Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408106

RESUMO

Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity across four distinct levels, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magnitude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.


Assuntos
Parasitos , Tribolium , Animais , Aptidão Genética , Tribolium/genética , Tribolium/microbiologia , Fertilidade , Transdução de Sinais
2.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675034

RESUMO

Insects rely only on their innate immune system to protect themselves from pathogens. Antimicrobial peptide (AMP) production is the main immune reaction in insects. In Drosophila melanogaster, the reaction is regulated mainly by the Toll and immune deficiency (IMD) pathways. Spaetzle proteins, activated by immune signals from upstream components, bind to Toll proteins, thus, activating the Toll pathway, which in turn, induces AMP genes. Previous studies have shown the difference in immune systems related to Toll and IMD pathways between D. melanogaster and Tribolium castaneum. In T. castaneum, nine Toll and seven spaetzle (spz) genes were identified. To extend our understanding of AMP production by T. castaneum, we conducted functional assays of Toll and spaetzle genes related to Toll-pathway-dependent AMP gene expression in T. castaneum under challenge with bacteria or budding yeast. The results revealed that Toll3 and Toll4 double-knockdown and spz7 knockdown strongly and moderately reduced the Toll-pathway-dependent expression of AMP genes, respectively. Moreover, Toll3 and Toll4 double-knockdown pupae more rapidly succumbed to entomopathogenic bacteria than the control pupae, but spz7 knockdown pupae did not. The results suggest that Toll3 and Toll4 play a large role in Toll-pathway-dependent immune reactions, whereas spz7 plays a small part.


Assuntos
Peptídeos Antimicrobianos , Imunidade Inata , Infecções , Tribolium , Animais , Besouros/genética , Besouros/imunologia , Besouros/microbiologia , Expressão Gênica , Tribolium/genética , Tribolium/imunologia , Tribolium/microbiologia , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/imunologia , Imunidade Inata/imunologia , Infecções/imunologia , Infecções/microbiologia
3.
J Invertebr Pathol ; 186: 107674, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606828

RESUMO

The insect cuticle is a composite structure that can further be divided into a few sub-structural layers. Its large moiety comprises a lattice of chitin fibrils and structural proteins, both of which are stabilized by covalent bonding among them. The cuticle covers the whole surface of insect body, and thus has long been suggested for the involvement in defense against entomopathogens, especially entomopathogenic fungi that infect percutaneously. We have been addressing this issue in the past few years and have so far demonstrated experimentally that chitin synthase 1, laccase2 as well as benzoquinone synthesis-related genes of Tribolium castaneum have indispensable roles in the antifungal host defense. In the present study we focused on another major component of the insect cuticular integument, structural cuticular proteins. We chose three genes coding for adult-specific cuticular proteins, namely CPR4, CPR18 and CPR27, and examined their roles in forming immunologically sound adult cuticular integuments. Analyses of developmental expression revealed that the three genes showed high level expression in the pupal stage. These results are consistent with their proposed roles in constructing cuticle of adult beetles. The RNA interference-mediated gene knockdown was employed to silence these genes, and the administration of double strand RNAs in pupae resulted in the adults with malformed elytra. The single knockdown of the three genes attenuated somewhat the defense of the resulting adult beetles against Beauveria bassiana and Metarhizium anisopliae, but statistical analyses indicated no significant differences from controls. In contrast, the double or triple knockdown mutant beetles displayed a drastic disruption of the host defense against the two entomopathogenic fungal species irrespective of the combination of targeted cuticular protein genes, demonstrating the important roles of the three cuticular protein genes in conferring robust antifungal properties on the adult cuticle. Scanning electron microscopic observation revealed that the germination of conidia attached on the adult body surface was still suppressed after the gene knockdown as in the case of wild-type beetles, suggesting that the weakened antifungal phenotypes resulted from the combined knockdown of the adult-specific cuticular protein genes could not be accounted for by the disfunction of secretion/retention of fungistatic benzoquinone derivatives.


