Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(3): 2141-2160, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38277193

RESUMO

Oligoasthenoteratozoospermia (OAT) decreases male fertility, seriously affecting the production of offspring. This study clarified the preventive impact of different moxibustion frequencies on OAT and selected the optimal frequency to elucidate the underlying mechanism. An OAT rat model was constructed by gavage of tripterygium glycosides (TGS) suspension. Daily moxibustion (DM) or alternate-day moxibustion (ADM) was administered on the day of TGS suspension administration. Finally, we selected DM for further study based on sperm quality and DNA fragmentation index, testicular and epididymal morphology, and reproductive hormone level results. Subsequently, the oxidative stress (OS) status was evaluated by observing the OS indices levels; malondialdehyde (MDA), 8-hydroxy-deoxyguanosine (8-OHdG), total antioxidant capacity (T-AOC), and total superoxide dismutase (T-SOD) in testicular tissue using colorimetry and enzyme-linked immunosorbent assay. Furthermore, heme oxygenase 1 (HO-1) and nuclear factor erythropoietin-2-related factor 2 (Nrf2) were evaluated using Western blotting. Immunohistochemistry was employed to locate and assess the expression of HO-1 and Nrf2 protein, while quantitative real-time polymerase chain reaction was utilized to detect their mRNA expression. MDA and 8-OHdG levels decreased following DM treatment, while T-SOD and T-AOC increased, suggesting that DM may prevent TGS-induced OAT in rats by decreasing OS in the testis. Furthermore, protein and mRNA expression of Nrf2 and HO-1 in the testis were elevated, indicating that DM may reduce OS by activating the signaling pathway of Nrf2/HO-1. Therefore, DM could prevent OAT in rats via the Nrf2/HO-1 pathway, thereby presenting a promising therapeutic approach against OAT.


Assuntos
Astenozoospermia , Infertilidade Masculina , Moxibustão , Oligospermia , Ratos , Masculino , Animais , Humanos , Heme Oxigenase-1/metabolismo , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Oligospermia/induzido quimicamente , Glicosídeos/farmacologia , Astenozoospermia/induzido quimicamente , Astenozoospermia/terapia , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/prevenção & controle , Sementes , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo
2.
Ecotoxicol Environ Saf ; 252: 114575, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706526

RESUMO

Paraquat (PQ) poisoning can induce acute lung injury and fibrosis and has an extremely high mortality rate. However, no effective treatments for PQ poisoning have been established. In this study, the potential efficacy of Tripterygium wilfordii Hook.f. (TwHF) in alleviating PQ-induced lung injury and fibrosis was investigated in a mouse model. Mice were randomly assigned to the control, PQ, PQ + TwHF1 (pretreatment before inducing poisoning), and PQ + TwHF2 (treatment after poisoning) groups. The mice in the PQ + TwHF1 group were pretreated with TwHF for 5 days before receiving one dose of PQ (120 mg/kg) and then received a daily oral gavage of the indicated dosages of TwHF until sacrifice. The mice in the PQ + TwHF2 group were treated with TwHF 2 h after PQ exposure until sacrifice. The pathological analysis and Fapi PET/CT showed that treatment with TwHF attenuated lung injury. And TwHF reduced pulmonary oxidative stress, as indicated by the reduction in, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) levels, as well as by the increase in superoxide dismutase (SOD) levels. Accordingly, the Perls DAB staining showed increased iron concentrations and western blotting revealed a decreased GPX4 expression after PQ exposure, as well as the mitigation of the overexpression of Nrf2 and HO-1 induced by PQ. In conclusion, our study demonstrated the potential of TwHF as a treatment for PQ-induced lung injury and fibrosis. The protective mechanism of this medicinal herb may involve the regulation of ferroptosis.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Fibrose , Glutationa/metabolismo , Pulmão , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Paraquat/toxicidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tripterygium/metabolismo
3.
Immunopharmacol Immunotoxicol ; 45(1): 61-72, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36052873

