Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Adv ; 10(29): eado2682, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018391

RESUMO

Cyanobacteria of the genus Trichodesmium form extensive blooms that supply new N to nutrient-poor marine ecosystems. Yet little is known about what eats Trichodesmium. In this laboratory study, we show that one of the greatest threats to coral reefs, predatory crown-of-thorns starfish (CoTS), Acanthaster sp., completes their larval phase feeding solely on Trichodesmium. We observed Trichodesmium erythraeum CMP1985 in the stomachs of larvae using florescence microscopy and traced the assimilation of nitrogen from labeled trichomes into larval tissues using stable isotopes. Some larvae fed T. erythraeum were morphologically ready to become benthic juveniles after 19 days. Given that Trichodesmium can be food for CoTS, reported increases in Trichodesmium could be a driving factor in the heightened frequency of CoTS population irruptions that have devastated coral reefs in past decades. Future studies could test this through investigating the diets of wild larvae and incorporating Trichodesmium abundance into models of CoTS population dynamics.


Assuntos
Larva , Fixação de Nitrogênio , Estrelas-do-Mar , Trichodesmium , Animais , Larva/crescimento & desenvolvimento , Trichodesmium/metabolismo , Estrelas-do-Mar/crescimento & desenvolvimento , Estrelas-do-Mar/metabolismo , Recifes de Corais , Nitrogênio/metabolismo , Comportamento Alimentar , Ecossistema
2.
Environ Sci Technol ; 58(22): 9525-9535, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758591

RESUMO

While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.


Assuntos
Trichodesmium , Trichodesmium/metabolismo , Golfo do México , Cianobactérias/metabolismo , Eutrofização , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Environ Sci Technol ; 58(21): 9236-9249, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748855

RESUMO

Nitrogen fixation by the diazotrophic cyanobacterium Trichodesmium contributes up to 50% of the bioavailable nitrogen in the ocean. N2 fixation by Trichodesmium is limited by the availability of nutrients, such as iron (Fe) and phosphorus (P). Although colloids are ubiquitous in the ocean, the effects of Fe limitation on nitrogen fixation by marine colloids (MC) and the related mechanisms are largely unexplored. In this study, we found that MC exhibit photoelectrochemical properties that boost nitrogen fixation by photoelectrophy in Trichodesmium erythraeum. MC efficiently promote photosynthesis in T. erythraeum, thus enhancing its growth. Photoexcited electrons from MC are directly transferred to the photosynthetic electron transport chain and contribute to nitrogen fixation and ammonia assimilation. Transcriptomic analysis revealed that MC significantly upregulates genes related to the electron transport chain, photosystem, and photosynthesis, which is consistent with elevated photosynthetic capacities (e.g., Fv/Fm and carboxysomes). As a result, MC increase the N2 fixation rate by 67.5-89.3%. Our findings highlight a proof-of-concept electron transfer pathway by which MC boost nitrogen fixation, broadening our knowledge on the role of ubiquitous colloids in marine nitrogen biogeochemistry.


Assuntos
Coloides , Fixação de Nitrogênio , Trichodesmium , Trichodesmium/metabolismo , Fotossíntese , Nitrogênio/metabolismo
4.
Sci Rep ; 14(1): 2906, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316872

RESUMO

Diazotrophic cyanobacteria such as Trichodesmium play a crucial role in the nitrogen budget of the oceans due to their capability to bind atmospheric nitrogen. Little is known about their interoceanic transport pathways and their distribution in upwelling regions. Trichodesmium has been detected using a Video Plankton Recorder (VPR) mounted on a remotely operated towed vehicle (TRIAXUS) in the southern and northern Benguela Upwelling System (BUS) in austral autumn, Feb/Mar 2019. The TRIAXUS, equipped with a CTD as well as fluorescence and nitrogen sensors, was towed at a speed of 8 kn on two onshore-offshore transects undulating between 5 and 200 m over distances of 249 km and 372 km, respectively. Trichodesmium was not detected near the coast in areas of freshly upwelled waters but was found in higher abundances offshore on both transects, mainly in subsurface water layers down to 80 m depth with elevated salinities. These salinity lenses can be related to northward moving eddies that most probably have been detached from the warm and salty Agulhas Current. Testing for interaction and species-habitat associations of Trichodesmium colonies with salinity yielded significant results, indicating that Trichodesmium may be transported with Agulhas Rings from the Indian Ocean into the Atlantic Ocean.