Assuntos
Beauveria/fisiologia , Proteínas de Insetos/genética , Metarhizium/fisiologia , Tribolium/genética , Animais , Proteínas de Insetos/metabolismo , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Pupa/microbiologia , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Tribolium/microbiologia
4.
PLoS One ; 15(10): e0239051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33006995

RESUMO

A large body of ongoing research focuses on understanding the mechanisms and processes underlying host-microbiome interactions, and predicting their ecological and evolutionary outcomes. To draw general conclusions about such interactions and understand how they are established, we must synthesize information from a diverse set of species. We analysed the microbiome of an important insect model-the red flour beetle Tribolium castaneum-which is a widespread generalist pest of stored cereals. The beetles complete their entire life cycle in flour, which thus serves multiple functions: habitat, food, and a source of microbes. We determined key factors that shape the T. castaneum microbiome, established protocols to manipulate it, and tested its consequences for host fitness. We show that the T. castaneum microbiome is derived from flour-acquired microbes, and varies as a function of (flour) resource and beetle density. Beetles gain multiple fitness benefits from their microbiome, such as higher fecundity, egg survival, and lifespan; and reduced cannibalism. In contrast, the microbiome has a limited effect on development rate, and does not enhance pathogen resistance. Importantly, the benefits are derived only from microbes in the ancestral resource (wheat flour), and not from novel resources such as finger millet, sorghum, and corn. Notably, the microbiome is not essential for beetle survival and development under any of the tested conditions. Thus, the red flour beetle is a tractable model system to understand the ecology, evolution and mechanisms of host-microbiome interactions, while closely mimicking the host species' natural niche.


Assuntos
Interações entre Hospedeiro e Microrganismos , Modelos Biológicos , Tribolium/microbiologia , Animais , Antibacterianos/farmacologia , Bacillus thuringiensis/patogenicidade , Canibalismo , Feminino , Fertilidade , Farinha/microbiologia , Farinha/parasitologia , Aptidão Genética , Longevidade , Masculino , Microbiota/efeitos dos fármacos , Microbiota/genética , Microbiota/efeitos da radiação , Tribolium/crescimento & desenvolvimento , Tribolium/fisiologia , Raios Ultravioleta
5.
Genomics ; 112(6): 4474-4485, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745504

RESUMO

Small heat shock proteins (sHSPs) are important modulators of insect survival. Previous research revealed that there is only one orthologous cluster of shsps in insects. Here, we identified another novel orthologous cluster of shsps in insects by comparative analysis. Multiple stress experiments and function investigation of Tchsp21.8a belonging to this orthologous cluster and seven species-specific shsps were performed in the stored-grain pest Tribolium castaneum. The results indicated that expression of Tchsp21.8a showed weak responses to different stresses. However, expressions of most species-specific shsps exhibited hyper-responses to heat stress, and expressions of all species-specific shsps displayed diverse responses during other stresses to protect beetles in a cooperative manner. Additionally, Tchsp21.8a and species-specific Tcshsp19.7 played important roles in the development of T. castaneum, and all Tcshsps had a certain impact on the fecundity. Our work created a comprehensive reliable scaffold of insect shsps that can further provide instructive insights to pest bio-control.


Assuntos
Proteínas de Choque Térmico Pequenas/genética , Proteínas de Insetos/genética , Tribolium/genética , Animais , Privação de Alimentos , Proteínas de Choque Térmico Pequenas/biossíntese , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Resposta ao Choque Térmico , Proteínas de Insetos/biossíntese , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Insetos/classificação , Insetos/genética , Filogenia , Interferência de RNA , Alinhamento de Sequência , Especificidade da Espécie , Estresse Fisiológico , Tribolium/metabolismo , Tribolium/microbiologia , Raios Ultravioleta
6.
J Invertebr Pathol ; 169: 107298, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805286