RESUMO

BACKGROUND: This study is designed to fill the research gap concerning the efficacy of Tripterygium glycoside (TG) on Interleukin-1ß (IL-1ß)-induced inflammation and injury in chondrocytes. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. After the treatment with IL-1ß and TG and transfection, the viability and apoptosis of chondrocytes were determined via Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-8 were determined by enzyme-linked immunosorbent assay (ELISA). Relative expression levels of potential microRNAs (miRNAs, miRs) that may target toll-like receptor 4 (TLR4), as well as apoptosis- and TLR4/nuclear factor-κB (TLR4/NF-κB) pathway-associated factors were quantified using quantitative real-time (qRT) PCR and western blot. The targeting relationship between miR-216a-5p and TLR4 was predicted by TargetScan and further confirmed by dual-luciferase reporter assay. RESULTS: The viability was reduced yet the apoptosis and inflammation were promoted in IL-1ß-treated chondrocytes, where upregulation of Bax, Cleaved caspase 3, TLR4, Myeloid differentiation factor 88 (MyD88), phosphorylation of P65 and IκBα yet downregulation of Bcl-2 and IκBα were evidenced. Strikingly, the above changes were reversed by TG. TG also offset the effects of IL-1ß on repressing the expression of miR-216a-5p, the miRNA targeting TLR4. Additionally, TLR4 overexpression neutralized the impacts of TG upon viability, apoptosis, and TLR4 expression in IL-1ß-treated chondrocytes, while all these effects induced by TLR4 overexpression could be restored by miR-216a-5p. CONCLUSIONS: TG protects chondrocytes against IL-1ß-induced inflammation and apoptosis via miR-216a-5p/TLR4/NF-κB axis.


Assuntos
MicroRNAs , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Transdução de Sinais , Glicosídeos/farmacologia , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Ratos Sprague-Dawley , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose
4.
Chin J Nat Med ; 20(9): 691-700, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36162954

RESUMO

Tripterygium hypoglaucum (Levl.) Hutch, a traditional Chinese medicinal herb with a long history of use, is widely distributed in China. One of its main active components, celastrol, has great potential to be developed into anti-cancer and anti-obesity drugs. Although it exhibits strong pharmacological activities, there is a lack of sustainable sources of celastrol and its derivatives, making it crucial to develop novel sources of these drugs through synthetic biology. The key step in the biosynthesis of celastrol is considered to be the cyclization of 2,3-oxidosqualene into friedelin under the catalysis of 2,3-oxidosqualene cyclases. Friedelin was speculated to be oxidized into celastrol by cytochrome P450 oxidases (CYP450s). Here, we reported a cytochrome P450 ThCYP712K1 from Tripterygium hypoglaucum (Levl.) Hutch that catalyzed the oxidation of friedelin into polpuonic acid when heterologously expressed in yeast. Through substrate supplementation and in vitro enzyme analysis, ThCYP712K1 was further proven to catalyze the oxidation of friedelin at the C-29 position to produce polpunonic acid, which is considered a vital step in the biosynthesis of celastrol, and will lay a foundation for further analysis of its biosynthetic pathway.


Assuntos
Fármacos Antiobesidade , Triterpenos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Triterpenos Pentacíclicos , Esqualeno/análogos & derivados , Tripterygium/metabolismo , Triterpenos/metabolismo
5.
Plant J ; 109(3): 555-567, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750899

RESUMO

Triterpenes are among the most diverse plant natural products, and their diversity is closely related to various triterpene skeletons catalyzed by different 2,3-oxidosqualene cyclases (OSCs). Celastrol, a friedelane-type triterpene with significant bioactivities, is specifically distributed in higher plants, such as Celastraceae species. Friedelin is an important precursor for the biosynthesis of celastrol, and it is synthesized through the cyclization of 2,3-oxidosqualene, with the highest number of rearrangements being catalyzed by friedelane-type triterpene cyclases. However, the molecular mechanisms underlying the catalysis of friedelin production by friedelane-type triterpene cyclases have not yet been fully elucidated. In this study, transcriptome data of four celastrol-producing plants from Celastraceae were used to identify a total of 21 putative OSCs. Through functional characterization, the friedelane-type triterpene cyclases were separately verified in the four plants. Analysis of the selection pressure showed that purifying selection acted on these OSCs, and the friedelane-type triterpene cyclases may undergo weaker selective restriction during evolution. Molecular docking and site-directed mutagenesis revealed that changes in some amino acids that are unique to friedelane-type triterpene cyclases may lead to variations in catalytic specificity or efficiency, thereby affecting the synthesis of friedelin. Our research explored the functional diversity of triterpene synthases from a multispecies perspective. It also provides some references for further research on the relative mechanisms of friedelin biosynthesis.