Assuntos
Trichodesmium , Trichodesmium/metabolismo , Água do Mar/microbiologia , Oceano Atlântico , Fixação de Nitrogênio , Oceano Índico , Nitrogênio/metabolismo
5.
Biochim Biophys Acta Bioenerg ; 1865(1): 149015, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742749

RESUMO

The aim of this study was to investigate how acclimation to medium-level, long-term, non-lethal iron limitation changes the electron flux around the Photosystem II of the oceanic diazotroph Trichodesmium erythraeum IMS101. Fe availability of about 5× and 100× lower than a replete level, i.e. conditions common in the natural environment of this cyanobacterium, were applied in chemostats. The response of the cells was studied not only in terms of growth, but also mechanistically, measuring the chlorophyll fluorescence of dark-adapted filaments via imaging fluorescence kinetic microscopy (FKM) with 0.3 ms time resolution. Combining these measurements with those of metal binding to proteins via online coupling of metal-free HPLC (size exclusion chromatography SEC) to sector-field ICP-MS allowed to track the fate of the photosystems, together with other metalloproteins. General increase of fluorescence has been observed, with the consequent decrease in the quantum yields φ of the PSII, while the efficiency ψ of the electron flux between PSII and the PSI remained surprisingly unchanged. This indicates the ability of Trichodesmium to cope with a situation that makes assembling the many iron clusters in Photosystem I a particular challenge, as shown by decreasing ratios of Fe to Mg in these proteins. The negative effect of Fe limitation on PSII may also be due to its fast turnover. A broader view was obtained from metalloproteomics via HPLC-ICP-MS, revealing a differential protein expression pattern under iron limitation with a drastic down-regulation especially of iron-containing proteins and some increase in low MW metal-binding complexes.


Assuntos
Metaloproteínas , Trichodesmium , Trichodesmium/metabolismo , Ferro/metabolismo , Metaloproteínas/metabolismo , Elétrons , Aclimatação
6.
mSystems ; 8(6): e0074223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37916816

RESUMO

IMPORTANCE: Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.


Assuntos
Cianobactérias , Trichodesmium , Trichodesmium/genética , Cianobactérias/genética , Fixação de Nitrogênio
7.
Science ; 380(6647): 830-835, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228200

RESUMO

The ocean's nitrogen is largely fixed by cyanobacteria, including Trichodesmium, which forms aggregates comprising hundreds of filaments arranged in organized architectures. Aggregates often form upon exposure to stress and have ecological and biophysical characteristics that differ from those of single filaments. Here, we report that Trichodesmium aggregates can rapidly modulate their shape, responding within minutes to changes in environmental conditions. Combining video microscopy and mathematical modeling, we discovered that this reorganization is mediated by "smart reversals" wherein gliding filaments reverse when their overlap with other filaments diminishes. By regulating smart reversals, filaments control aggregate architecture without central coordination. We propose that the modulation of gliding motility at the single-filament level is a determinant of Trichodesmium's aggregation behavior and ultimately of its biogeochemical role in the ocean.


Assuntos
Fixação de Nitrogênio , Trichodesmium , Trichodesmium/citologia , Trichodesmium/fisiologia , Modelos Biológicos , Oceanos e Mares
8.
Trends Microbiol ; 31(10): 1072-1084, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244772

RESUMO

The N2-fixing cyanobacterium Trichodesmium is an important player in the oceanic nitrogen and carbon cycles. Trichodesmium occurs both as single trichomes and as colonies containing hundreds of trichomes. In this review, we explore the benefits and disadvantages of colony formation, considering physical, chemical, and biological effects from nanometer to kilometer scale. Showing that all major life challenges are affected by colony formation, we claim that Trichodesmium's ecological success is tightly linked to its colonial lifestyle. Microbial interactions in the microbiome, chemical gradients within the colony, interactions with particles, and elevated mobility in the water column shape a highly dynamic microenvironment. We postulate that these dynamics are key to the resilience of Trichodesmium and other colony formers in our changing environment.