RESUMO

Insects fight against invading microbial pathogens through various immune-related measures that comprise 'internal', 'external' as well as 'social' immunities. The defenses by external immunity associated with the cuticular integument are supposed to be of particular importance in repelling entomopathogenic fungi that infect host insects transcutaneously. Among such integument-related defenses, external secretions of benzoquinone derivatives typical of tenebrionid beetles have been suggested to play important roles in the antimicrobial defenses. In the present study, by utilizing the experimental infection system composed of the red flour beetle Tribolium castaneum and generalist ascomycete entomopathogens Beauveria bassiana and Metarhizium anisopliae, we performed the functional assays of the three T. castaneum genes whose involvement in benzoquinone synthesis in the adults has been reported, namely GT39, GT62 and GT63. Observations by scanning electron microcopy (SEM) revealed that the conidia of the two fungal species did not germinate on the wild-type adult body surface but did on the pupae. The expression analyses demonstrated that the levels of GT39 and GT62 mRNA increased from middle pupae and reached high in early adults while GT63 did not show a clear adult-biased expression pattern. The RNA interference-based knockdown of any of the three genes in pupae resulted in the adults compromised to the infection of the both fungal species. SEM observations revealed that the gene silencing allowed the conidial germination on the body surface of the knockdown beetles, thereby impairing the robust antifungal defense of adult beetles. Thus, we have provided direct experimental evidence for the functional importance in vivo of these benzoquinone synthesis-related genes that support the antifungal defense of tenebrionid beetles.


Assuntos
Beauveria/fisiologia , Benzoquinonas/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Metarhizium/fisiologia , Tribolium/genética , Animais , Genes de Insetos , Germinação , Proteínas de Insetos/metabolismo , Longevidade , Microscopia Eletrônica de Varredura , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , Pupa/ultraestrutura , Interferência de RNA , RNA Mensageiro/análise , Especificidade da Espécie , Esporos Fúngicos/fisiologia , Tribolium/crescimento & desenvolvimento , Tribolium/microbiologia , Tribolium/ultraestrutura
7.
Mol Ecol ; 28(24): 5360-5372, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31674070

RESUMO

Immune responses evolve to balance the benefits of microbial killing against the costs of autoimmunity and energetic resource use. Models that explore the evolution of optimal immune responses generally include a term for constitutive immunity, or the level of immunological investment prior to microbial exposure, and for inducible immunity, or investment in immune function after microbial challenge. However, studies rarely consider the functional form of inducible immune responses with respect to microbial density, despite the theoretical dependence of immune system evolution on microbe- versus immune-mediated damage to the host. In this study, we analyse antimicrobial peptide (AMP) gene expression from seven wild-caught flour beetle populations (Tribolium spp.) during acute infection with the virulent bacteria Bacillus thuringiensis (Bt) and Photorhabdus luminescens (P.lum) to demonstrate that inducible immune responses mediated by the humoral IMD pathway exhibit natural variation in both microbe density-dependent and independent temporal dynamics. Beetle populations that exhibited greater AMP expression sensitivity to Bt density were also more likely to die from infection, while populations that exhibited higher microbe density-independent AMP expression were more likely to survive P. luminescens infection. Reduction in pathway signalling efficiency through RNAi-mediated knockdown of the imd gene reduced the magnitude of both microbe-independent and dependent responses and reduced host resistance to Bt growth, but had no net effect on host survival. This study provides a framework for understanding natural variation in the flexibility of investment in inducible immune responses and should inform theory on the contribution of nonequilibrium host-microbe dynamics to immune system evolution.