Assuntos
Celastrus/genética , Celastrus/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Triterpenos Pentacíclicos/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
6.
Theranostics ; 11(15): 7199-7221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158845

RESUMO

Triptolide, an abietane-type diterpenoid isolated from Tripterygium wilfordii Hook. F., has significant pharmacological activity. Research results show that triptolide has obvious inhibitory effects on many solid tumors. Therefore, triptolide has become one of the lead compounds candidates for being the next "blockbuster" drug, and multiple triptolide derivatives have entered clinical research. An increasing number of researchers have developed triptolide synthesis methods to meet the clinical need. To provide new ideas for researchers in different disciplines and connect different disciplines with researchers aiming to solve scientific problems more efficiently, this article reviews the research progress made with analyzes of triptolide pharmacological activity, biosynthetic pathways, and chemical synthesis pathways and reported in toxicological and clinical studies of derivatives over the past 20 years, which have laid the foundation for subsequent researchers to study triptolide in many ways.


Assuntos
Antineoplásicos Fitogênicos , Diterpenos , Fenantrenos , Tripterygium , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/uso terapêutico , Diterpenos/síntese química , Diterpenos/metabolismo , Diterpenos/uso terapêutico , Compostos de Epóxi/síntese química , Compostos de Epóxi/metabolismo , Compostos de Epóxi/uso terapêutico , Humanos , Fenantrenos/síntese química , Fenantrenos/metabolismo , Fenantrenos/uso terapêutico , Tripterygium/química , Tripterygium/metabolismo
7.
Plant Mol Biol ; 106(1-2): 145-156, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33694047

RESUMO

KEY MESSAGE: TwPDR1, a PDR transporter from Tripterygium wilfordii Hook.f., was proved to efflux triptolide and its stability could be enhanced by A1033T mutation. Triptolide, an abietane-type diterpene in Tripterygium wilfordii Hook.f., possesses many pharmacological activities. However, triptolide is in short supply and very expensive because it is present at low amounts in natural plants and lack alternative production methods. Transporter engineering, which increases the extracellular secretion of secondary metabolites in in vitro culture systems, is an effective strategy in metabolic engineering but is rarely reported. In this study, TwPDR1, a pleiotropic drug resistance-type ATP binding cassette transporter, was identified as the best efflux pump candidate for diterpenoids through bioinformatics analysis. TwPDR1 was located in the plasma membrane, highly expressed in adventitious roots, and induced by methyl jasmonate. The triptolide efflux function of TwPDR1 was confirmed by transient expression in tobacco BY-2 cells and by downregulation via RNA interference in the native host. However, the overexpression of TwPDR1 had a limited effect on the secretion of triptolide. As shown by previous studies, a single amino acid mutation might increase the abundance of TwPDR1 by increasing protein stability. We identified the A1033 residue in TwPDR1 by sequence alignment and confirmed that A1033T mutation could increase the expression of TwPDR1 and result in the higher release ratio of triptolide (78.8%) of the mutants than that of control (60.1%). The identification and functional characterization of TwPDR1 will not only provide candidate gene material for the metabolic engineering of triptolide but also guide other transporter engineering researches in the future.


Assuntos
Diterpenos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fenantrenos/metabolismo , Proteínas de Plantas/metabolismo , Tripterygium/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Linhagem Celular , Compostos de Epóxi/metabolismo , Proteínas de Membrana Transportadoras/química , Mutagênese/genética , Filogenia , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Estabilidade Proteica , Protoplastos/metabolismo , Nicotiana/genética , Transcrição Gênica , Tripterygium/genética
8.
Med Sci Monit Basic Res ; 26: e923431, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32448862