Assuntos
Cianobactérias , Trichodesmium , Fixação de Nitrogênio , Oceanos e Mares , Comportamento Social
9.
mSystems ; 8(1): e0060120, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36598239

RESUMO

The open ocean is an extremely competitive environment, partially due to the dearth of nutrients. Trichodesmium erythraeum, a marine diazotrophic cyanobacterium, is a keystone species in the ocean due to its ability to fix nitrogen and leak 30 to 50% into the surrounding environment, providing a valuable source of a necessary macronutrient to other species. While there are other diazotrophic cyanobacteria that play an important role in the marine nitrogen cycle, Trichodesmium is unique in its ability to fix both carbon and nitrogen simultaneously during the day without the use of specialized cells called heterocysts to protect nitrogenase from oxygen. Here, we use the advanced modeling framework called multiscale multiobjective systems analysis (MiMoSA) to investigate how Trichodesmium erythraeum can reduce dimolecular nitrogen to ammonium in the presence of oxygen. Our simulations indicate that nitrogenase inhibition is best modeled as Michealis-Menten competitive inhibition and that cells along the filament maintain microaerobia using high flux through Mehler reactions in order to protect nitrogenase from oxygen. We also examined the effect of location on metabolic flux and found that cells at the end of filaments operate in distinctly different metabolic modes than internal cells despite both operating in a photoautotrophic mode. These results give us important insight into how this species is able to operate photosynthesis and nitrogen fixation simultaneously, giving it a distinct advantage over other diazotrophic cyanobacteria because they can harvest light directly to fuel the energy demand of nitrogen fixation. IMPORTANCE Trichodesmium erythraeum is a marine cyanobacterium responsible for approximately half of all biologically fixed nitrogen, making it an integral part of the global nitrogen cycle. Interestingly, unlike other nitrogen-fixing cyanobacteria, Trichodesmium does not use temporal or spatial separation to protect nitrogenase from oxygen poisoning; instead, it operates photosynthesis and nitrogen fixation reactions simultaneously during the day. Unfortunately, the exact mechanism the cells utilize to operate carbon and nitrogen fixation simultaneously is unknown. Here, we use an advanced metabolic modeling framework to investigate and identify the most likely mechanisms Trichodesmium uses to protect nitrogenase from oxygen. The model predicts that cells operate in a microaerobic mode, using both respiratory and Mehler reactions to dramatically reduce intracellular oxygen concentrations.


Assuntos
Cianobactérias , Mimosa , Trichodesmium , Mimosa/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Cianobactérias/metabolismo , Nitrogenase/metabolismo , Oxigênio/metabolismo
10.
Microbiol Spectr ; 10(6): e0202522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374046

RESUMO

There is considerable debate about the benefits and trade-offs for colony formation in a major marine nitrogen fixer, Trichodesmium. To quantitatively analyze the trade-offs, we developed a metabolic model based on carbon fluxes to compare the performance of Trichodesmium colonies and free trichomes under different scenarios. Despite reported reductions in carbon fixation and nitrogen fixation rates for colonies relative to free trichomes, we found that model colonies can outperform individual cells in several cases. The formation of colonies can be advantageous when respiration rates account for a high proportion of the carbon fixation rate. Negative external influence on vital rates, such as mortality due to predation or micronutrient limitations, can also create a net benefit for colony formation relative to individual cells. In contrast, free trichomes also outcompete colonies in many scenarios, such as when respiration rates are equal for both colonies and individual cells or when there is a net positive external influence on rate processes (i.e., optimal environmental conditions regarding light and temperature or high nutrient availability). For both colonies and free trichomes, an increase in carbon fixation relative to nitrogen fixation rates would increase their relative competitiveness. These findings suggest that the formation of colonies in Trichodesmium might be linked to specific environmental and ecological circumstances. Our results provide a road map for empirical studies and models to evaluate the conditions under which colony formation in marine phytoplankton can be sustained in the natural environment. IMPORTANCE Trichodesmium is a marine filamentous cyanobacterium that fixes nitrogen and is an important contributor to the global nitrogen cycle. In the natural environment, Trichodesmium can exist as individual cells (trichomes) or as colonies (puffs and tufts). In this paper, we try to answer a longstanding question in marine microbial ecology: how does colony formation benefit the survival of Trichodesmium? To answer this question, we developed a carbon flux model that utilizes existing published rates to evaluate whether and when colony formation can be sustained. Enhanced respiration rates, influential external factors such as environmental conditions and ecological interactions, and variable carbon and nitrogen fixation rates can all create scenarios for colony formation to be a viable strategy. Our results show that colony formation is an ecologically beneficial strategy under specific conditions, enabling Trichodesmium to be a globally significant organism.


