RESUMO
Abstract This study aimed to investigate the anatomy and histochemistry of Mollinedia clavigera leaves and stems through photonic microscopy and scanning electron microscopy. Noteworthy features of leaves were: presence of paracytic stomata on both surfaces; simple as well as bifurcate non-glandular trichomes; prismatic calcium oxalate crystals; flat-convex midrib with a central and two dorsal bundles; concave-convex petiole with a single vascular bundle in open archh. Stems were cylindrical and showed prismatic and styloid crystals in the pith. Histochemical analysis detected lipophilic and phenolic compounds, starch grains and lignified elements such as brachysclereids and fibers. These features may assist in future identifications and quality control of M. clavigera, avoid misidentification between other genus members, once species and genus studies are scarce.
Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Monimiaceae/anatomia & histologia , Monimiaceae/química , Tricomas/anatomia & histologia , Tricomas/química , Brasil , Microscopia Eletrônica de Varredura , Folhas de Planta/citologia , Monimiaceae/citologia , Tricomas/citologia , HistocitoquímicaRESUMO
Plant growth promoting bacteria (PGPB) are agriculturally important soil bacteria that increase plant growth. We subjected peppermint to inoculation with three species of PGPB. After inoculation, the plants were sprayed with methyl jasmonate solution (MeJA) or SA (salicylic acid). Then, the plants were harvested and the plant growth parameters, trichome density, EO content and endogenous phytohormones were measured. Shoot fresh weight was reduced in plants inoculated and treated with MeJA whereas EO content varied depending on the MeJA concentration applied. Plants inoculated and treated with MeJA 2â¯mM showed the maximum increase in EO production, revealing a synergism between PGPB and MeJA. SA treatments also enhanced EO yield. The increased growth and EO production observed upon PGPB application were at least partly due to an increase in the JA and SA concentrations in the plant, as well as to an associated rise in the glandular trichome density.
Assuntos
Acetatos/farmacologia , Ciclopentanos/química , Ciclopentanos/farmacologia , Mentha piperita/química , Óleos Voláteis/química , Oxilipinas/química , Oxilipinas/farmacologia , Ácido Salicílico/química , Tricomas/química , Bacillus subtilis , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mentha piperita/microbiologia , Óleos Voláteis/isolamento & purificação , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/química , Folhas de Planta/química , Brotos de Planta/química , Pseudomonas fluorescens , Pseudomonas putidaRESUMO
The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.
Assuntos
Cor , Luz , Óleos Voláteis/química , Folhas de Planta/crescimento & desenvolvimento , Pogostemon/crescimento & desenvolvimento , Peso Corporal/efeitos da radiação , Produção Agrícola/métodos , Escuridão , Óleos Voláteis/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/química , Pogostemon/anatomia & histologia , Pogostemon/efeitos da radiação , Tricomas/químicaRESUMO
The distribution and ultrastructure of capitate glandular trichomes (GTs) in Flourensia species (Asteraceae) have been recently elucidated, but their metabolic activity and potential biological function remain unexplored. Selective nonvolatile metabolites from isolated GTs were strikingly similar to those found on leaf surfaces. The phytotoxic allelochemical sesquiterpene (-)-hamanasic acid A ((-)-HAA) was the major constituent (ca. 40%) in GTs. Although GTs are quaternary ammonium compounds (QACs)-accumulating species, glycine betaine was not found in GTs; it was only present in the leaf mesophyll. Two (-)-HAA accompanying surface secreted products: compounds 4-hydroxyacetophenone (piceol; 1) and 2-hydroxy-5-methoxyacetophenone (2), which were isolated and fully characterized (GC/MS, NMR), were present in the volatiles found in GTs. The essential oils of fresh leaves revealed ca. 33% monoterpenes, 26% hydrocarbon- and 30% oxygenated sesquiterpenes, most of them related to cadinene and bisabolene derivatives. Present results suggest a main role of GTs in determining the volatile and nonvolatile composition of F. campestris leaves. Based on the known activities of the compounds identified, it can be suggested that GTs in F. campestris would play key ecological functions in plant-pathogen and plant-plant interactions. In addition, the strikingly high contribution of compounds derived from cadinene and bisabolene pathways, highlights the potential of this species as a source of high-valued bioproducts.
Assuntos
Asteraceae/química , Óleos Voláteis/química , Tricomas/química , Asteraceae/metabolismo , Estrutura Molecular , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Tricomas/metabolismoRESUMO
Helianthus annuus (sunflower) displays non-glandular trichomes (NGT), capitate glandular trichomes (CGT), and linear glandular trichomes (LGT), which reveal different chemical compositions and locations in different plant tissues. With matrix-assisted laser desorption/ionization (MALDI) and laser desorption/ionization (LDI) mass spectrometry imaging (MSI) techniques, efficient methods were developed to analyze the tissue distribution of secondary metabolites (flavonoids and sesquiterpenes) and proteins inside of trichomes. Herein, we analyzed sesquiterpene lactones, present in CGT, from leaf transversal sections using the matrix 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA) (mixture 1:1) with sodium ions added to increase the ionization in positive ion mode. The results observed for sesquiterpenes and polymethoxylated flavones from LGT were similar. However, upon desiccation, LGT changed their shape in the ionization source, complicating analyses by MSI mainly after matrix application. An alternative method could be applied to LGT regions by employing LDI (without matrix) in negative ion mode. The polymethoxylated flavones were easily ionized by LDI, producing images with higher resolution, but the sesquiterpenes were not observed in spectra. Thus, the application and viability of MALDI imaging for the analyses of protein and secondary metabolites inside trichomes were confirmed, highlighting the importance of optimization parameters.