lamellar surface with pores, while S. oryzae and T. castaneum exhibited densely arranged microfibrils based surfaces. Fumigant toxicity assays revealed varied susceptibility levels, C. maculatus exhibited higher susceptibility (0.27 µL/L air of LC50) compared to S. oryzae and T. castaneum (14.35 and 3.74 µL/L air of LC50, respectively) to garlic essential oil. The higher chitin content, greater crystallinity, and densely arranged structures in S. oryzae might contribute to its tolerance towards fumigant. Additionally, physico-chemical properties and penetration potentiality of the bioactive constituents might be linked to the toxicity in insects. Understanding these relations can enrich knowledge of chitin's role in fumigant toxicity mechanism.


Assuntos
Compostos Alílicos , Besouros , Inseticidas , Óleos Voláteis , Praguicidas , Sulfetos , Tribolium , Gorgulhos , Animais , Quitina , Espectroscopia de Infravermelho com Transformada de Fourier , Óleos Voláteis/toxicidade , Óleos Voláteis/química , Inseticidas/toxicidade
20.
Pest Manag Sci ; 80(7): 3301-3307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372489

RESUMO

BACKGROUND: Wheat grain containers or silos can be perfect habitats for insects, which generate large economic losses to grain production. Natural alternatives to synthetic insecticides have grown in popularity because of health, economic and ecological issues. Diatomaceous earth is a natural compound that has an insecticide effect by enhancing an insect's dehydration with no toxicity on mammals including humans. The aim of this study is to confirm the effect of diatomaceous earth as an insecticide for the wheat grain pest, the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae) and demonstrate its underlying mechanisms as an insecticide by open-flow respirometry and scanning electron microscopy. RESULTS: Survival bioassays of T. castaneum revealed a dose-dependent insecticide effect of diatomaceous earth. Gravimetric measurements showed that 2 days exposure to diatomaceous earth produces a significant increase of mass loss. Open-flow respirometry measurements showed an increase of total water emission rate on insects due to an increase of both, respiratory and cuticular water loss. Our study revealed that diatomaceous earth produces an increase of insect's cuticle permeability, which is responsible for elevated cuticular water loss. Scanning electron microscopy images provided visual evidence of the lipid absorbent properties of diatomaceous earth particles, and showed a tendency for higher, although not significant, damaged area of the cuticle's surface from diatomaceous earth treated insects compared to control ones. CONCLUSION: With state-of-the art techniques like open-flow respirometry and scanning electron microscopy, we demonstrated the underlying mechanism of diatomaceous earth as an insecticide and provided new cues for understanding the properties of the cuticle and its ecological importance. © 2024 Society of Chemical Industry.


Assuntos
Terra de Diatomáceas , Inseticidas , Tribolium , Animais , Inseticidas/farmacologia , Tribolium/efeitos dos fármacos , Tribolium/fisiologia , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...