Assuntos
Trichodesmium , Trichodesmium/metabolismo , Fixação de Nitrogênio , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Carbono/metabolismo
11.
Nat Commun ; 13(1): 6730, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344528

RESUMO

Growth of the prominent nitrogen-fixing cyanobacterium Trichodesmium is often limited by phosphorus availability in the ocean. How nitrogen fixation by phosphorus-limited Trichodesmium may respond to ocean acidification remains poorly understood. Here, we use phosphate-limited chemostat experiments to show that acidification enhanced phosphorus demands and decreased phosphorus-specific nitrogen fixation rates in Trichodesmium. The increased phosphorus requirements were attributed primarily to elevated cellular polyphosphate contents, likely for maintaining cytosolic pH homeostasis in response to acidification. Alongside the accumulation of polyphosphate, decreased NADP(H):NAD(H) ratios and impaired chlorophyll synthesis and energy production were observed under acidified conditions. Consequently, the negative effects of acidification were amplified compared to those demonstrated previously under phosphorus sufficiency. Estimating the potential implications of this finding, using outputs from the Community Earth System Model, predicts that acidification and dissolved inorganic and organic phosphorus stress could synergistically cause an appreciable decrease in global Trichodesmium nitrogen fixation by 2100.


Assuntos
Cianobactérias , Trichodesmium , Nitrogênio/farmacologia , Concentração de Íons de Hidrogênio , Água do Mar/química , Fixação de Nitrogênio , Fósforo/farmacologia , Homeostase , Polifosfatos , Oceanos e Mares
12.
Biochim Biophys Acta Bioenerg ; 1863(8): 148910, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944660

RESUMO

The increase in world energy consumption, and the worries from potential future disasters that may derive from climate change have stimulated the development of renewable energy technologies. One promising method is the utilization of whole photosynthetic cyanobacterial cells to produce photocurrent in a bio-photo electrochemical cell (BPEC). The photocurrent can be derived from either the respiratory or photosynthetic pathways, via the redox couple NADP+/NADPH mediating cyclic electron transport between photosystem I inside the cells, and the anode. In the past, most studies have utilized the fresh-water cyanobacterium Synechocystis sp. PCC 6803 (Syn). Here, we show that the globally important marine cyanobacterium Trichodesmium erythraeum flourishing in the subtropical oceans can provide improved currents as compared to Syn. We applied 2D-fluorescence measurements to detect the secretion of NADPH and show that the resulting photocurrent production is enhanced by increasing the electrolyte salinity, Further enhancement of the photocurrent can be obtained by the addition of electron mediators such as NAD+, NADP+, cytochrome C, vitamin B1, or potassium ferricyanide. Finally, we produce photocurrent from additional cyanobacterial species: Synechocystis sp. PCC6803, Synechococcus elongatus PCC7942, Acaryochloris marina MBIC 11017, and Spirulina, using their cultivation media as electrolytes for the BPEC.


Assuntos
Complexo de Proteína do Fotossistema I , Synechocystis , Citocromos c/metabolismo , NAD/metabolismo , NADP/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Synechocystis/metabolismo , Tiamina , Trichodesmium , Água/metabolismo
13.
ISME J ; 16(10): 2398-2405, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35835942

RESUMO

The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200-4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36-214 fmol N cell-1 d-1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes.