Assuntos
Bacillus thuringiensis/genética , Tribolium/genética , Animais , Imunidade Inata/genética , Interferência de RNA , Transdução de Sinais/genética , Tribolium/microbiologia
8.
Proc Natl Acad Sci U S A ; 116(41): 20598-20604, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548373

RESUMO

Memory and specificity are hallmarks of the adaptive immune system. Contrary to prior belief, innate immune systems can also provide forms of immune memory, such as immune priming in invertebrates and trained immunity in vertebrates. Immune priming can even be specific but differs remarkably in cellular and molecular functionality from the well-studied adaptive immune system of vertebrates. To date, it is unknown whether and how the level of specificity in immune priming can adapt during evolution in response to natural selection. We tested the evolution of priming specificity in an invertebrate model, the beetle Tribolium castaneum Using controlled evolution experiments, we selected beetles for either specific or unspecific immune priming toward the bacteria Pseudomonas fluorescens, Lactococcus lactis, and 4 strains of the entomopathogen Bacillus thuringiensis After 14 generations of host selection, specificity of priming was not universally higher in the lines selected for specificity, but rather depended on the bacterium used for priming and challenge. The insect pathogen B. thuringiensis induced the strongest priming effect. Differences between the evolved populations were mirrored in the transcriptomic response, revealing involvement of immune, metabolic, and transcription-modifying genes. Finally, we demonstrate that the induction strength of a set of differentially expressed immune genes predicts the survival probability of the evolved lines upon infection. We conclude that high specificity of immune priming can evolve rapidly for certain bacteria, most likely due to changes in the regulation of immune genes.


Assuntos
Bactérias/patogenicidade , Evolução Molecular , Imunidade Inata/imunologia , Larva/imunologia , Tribolium/imunologia , Animais , Bacillus thuringiensis/patogenicidade , Lactococcus lactis/patogenicidade , Larva/microbiologia , Seleção Genética , Transcriptoma , Tribolium/microbiologia
9.
Environ Microbiol Rep ; 11(4): 518-524, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30816609

RESUMO

Several filamentous fungi are known to produce macroscopic pigmented hyphal aggregates named sclerotia. In recent years, some entomopathogenic fungi were reported to produce small sclerotia termed 'microsclerotia', becoming new potential propagules for biocontrol strategies. In this study, we described the production of microsclerotia-like pellets by the entomopathogenic fungus Beauveria bassiana. The carbon: nitrogen ratio equal to or higher than 12.5:1 amended with Fe2+ induced the germination of conidia, producing hyphal aggregate that formed sclerotial structures in submerged liquid cultures. These aggregates were able to tolerate desiccation as they germinated and subsequently produced viable conidia. Conidia derived from microsclerotial aggregates formulated with diatomaceous earth effectively kill Tribolium castaneum larvae. Optical and transmission microscopical imaging, qPCR and spectrophotometric analysis revealed that an oxidative stress scenario is involved in conidial differentiation into microsclerotia-like pellets, inducing fungal antioxidant response with high peroxidase activity - mainly detected in peroxisomes and mitochondria - and progress with active peroxisome proliferation. The results provide clues about B. bassiana microsclerotial differentiation and indicate that these pigmented aggregates are promising propagules for production, formulation and potentially application in the control of soil-inhabiting arthropod pests.


Assuntos
Beauveria/fisiologia , Estresse Oxidativo , Peroxissomos/metabolismo , Animais , Beauveria/crescimento & desenvolvimento , Beauveria/patogenicidade , Beauveria/ultraestrutura , Meios de Cultura , Terra de Diatomáceas/farmacologia , Estruturas Fúngicas/crescimento & desenvolvimento , Estruturas Fúngicas/patogenicidade , Estruturas Fúngicas/fisiologia , Estruturas Fúngicas/ultraestrutura , Larva/microbiologia , Estresse Oxidativo/genética , Peroxidase/metabolismo , Peroxissomos/genética , Peroxissomos/ultraestrutura , Controle Biológico de Vetores , Tribolium/microbiologia , Virulência
10.
Insect Mol Biol ; 28(5): 649-661, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30843264