RESUMO

BACKGROUND Nasopharyngeal carcinoma (NPC) is a common head and neck cancer epidemic in southern China and southeast Asia. LeiGongTeng has been widely used for the treatment of cancers. The purpose of this study was to determine the pharmacological mechanism of action of LeiGongTeng in the treatment of NPC using a network pharmacological approach. MATERIAL AND METHODS The traditional Chinese medicine systems pharmacology (TCMSP) database was used to identify active ingredients and associated target proteins for LeiGongTeng. Cytoscape was utilized to create a drug-disease network and topology analysis was conducted to analyze the degree of each ingredient. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) online tool was applied for the construction and analysis of the protein-protein interaction (PPI) network, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) functional analyses were utilized to determine drug-disease common genes. RESULTS 22 active ingredients including kaempferol, nobiletin, and beta-sitosterol, and 30 drug-disease common genes including VEGFA, CASP3, ESR1, and RELA were identified. GO analysis indicated that 94 biological processes, including RNA polymerase II, apoptotic process, response to drug, cell adhesion, and response to hypoxia, were found to be associated with NPC. The KEGG enrichment analysis showed that 58 pathways, including the PI3K-Akt signaling pathway, microRNAs in cancer, tumor necrosis factor (TNF) signaling pathway and pathways in cancer were found to be associated with NPC. CONCLUSIONS LeiGongTeng exerts its therapeutic effect through various biological processes and signaling pathways since it acts on several target genes. Systematic pharmacology can be used to predict the underlying function of LeiGongTeng and its mechanism of action in NPC.


Assuntos
Carcinoma Nasofaríngeo/tratamento farmacológico , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , China , Biologia Computacional/métodos , Bases de Dados Factuais , Ontologia Genética , Humanos , Medicina Tradicional Chinesa/métodos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Mapas de Interação de Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Tripterygium/genética , Tripterygium/metabolismo
9.
Mol Med Rep ; 21(6): 2303-2310, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323812

RESUMO

Celastrol and triptolide, chemical compounds isolated from Tripterygium wilfordii hook (also known as thunder god vine), are effective against rheumatoid arthritis (RA). Celastrol targets numerous signaling pathways involving NF­κB, endoplasmic reticulum Ca2+­ATPase, myeloid differentiation factor 2, toll­like receptor 4, pro­inflammatory chemokines, DNA damage, cell cycle arrest and apoptosis. Triptolide, inhibits NF­κB, the receptor activator of NF­κB (RANK)/RANK ligand/osteoprotegerin signaling pathway, cyclooxygenase­2, matrix metalloproteases and cytokines. The present review examined the chemistry and bioavailability of celastrol and triptolide, and their molecular targets in treating RA. Clinical studies have demonstrated that T. wilfordii has several promising bioactivities, but its multi­target toxicity has restricted its application. Thus, dosage control and structural modification of T. wilfordii are required to reduce the toxicity. In this review, future directions for research into these promising natural products are discussed.


Assuntos
Diterpenos/química , Fenantrenos/química , Tripterygium/química , Triterpenos/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Quimiocinas/antagonistas & inibidores , Quimiocinas/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Diterpenos/metabolismo , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Triterpenos Pentacíclicos , Fenantrenos/metabolismo , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Tripterygium/metabolismo , Triterpenos/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico
10.
Nat Commun ; 11(1): 971, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080175

RESUMO

Triptolide is a trace natural product of Tripterygium wilfordii. It has antitumor activities, particularly against pancreatic cancer cells. Identification of genes and elucidation of the biosynthetic pathway leading to triptolide are the prerequisite for heterologous bioproduction. Here, we report a reference-grade genome of T. wilfordii with a contig N50 of 4.36 Mb. We show that copy numbers of triptolide biosynthetic pathway genes are impacted by a recent whole-genome triplication event. We further integrate genomic, transcriptomic, and metabolomic data to map a gene-to-metabolite network. This leads to the identification of a cytochrome P450 (CYP728B70) that can catalyze oxidation of a methyl to the acid moiety of dehydroabietic acid in triptolide biosynthesis. We think the genomic resource and the candidate genes reported here set the foundation to fully reveal triptolide biosynthetic pathway and consequently the heterologous bioproduction.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Fenantrenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Abietanos/metabolismo , Antineoplásicos Fitogênicos/biossíntese , Vias Biossintéticas/genética , Medicamentos de Ervas Chinesas/metabolismo , Compostos de Epóxi/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Humanos , Engenharia Metabólica , Metaboloma , Oxirredução , Filogenia , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
11.
Microb Cell Fact ; 19(1): 15, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992268