Assuntos
Compostos de Amônio , Trichodesmium , Compostos de Amônio/metabolismo , Carbono/metabolismo , DNA Complementar/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Oceanos e Mares , Oceano Pacífico , Água do Mar/microbiologia , Trichodesmium/genética , Trichodesmium/metabolismo
14.
mSystems ; 7(4): e0053822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862813

RESUMO

The dominant marine filamentous N2 fixer, Trichodesmium, conducts photosynthesis and N2 fixation during the daytime. Because N2 fixation is sensitive to O2, some previous studies suggested that spatial segregation of N2 fixation and photosynthesis is essential in Trichodesmium. However, this hypothesis conflicts with some observations where all the cells contain both photosystems and the N2-fixing enzyme nitrogenase. Here, we construct a systematic model simulating Trichodesmium metabolism, showing that the hypothetical spatial segregation is probably useless in increasing the Trichodesmium growth and N2 fixation, unless substances can efficiently transfer among cells with low loss to the environment. The model suggests that Trichodesmium accumulates fixed carbon in the morning and uses that in respiratory protection to reduce intracellular O2 during the mid-daytime, when photosynthesis is downregulated, allowing the occurrence of N2 fixation. A cell membrane barrier against O2 and alternative non-O2 evolving electron transfer also contribute to maintaining low intracellular O2. Our study provides a mechanism enabling N2 fixation despite the presence of photosynthesis across Trichodesmium. IMPORTANCE The filamentous Trichodesmium is a globally prominent marine nitrogen fixer. A long-standing paradox is that the nitrogen-fixing enzyme nitrogenase is sensitive to oxygen, but Trichodesmium conducts both nitrogen fixation and oxygen-evolving photosynthesis during the daytime. Previous studies using immunoassays reported that nitrogenase was limited in some specialized Trichodesmium cells (termed diazocytes), suggesting the necessity of spatial segregation of nitrogen fixation and photosynthesis. However, attempts using other methods failed to find diazocytes in Trichodesmium, causing controversy on the existence of the spatial segregation. Here, our physiological model shows that Trichodesmium can maintain low intracellular O2 in mid-daytime and achieve feasible nitrogen fixation and growth rates even without the spatial segregation, while the hypothetical spatial segregation might not be useful if substantial loss of substances to the environment occurs when they transfer among the Trichodesmium cells. Our study then suggests a possible mechanism by which Trichodesmium can survive without the spatial segregation.


Assuntos
Trichodesmium , Trichodesmium/metabolismo , Fixação de Nitrogênio/fisiologia , Fotossíntese , Nitrogenase/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo
15.
Nat Rev Microbiol ; 20(3): 126, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027702
16.
Nat Microbiol ; 7(2): 300-311, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013592

RESUMO

Cyanobacteria of the genus Trichodesmium provide about 80 Tg of fixed nitrogen to the surface ocean per year and contribute to marine biogeochemistry, including the sequestration of carbon dioxide. Trichodesmium fixes nitrogen in the daylight, despite the incompatibility of the nitrogenase enzyme with oxygen produced during photosynthesis. While the mechanisms protecting nitrogenase remain unclear, all proposed strategies require considerable resource investment. Here we identify a crucial benefit of daytime nitrogen fixation in Trichodesmium spp. that may counteract these costs. We analysed diel proteomes of cultured and field populations of Trichodesmium in comparison with the marine diazotroph Crocosphaera watsonii WH8501, which fixes nitrogen at night. Trichodesmium's proteome is extraordinarily dynamic and demonstrates simultaneous photosynthesis and nitrogen fixation, resulting in balanced particulate organic carbon and particulate organic nitrogen production. Unlike Crocosphaera, which produces large quantities of glycogen as an energy store for nitrogenase, proteomic evidence is consistent with the idea that Trichodesmium reduces the need to produce glycogen by supplying energy directly to nitrogenase via soluble ferredoxin charged by the photosynthesis protein PsaC. This minimizes ballast associated with glycogen, reducing cell density and decreasing sinking velocity, thus supporting Trichodesmium's niche as a buoyant, high-light-adapted colony forming cyanobacterium. To occupy its niche of simultaneous nitrogen fixation and photosynthesis, Trichodesmium appears to be a conspicuous consumer of iron, and has therefore developed unique iron-acquisition strategies, including the use of iron-rich dust. Particle capture by buoyant Trichodesmium colonies may increase the residence time and degradation of mineral iron in the euphotic zone. These findings describe how cellular biochemistry defines and reinforces the ecological and biogeochemical function of these keystone marine diazotrophs.