RESUMO

C-type lectins are one of the pattern-recognition proteins involved in innate immunity in invertebrates. Although there are 16 C-type lectin genes that have been identified in the genome of Tribolium castaneum, their functions and mechanisms in innate immunity remain unknown. Here, we identified one C-type lectin orthologue, TcCTL6 (TC003708), by sequencing random clones from the cDNA library of the coleopteran beetle, T. castaneum. TcCTL6 contains a 654 bp open reading frame encoding a protein of 217 amino acids that includes a single carbohydrate-recognition domain. The expression of TcCTL6 was significantly induced by Escherichia coli, Staphylococcus aureus and stimulation with carbohydrates, including lipopolysaccharide and peptidoglycan. A binding assay suggested that the recombinant TcCTL6 not only bound to lipopolysaccharide and peptidoglycan but also bound to Gram-positive (S. aureus, Bacillus subtilis and Bacillus thuringiensis) and Gram-negative bacteria (E. coli and Pseudomonas aeruginosa) in the presence of calcium ions. Furthermore, when TcCTL6 was knocked down by RNA interference, four antimicrobial peptides (attacin1, attacin2, coleoptericin1 and coleoptericin2) were significantly decreased. These results demonstrate that TcCTL6 plays a vital role in the immune response towards pathogen infection by influencing the expression of antimicrobial peptides and the agglutination of bacteria in the presence of calcium ions in T. castaneum.


Assuntos
Imunidade Inata/genética , Lectinas Tipo C/imunologia , Tribolium/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Cálcio , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Proteínas de Insetos/genética , Lipopolissacarídeos , Peptidoglicano , Interferência de RNA , Tribolium/genética , Tribolium/microbiologia
11.
J Invertebr Pathol ; 152: 1-7, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29273219

RESUMO

Immunity is a key trait in host defence against parasites and is thus likely to be under selection during host-parasite coevolution. Broadly, the immune system consists of several lines of defence including physiological innate immunity, physical barriers such as the cuticle, avoidance behaviours and in some cases antimicrobial secretions. The defence conferring the highest fitness benefit may be situation specific and depend on the taxon and infection route of the parasite. We carried out a host-parasite coevolution experiment between the red flour beetle T. castaneum, which possesses a comprehensive immune system including the ability to secrete antimicrobial compounds into its environment, and the generalist entomopathogenic fungus Beauveria bassiana. We measured levels of external immunity (benzoquinone secretion) and an internal immune trait, phenoloxidase (PO) activity throughout and in F2 to beetles at the end of the experiment. Survival (a proxy for resistance) of F2 coevolved and control beetles exposed to the fungus was also measured. No change in external immunity or survival was observed as a consequence of host-parasite coevolution, however, PO responses in evolved beetles showed increased flexibility dependent on the route of infection of the parasite. This more flexible PO response appeared to result in beetle populations being better able to cope with the parasite, buffering their fitness during the course of the coevolution experiment. This represents a subtle but significant adaptation to the presence of a parasite over evolutionary time.


Assuntos
Beauveria/fisiologia , Interações Hospedeiro-Patógeno , Tribolium/microbiologia , Animais , Evolução Biológica , Quinonas/metabolismo , Tribolium/imunologia
12.
Biol Lett ; 13(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29237813

RESUMO

Immune specificity is the degree to which a host's immune system discriminates among various pathogens or antigenic variants. Vertebrate immune memory is highly specific due to antibody responses. On the other hand, some invertebrates show immune priming, i.e. improved survival after secondary exposure to a previously encountered pathogen. Until now, specificity of priming has only been demonstrated via the septic infection route or when live pathogens were used for priming. Therefore, we tested for specificity in the oral priming route in the red flour beetle, Tribolium castaneum For priming, we used pathogen-free supernatants derived from three different strains of the entomopathogen, Bacillus thuringiensis, which express different Cry toxin variants known for their toxicity against this beetle. Subsequent exposure to the infective spores showed that oral priming was specific for two naturally occurring strains, while a third engineered strain did not induce any priming effect. Our data demonstrate that oral immune priming with a non-infectious bacterial agent can be specific, but the priming effect is not universal across all bacterial strains.