RESUMO

BACKGROUND: Celastrol is a promising anti-obesity agent that acts as a sensitizer of the protein hormone leptin. Despite its potent activity, a sustainable source of celastrol and celastrol derivatives for further pharmacological studies is lacking. RESULTS: To elucidate the celastrol biosynthetic pathway and reconstruct it in Saccharomyces cerevisiae, we mined a root-transcriptome of Tripterygium wilfordii and identified four oxidosqualene cyclases and 49 cytochrome P450s as candidates to be involved in the early steps of celastrol biosynthesis. Using functional screening of the candidate genes in Nicotiana benthamiana, TwOSC4 was characterized as a novel oxidosqualene cyclase that produces friedelin, the presumed triterpenoid backbone of celastrol. In addition, three P450s (CYP712K1, CYP712K2, and CYP712K3) that act downstream of TwOSC4 were found to effectively oxidize friedelin and form the likely celastrol biosynthesis intermediates 29-hydroxy-friedelin and polpunonic acid. To facilitate production of friedelin, the yeast strain AM254 was constructed by deleting UBC7, which afforded a fivefold increase in friedelin titer. This platform was further expanded with CYP712K1 to produce polpunonic acid and a method for the facile extraction of products from the yeast culture medium, resulting in polpunonic acid titers of 1.4 mg/L. CONCLUSION: Our study elucidates the early steps of celastrol biosynthesis and paves the way for future biotechnological production of this pharmacologically promising compound in engineered yeast strains.


Assuntos
Fármacos Antiobesidade/metabolismo , Biotecnologia/métodos , Nicotiana/metabolismo , Tripterygium/metabolismo , Triterpenos/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/genética , Terpenos/metabolismo
12.
Plant Sci ; 290: 110293, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779893

RESUMO

Class I TGA transcription factors (TFs) are known to participate in plant resistance responses, however, their regulatory functions in the biosynthesis of secondary metabolites were rarely revealed. In this study, a class I TGA TF, TwTGA1, from Tripterygium wilfordii Hook.f. was cloned and characterized. Overexpression of TwTGA1 in T. wilfordii Hook.f. cells increased the production of triptolide and two sesquiterpene pyridine alkaloids, which was further enhanced by methyl jasmonate (MeJA) treatment. RNA interference of TwTGA1 showed no significant effects on the production of these metabolites, indicating the existence of other TGA partner(s) with overlapping functions. Heterologous expression of TwTGA1 in tobacco By-2 cells promoted the biosynthesis of pyridine alkaloids. Under the elicitation of MeJA, the contents of nonpyrrolidine alkaloids further increased but not for nicotine. TwTGA1 could induce the expression of Putrescine N-methyltransferase (PMT) and N-methylputrescine oxidase 1 (MPO1) through binding to their promoters. Finally, transient expression of TwTGA1 in leaves of Catharanthus roseus changed both the profiles of vinca alkaloids (increased contents of serpentine and catharanthine, but decreased that of vinblastine) and the expressions of biosynthesis-related genes. The metabolic and transcriptional data indicated a relationship between jasmonic acid signaling pathway and the functions of TwTGA1.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Tripterygium/genética , Alcaloides/biossíntese , Sequência de Aminoácidos , Catharanthus/metabolismo , Diterpenos/metabolismo , Compostos de Epóxi/metabolismo , Fenantrenos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Metabolismo Secundário , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Tripterygium/metabolismo
13.
Toxicol Appl Pharmacol ; 383: 114785, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629732

RESUMO

Celastrol (CS), an active triterpene derived from traditional Chinese medicine Tripterygium wilfordii Hook. f, has been used to treat chronic inflammation, arthritis and other diseases. However, it has been reported that CS can trigger cardiotoxicity and the molecular mechanism of heart injury induced by CS is not clear. Considering the wide application of Tripterygium wilfordii Hook. f in clinics, it is necessary to develop an accurate and reliable method to assess the safety of CS, and to elucidate as much as possible the mechanism of cardiotoxicity induced by CS. In this study, Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics revealed clues to the mechanism of CS-induced heart injury. Palmitic acid significantly increased in plasma from CS-treated rats, and this increase resulted in oxidative stress response in vivo. Excessive ROS further activate TNF signaling pathway and caspase family, which were obtained from the KEGG enrichment analysis of network toxicology strategy. Protein expression level of caspase-3, caspase-8, bax were significantly increased by western blot. Q-PCR also showed the similar results as western blot. It means that apoptosis plays a key role in the process of celastrol induced cardiotoxicity. Blocking this signal axis may be a potential way to protect myocardial tissue.