Assuntos
Proteínas de Bactérias/metabolismo , Nitrogenase/metabolismo , Proteoma , Trichodesmium/genética , Trichodesmium/fisiologia , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Luz , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nitrogenase/genética , Fatores de Tempo , Trichodesmium/enzimologia
17.
J Proteome Res ; 21(1): 77-89, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855411

RESUMO

Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.


Assuntos
Cianobactérias , Trichodesmium , Cianobactérias/metabolismo , Biomarcadores Ambientais , Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Trichodesmium/genética , Trichodesmium/metabolismo
18.
ISME J ; 16(4): 1055-1064, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34819612

RESUMO

The filamentous diazotrophic cyanobacterium Trichodesmium is responsible for a significant fraction of marine di-nitrogen (N2) fixation. Growth and distribution of Trichodesmium and other diazotrophs in the vast oligotrophic subtropical gyres is influenced by iron (Fe) and phosphorus (P) availability, while reciprocally influencing the biogeochemistry of these nutrients. Here we use observations across natural inverse gradients in Fe and P in the North Atlantic subtropical gyre (NASG) to demonstrate how Trichodesmium acclimates in situ to resource availability. Transcriptomic analysis identified progressive upregulation of known iron-stress biomarker genes with decreasing Fe availability, and progressive upregulation of genes involved in the acquisition of diverse P sources with decreasing P availability, while genes involved in N2 fixation were upregulated at the intersection under moderate Fe and P availability. Enhanced N2 fixation within the Fe and P co-stressed transition region was also associated with a distinct, consistent metabolic profile, including the expression of alternative photosynthetic pathways that potentially facilitate ATP generation required for N2 fixation with reduced net oxygen production. The observed response of Trichodesmium to availability of both Fe and P supports suggestions that these biogeochemically significant organisms employ unique molecular, and thus physiological responses as adaptations to specifically exploit the Fe and P co-limited niche they construct.


Assuntos
Cianobactérias , Trichodesmium , Cianobactérias/genética , Cianobactérias/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Trichodesmium/genética , Trichodesmium/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750267

RESUMO

Filamentous and colony-forming cells within the cyanobacterial genus Trichodesmium might account for nearly half of nitrogen fixation in the sunlit ocean, a critical mechanism that sustains plankton's primary productivity. Trichodesmium has long been portrayed as a diazotrophic genus. By means of genome-resolved metagenomics, here we reveal that nondiazotrophic Trichodesmium species not only exist but also are abundant and widespread in the open ocean, benefiting from a previously overlooked functional lifestyle to expand the biogeography of this prominent marine genus. Near-complete environmental genomes for those closely related candidate species reproducibly shared functional features including a lack of genes related to nitrogen fixation, hydrogen recycling, and hopanoid lipid production concomitant with the enrichment of nitrogen assimilation genes. Our results elucidate fieldwork observations of Trichodesmium cells fixing carbon but not nitrogen. The Black Queen hypothesis and burden of low-oxygen concentration requirements provide a rationale to explain gene loss linked to nitrogen fixation among Trichodesmium species. Disconnecting taxonomic signal for this genus from a microbial community's ability to fix nitrogen will help refine our understanding of the marine nitrogen balance. Finally, we are reminded that established links between taxonomic lineages and functional traits do not always hold true.


Assuntos
Água do Mar/microbiologia , Trichodesmium/genética , Trichodesmium/fisiologia , Carbono/metabolismo , Cianobactérias/genética , Cianobactérias/fisiologia , Genoma/genética , Metagenômica/métodos , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...