Assuntos
Bacillus thuringiensis/fisiologia , Interações Hospedeiro-Patógeno , Tribolium/imunologia , Animais , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/microbiologia , Tribolium/crescimento & desenvolvimento , Tribolium/microbiologia
13.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29237849

RESUMO

Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (immune priming), whereby sublethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle (Tribolium castaneum) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt evolved high basal resistance against multiple Bt strains. By contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance versus specific immune memory) with potentially distinct mechanisms.


Assuntos
Bacillus thuringiensis/fisiologia , Evolução Biológica , Interações Hospedeiro-Patógeno , Memória Imunológica , Tribolium/imunologia , Animais , Tribolium/microbiologia
14.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747473

RESUMO

Widespread differential expression of immunological genes is a hallmark of the response to infection in almost all surveyed taxa. However, several challenges remain in the attempt to connect differences in gene expression with functional outcomes like parasite killing and host survival. For example, temporal gene expression patterns are not always monotonic (unidirectional slope), yielding results that qualitatively depend on the time point selected for analysis. They may also be correlated to microbe density, confounding the strength of an immune response and resistance to parasites. In this study, we analyse these relationships in an mRNA-seq time series of Tribolium castaneum infected with Bacillus thuringiensis Our results suggest that many extracellular immunological components with known roles in immunity, like antimicrobial peptides and recognition proteins, are highly correlated to microbe load. On the other hand, intracellular components of immunological signalling pathways overwhelmingly show non-monotonic temporal patterns of gene expression, despite the underlying assumption of monotonicity in most ecological and comparative transcriptomics studies that rely on cross-sectional analyses. Our results raise a host of new questions, including to what extent variation in host resistance, infection tolerance and immunopathology can be explained by variation in the slope or sensitivity of these newly characterized patterns.


Assuntos
Carga Bacteriana , Regulação da Expressão Gênica/imunologia , Tribolium/imunologia , Animais , Bacillus thuringiensis/patogenicidade , Estudos Transversais , Transdução de Sinais , Fatores de Tempo , Tribolium/microbiologia
15.
BMC Genomics ; 18(1): 329, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446171

RESUMO

BACKGROUND: The phenomenon of immune priming, i.e. enhanced protection following a secondary exposure to a pathogen, has now been demonstrated in a wide range of invertebrate species. Despite accumulating phenotypic evidence, knowledge of its mechanistic underpinnings is currently very limited. Here we used the system of the red flour beetle, Tribolium castaneum and the insect pathogen Bacillus thuringiensis (Bt) to further our molecular understanding of the oral immune priming phenomenon. We addressed how ingestion of bacterial cues (derived from spore supernatants) of an orally pathogenic and non-pathogenic Bt strain affects gene expression upon later challenge exposure, using a whole-transcriptome sequencing approach. RESULTS: Whereas gene expression of individuals primed with the orally non-pathogenic strain showed minor changes to controls, we found that priming with the pathogenic strain induced regulation of a large set of distinct genes, many of which are known immune candidates. Intriguingly, the immune repertoire activated upon priming and subsequent challenge qualitatively differed from the one mounted upon infection with Bt without previous priming. Moreover, a large subset of priming-specific genes showed an inverse regulation compared to their regulation upon challenge only. CONCLUSIONS: Our data demonstrate that gene expression upon infection is strongly affected by previous immune priming. We hypothesise that this shift in gene expression indicates activation of a more targeted and efficient response towards a previously encountered pathogen, in anticipation of potential secondary encounter.