Assuntos
Cardiotoxinas/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/métodos , Tripterygium/toxicidade , Triterpenos/toxicidade , Animais , Cardiotoxicidade/metabolismo , Cardiotoxinas/metabolismo , Masculino , Redes e Vias Metabólicas/fisiologia , Triterpenos Pentacíclicos , Ratos , Ratos Wistar , Tripterygium/metabolismo , Triterpenos/metabolismo
14.
Chin J Nat Med ; 17(8): 575-584, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472894

RESUMO

3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is the first committed enzyme in the MVA pathway and involved in the biosynthesis of terpenes in Tripterygium wilfordii. The full-length cDNA and a 515 bp RNAi target fragment of TwHMGS were ligated into the pH7WG2D and pK7GWIWG2D vectors to respectively overexpress and silence, TwHMGS was overexpressed and silenced in T. wilfordii suspension cells using biolistic-gun mediated transformation, which resulted in 2-fold increase and a drop to 70% in the expression level compared to cells with empty vector controls. During TwHMGS overexpression, the expression of TwHMGR, TwDXR and TwTPS7v2 was significantly upregulated to the control. In the RNAi group, the expression of TwHMGR, TwDXS, TwDXR and TwMCT visibly displayed downregulation to the control. The cells with TwHMGS overexpressed produced twice higher than the control value. These results proved that differential expression of TwHMGS determined the production of triptolide in T. wilfordii and laterally caused different trends of relative gene expression in the terpene biosynthetic pathway. Finally, the substrate acetyl-CoA was docked into the active site of TwHMGS, suggesting the key residues including His247, Lys256 and Arg296 undergo electrostatic or H-bond interactions with acetyl-CoA.


Assuntos
Diterpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Fenantrenos/metabolismo , Proteínas de Plantas/metabolismo , Tripterygium/metabolismo , Acetilcoenzima A/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Domínio Catalítico , Compostos de Epóxi/metabolismo , Hidroximetilglutaril-CoA Sintase/química , Modelos Moleculares , Triterpenos Pentacíclicos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Interferência de RNA , Terpenos/metabolismo , Tripterygium/enzimologia , Tripterygium/genética , Triterpenos/metabolismo
15.
Plant Sci ; 285: 184-192, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203883

RESUMO

Tripterygium wilfordii is known to contain various types of bioactive diterpenoids that exhibit many remarkable activities. Many studies have recently been targeted toward the elucidation of the diterpenoids biosynthetic pathways in attempts to obtain these compounds with a view to solving the dilemma of low yield in plants. However, the short-chain prenyltransferases (SC-PTSs) responsible for the formation of geranylgeranyl diphosphate (GGPP), a crucial precursor for synthesizing the skeleton structures of diterpenoids, have not been characterized in depth. Here, T. wilfordii transcriptome data were used to identify eight putative GGPPSs, including two small subunits of geranyl diphosphate synthase (GPPS.SSU). Of them, GGPPS1, GGPPS7, GGPPS8, GPPS.SSU II and GPPS.SSU were translocated mainly into chloroplasts, and GGPPS8 exhibited the optimal catalytic efficiency with respect to catalyzing the formation of GGPP. In addition, the expression pattern of GGPPS8 was similar to that of downstream terpene synthase genes that are directly correlated with triptolide production in roots, indicating that GGPPS8 was most likely to participate in triptolide biosynthesis in roots among the studied enzymes. GPPS.SSU was inactive alone but interacted with GGPPS1, GGPPS7 and GGPPS8 to change the product from GGPP to GPP. These findings implicate that these candidate genes can be regulated to shift the metabolic flux toward diterpenoid formation, increasing the yields of bioactive diterpenoids in plants.