Assuntos
Bacillus thuringiensis/fisiologia , Regulação da Expressão Gênica/imunologia , Larva/imunologia , Larva/microbiologia , Tribolium/imunologia , Tribolium/microbiologia , Administração Oral , Animais , Larva/genética , Especificidade da Espécie , Tribolium/genética
16.
Mol Ecol ; 26(14): 3794-3807, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28277618

RESUMO

Many taxa exhibit plastic immune responses initiated after primary microbial exposure that provide increased protection against disease-induced mortality and the fitness costs of infection. In several arthropod species, this protection can even be passed from parents to offspring through a phenomenon called trans-generational immune priming. Here, we first demonstrate that trans-generational priming is a repeatable phenomenon in flour beetles (Tribolium castaneum) primed and infected with Bacillus thuringiensis (Bt). We then quantify the within-host dynamics of microbes and host physiological responses in infected offspring from primed and unprimed mothers by monitoring bacterial density and using mRNA-seq to profile host gene expression, respectively, over the acute infection period. We find that priming increases inducible resistance against Bt around a critical temporal juncture where host septicaemic trajectories, and consequently survival, may be determined in unprimed individuals. Our results identify a highly differentially expressed biomarker of priming, containing an EIF4-e domain, in uninfected individuals, as well as several other candidate genes. Moreover, the induction and decay dynamics of gene expression over time suggest a metabolic shift in primed individuals. The identified bacterial and gene expression dynamics are likely to influence patterns of bacterial fitness and disease transmission in natural populations.


Assuntos
Bacillus thuringiensis , Resistência à Doença/genética , Tribolium/genética , Tribolium/microbiologia , Animais , Feminino , Transcriptoma
17.
Environ Microbiol ; 19(5): 2090-2100, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345225

RESUMO

Virulence is often under selection during host-parasite coevolution. In order to increase fitness, parasites are predicted to circumvent and overcome host immunity. A particular challenge for pathogens are external immune systems, chemical defence systems comprised of potent antimicrobial compounds released by prospective hosts into the environment. We carried out an evolution experiment, allowing for coevolution to occur, with the entomopathogenic fungus, Beauveria bassiana, and the red flour beetle, Tribolium castaneum, which has a well-documented external immune system with strong inhibitory effects against B. bassiana. After just seven transfers of experimental evolution we saw a significant increase in parasite induced host mortality, a proxy for virulence, in all B. bassiana lines. This apparent virulence increase was mainly the result of the B. bassiana lines evolving resistance to the beetles' external immune defences, not due to increased production of toxins or other harmful substances. Transcriptomic analyses of evolved B. bassiana implicated the up-regulation of oxidative stress resistance genes in the observed resistance to external immunity. It was concluded that external immunity acts as a powerful selective force for virulence evolution, with an increase in virulence being achieved apparently entirely by overcoming these defences, most likely due to elevated oxidative stress resistance.


Assuntos
Beauveria/patogenicidade , Benzoquinonas/farmacologia , Interações Hospedeiro-Patógeno/imunologia , Tribolium/imunologia , Tribolium/microbiologia , Animais , Beauveria/genética , Beauveria/imunologia , Evolução Biológica , Estresse Oxidativo/genética , Estudos Prospectivos , Regulação para Cima/genética , Virulência/imunologia
18.
J Invertebr Pathol ; 144: 1-6, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28065703

RESUMO

Fusarium species are common pathogens of plants, animals and insects worldwide, including Iran. The occurrence of entomopathogenic Fusarium species isolated from Tribolium species as one of the most important insect pests of stored grains were sampled from various provinces in western Iran. In total, 15 Tribolium species belonging to T. castaneum (Herbst) and T. confusum (Du Val) (Col: Tenebrionidae) were detected and 8 isolates from Fusarium spp. were collected from them. Based on morphological features, the Fusarium isolates were classified into F. keratoplasticum and F. proliferatum. The phylogenetic trees based on tef1 dataset clearly separated all morphological taxa. DNA sequences of ITS regions and ß-tubulin gene were also confirmed morphological taxa. All of the Fusarium isolates were evaluated for their pathogenicity on T. confusum. Maximum mortality rate was observed for F. keratoplasticum (isolate FSSCker2) and this isolate may be considered as a good candidate for biological control in the ecosystem of stored grains. This is the first report on molecular identification of Fusarium species isolated from insects in Iran and F. keratoplasticum and F. proliferatum were isolated for the first time from Tribolium species as two entomopathogenic fungi.