Assuntos
Diterpenos/metabolismo , Farnesiltranstransferase/metabolismo , Proteínas de Plantas/metabolismo , Tripterygium/metabolismo , Clonagem Molecular , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Tripterygium/enzimologia , Tripterygium/genética , Técnicas do Sistema de Duplo-Híbrido
16.
Oncol Res ; 27(9): 1043-1050, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31072418

RESUMO

Triptolide, an extract of Tripterygium wilfordii, has been shown to have a potent anticancer activity. In the present study, it was found that triptolide could effectively induce apoptosis and inhibit proliferation and invasion in malignant MDA-MB-231 breast cancer cells. The study focused on its effect on inhibiting invasion, which has not been extensively reported to date. We predicted that triptolide may change invasion activity via microRNAs (miRNAs), which have been recognized as important regulators of gene expression. miRNAome variation in MDA-MB-231 cells with or without triptolide treatment demonstrated that miR-146a was upregulated following treatment with triptolide. Our previous studies have shown that miR-146a can inhibit migration and invasion by targeting RhoA in breast cancer. This time, we found that miR-146a can target Rac1, another key member of the Rho GTPase family. Luciferase reporter containing Rac1 3'-UTR was constructed to prove this hypothesis. In addition, following treatment with triptolide, the expression of RhoA and Rac1 was found to be decreased. These results indicated that triptolide exerts its anti-invasion activity through a miRNA-mediated mechanism, which indirectly regulates the expression of Rho GTPase. Triptolide combined with miR-146a could improve the effect of triptolide treatment on breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Diterpenos/uso terapêutico , MicroRNAs/metabolismo , Fenantrenos/uso terapêutico , Tripterygium/metabolismo , Proteínas rho de Ligação ao GTP/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Diterpenos/farmacologia , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Feminino , Humanos , Metástase Neoplásica , Fenantrenos/farmacologia
17.
Food Chem ; 294: 67-72, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126506

RESUMO

Cases of honey poisoning have been reported widely, meaning there is a need for methods that detect "mad honey" or honey contaminated with plant-derived toxins to protect human health. In this study, we compared whole flower extracts and honey from Tripterygium wilfordii Hook. f. (TwHf) and Macleaya cordata (Willd) R. Br (McRB) using QuEChERS (quick, easy, cheap, effective, rugged, and safe) and ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). The results revealed several compounds common to whole flowers and honey samples. Triptolide and protopine were selected as potential markers for identifying "mad honeys" from these plants. The developed method can easily detect different honey varieties that were spiked with 5% TwHf and McRB honey samples. Additionally, 90 commercial honey samples were analyzed and determined as free from contamination. The method described in this report could be useful for studies on honey from other poisonous nectar and pollen plants.


Assuntos
Cromatografia Líquida de Alta Pressão , Mel/análise , Papaveraceae/química , Espectrometria de Massas por Ionização por Electrospray , Toxinas Biológicas/análise , Tripterygium/química , Benzofenantridinas/análise , Alcaloides de Berberina/análise , Diterpenos/análise , Compostos de Epóxi/análise , Humanos , Papaveraceae/metabolismo , Fenantrenos/análise , Tripterygium/metabolismo
18.
New Phytol ; 223(2): 722-735, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30895623

RESUMO

Celastrol is a promising bioactive compound isolated from Tripterygium wilfordii and has been shown to possess many encouraging preclinical applications. However, the celastrol biosynthetic pathway is poorly understood, especially the key oxidosqualene cyclase (OSC) enzyme responsible for cyclisation of the main scaffold. Here, we report on the isolation and characterisation of three OSCs from T. wilfordii: TwOSC1, TwOSC2 and TwOSC3. Both TwOSC1 and TwOSC3 were multiproduct friedelin synthases, while TwOSC2 was a ß-amyrin synthase. We further found that TwOSC1 and TwOSC3 were involved in the biosynthesis of celastrol and that their common product, friedelin, was a precursor of celastrol. We then reconstituted the biosynthetic pathway of friedelin in engineered yeast constructed by the CRISPR/Cas9 system, with protein modification and medium optimisation, leading to heterologous production of friedelin at 37.07 mg l-1 in a shake flask culture. Our study was the first to identify the genes responsible for biosynthesis of the main scaffold of celastrol and other triterpenes in T. wilfordii. As friedelin has been found in many plants, the results and approaches described here have laid a solid foundation for further explaining the biosynthesis of celastrol and related triterpenoids. Moreover, our results provide insights for metabolic engineering of friedelane-type triterpenes.