Assuntos
Grão Comestível/microbiologia , Tribolium/microbiologia , Animais , Fusarium , Irã (Geográfico)
19.
J Invertebr Pathol ; 143: 26-34, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27867018

RESUMO

The importance of the insect cuticle as a primary protective barrier against entomopathogens has long been noted. In the present study, we addressed this issue by utilizing an experimental infection system composed of the model beetle T. castaneum and two entomopathogenic fungal species, Beauveria bassiana and Metarhizium anisopliae. The pupae were relatively susceptible to these fungi by the natural route of infection, with some refractoriness developed with age, while the adults exhibited much higher refractoriness. Whereas M. anisopliae exhibited seemingly higher infectivity to the pupae compared to B. bassiana when the natural conidium infection was employed, direct inoculation of cultured hyphal body cells into the hemocoel was found highly and equally virulent in the pupae for the both fungal species. These results collectively suggest an important role of the cuticular integument in antifungal host defense, and we subsequently conducted the knockdown of chitin synthase 1 gene (CHS1). We targeted the prepupal and mid-pupal peaks of its expression respectively by using injection of the dsRNA at very low dosages to avoid lethality. The resulting pupae looked normal, but the adults showed a mild phenotype with dimpled/wrinkled elytra. The CHS1 gene knockdown compromised significantly host defense against the fungal infection via the natural route, except the configuration of knockdown pupae and M. anisopliae, suggesting an indispensable role of CHS1.


Assuntos
Quitina Sintase/imunologia , Técnicas Microbiológicas , Tribolium/imunologia , Tribolium/microbiologia , Exoesqueleto/enzimologia , Animais , Beauveria/patogenicidade , Quitina Sintase/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Metarhizium/patogenicidade , Micoses/imunologia , Reação em Cadeia da Polimerase em Tempo Real
20.
J Anim Ecol ; 85(1): 291-301, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26257080

RESUMO

In most animals, ageing is associated with a decline in immune function (immune senescence). However, different components of the immune system seem to age differentially, and many studies do not measure the ultimate fitness consequences of immune function after infection. Previous work shows that immune function may be traded off with other fitness components such as reproduction. It is possible that age alters the nature of these trade-offs, particularly in conjunction with factors such as gender and mating that can also affect investment in immune function. We tested the impact of age, sex and mating on post-infection survivorship in Tribolium castaneum flour beetles, as well as the components of baseline constitutive innate immunity and external (secreted) immune function in uninfected individuals. We also tested whether the reproductive ability of uninfected females is traded off with immune function (baseline innate and external immunity) and post-infection survivorship across age groups. We found that age, sex and mating significantly affected immune components and infection outcome, although the magnitude and nature of the impact varied in each case. We found that older beetles were more susceptible to infection by the pathogen Bacillus thuringiensis even though major components of the constitutive innate immune defence (antibacterial and phenoloxidase activity) remained unchanged or improved with age. Thus, these aspects of innate immunity cannot explain the observed decline in post-infection survival of older beetles. We did not find trade-offs between the reproductive ability of uninfected females and their immune function. In contrast to innate immunity, external immunity showed an overall decline with age but was also affected by sex and mating. Finally, we show that bacterial infection alters external immunity via complex interactions between age, sex and mating status. Our work uncovers novel interactions between age, sex and mating that can determine the evolution and outcome of immunosenescence by affecting the time course of relative investment in different immune and fitness components.


Assuntos
Bacillus thuringiensis/fisiologia , Imunossenescência , Tribolium/microbiologia , Tribolium/fisiologia , Fatores Etários , Animais , Feminino , Imunidade Inata , Longevidade , Masculino , Fatores Sexuais , Comportamento Sexual Animal , Tribolium/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...