Assuntos
Vias Biossintéticas , Transferases Intramoleculares/metabolismo , Tripterygium/metabolismo , Triterpenos/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Vias Biossintéticas/efeitos dos fármacos , Ciclização , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transferases Intramoleculares/química , Simulação de Acoplamento Molecular , Mutagênese/genética , Especificidade de Órgãos/efeitos dos fármacos , Oxilipinas/farmacologia , Triterpenos Pentacíclicos , Filogenia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Tripterygium/efeitos dos fármacos , Tripterygium/genética , Triterpenos/química , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Free Radic Res ; 53(3): 324-334, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30773944

RESUMO

The thunder god vine (Tripterygium wilfordii Hook. F) is traditionally used for inflammation-related diseases in traditional Chinese medicine. In recent years, celastrol (a natural compound from the root of the thunder god vine) has attracted great interest for its potential anticancer activities. The free radical nitric oxide (NO) is known to play a critical role in colorectal cancer growth by promoting tumour angiogenesis. However, how celastrol influences the NO pathway and its mechanism against colorectal cancer is largely unknown. In this study, we investigated the effects and mechanism of celastrol on nitric oxide synthase (NOS) and the angiogenesis pathway in colorectal cancer. Our data show that celastrol inhibited HT-29 and HCT116 cell proliferation, migration, and NOS activity in the cytoplasm. The antiproliferation activity of celastrol was associated with the inhibition of iNOS and eNOS in colorectal cancer cells. Treatment with celastrol inhibited colorectal cancer cell growth and migration, and was associated with suppression of the expression of key genes (TYMP, CDH5, THBS2, LEP, MMP9, and TNF) and proteins (IL-1b, MMP-9, PDGF, Serpin E1, and TIMP-4) involved in the angiogenesis pathway. In addition, combinational use of celastrol with 5-fluorouracil, salinomycin, 1400 W, and L-NIO showed enhanced inhibition of colorectal cancer cell proliferation and migration. In sum, our study suggests that celastrol could suppress colorectal cancer cell growth and migration, likely through suppressing NOS activity and inhibiting the angiogenesis pathway.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Óxido Nítrico Sintase/efeitos dos fármacos , Triterpenos/uso terapêutico , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Triterpenos Pentacíclicos , Transdução de Sinais , Tripterygium/metabolismo , Triterpenos/farmacologia
20.
Gene ; 679: 195-201, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30194986

RESUMO

The aim of this study was to verify the effects of TwIDI (GenBank: KT279355.1) on triptolide and celastrol accumulation in the biosynthesis of terpenoids in Tripterygium wilfordii and the regulation of the expression of related genes in the triptolide and celastrol biosynthesis pathway. After bioinformatics analysis of TwIDI, we cloned the full-length CDS and a specific 398 bp fragment to construct overexpression and RNAi vectors, respectively. The specific amplification of hygromycin and kanamycin resistance gene fragments confirmed that the expression vectors had been successfully delivered into Tripterygium wilfordii suspension cells. qRT-PCR was used to detect the expression of TwIDI and related genes in the triptolide and celastrol biosynthesis pathway. The expression of TwIDI was increased to 157% of the control group (empty vector) in the overexpression group, and was reduced to 71% of the control group in the RNAi group. Notably, the expression of other genes in the triptolide and celastrol biosynthesis pathway also showed differences. For example, TwMCS was reduced to 62% of the control when TwIDI was overexpressed and increased to 188% in the RNAi group. The expression of TwDXS did not change significantly both during TwIDI overexpression and RNAi group. The accumulation of triptolide and celastrol in the suspension cells of Tripterygium wilfordii was detected by UPLC, revealing that the contents of triptolide and celastrol were increased 1.36- and 1.20-fold over the control group in the overexpression group, and decreased to 0.16 and 0.36 of the control group in the RNAi group. Based on these findings, the effect on the accumulation of active terpenoids in Tripterygium wilfordii and the feedback regulation of genes in the triptolide and celastrol biosynthesis pathway was verified through TwIDI overexpression and RNAi experiments.


Assuntos
Isomerases de Ligação Dupla Carbono-Carbono/genética , Diterpenos/metabolismo , Fenantrenos/metabolismo , Tripterygium/genética , Triterpenos/metabolismo , Vias Biossintéticas , Regulação para Baixo , Compostos de Epóxi/metabolismo , Regulação da Expressão Gênica de Plantas , Hemiterpenos , Triterpenos Pentacíclicos , Filogenia , Proteínas de Plantas/genética , Interferência de RNA , Tripterygium/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...