Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.255
Filtrar
1.
Sci Rep ; 14(1): 15847, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982274

RESUMO

Atherosclerosis is rare in internal thoracic arteries (ITA) even in patients with severe atherosclerotic coronary artery (ACA) disease. To explore cellular differences, ITA SMC from 3 distinct donors and ACA SMC from 3 distinct donors were grown to sub-confluence and growth arrested for 48 h. Proliferation and thrombospondin-1 (TSP1) production were determined using standard techniques. ITA SMC were larger, grew more slowly and survived more passages than ACA SMC. ACA SMC had a more pronounced proliferative response to 10% serum than ITA SMC. Both ACA SMC and ITA SMC proliferated in response to exogenous TSP1 (12.5 µg/ml and 25 µg/ml) and platelet derived growth factor-BB (PDGF-BB; 20 ng/ml) but TSP1- and PDGF-BB-induced proliferation were partially inhibited by anti-TSP1 antibody A4.1, microRNA-21(miR-21)-3p inhibitors and miR-21-5p inhibitors in each of the 3 ACA SMC lines, but not in any of the ITA SMC lines. PDGF-BB stimulated TSP1 production in ACA SMC but not in ITA SMC but there was no increase in TSP1 levels in conditioned media in either SMC type. In summary, there are significant differences in morphology, proliferative capacity and in responses to TSP1 and PDGF-BB in SMC derived from ITA compared to SMC derived from ACA.


Assuntos
Becaplermina , Proliferação de Células , Vasos Coronários , Miócitos de Músculo Liso , Trombospondina 1 , Becaplermina/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Humanos , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Artéria Torácica Interna/metabolismo , Artéria Torácica Interna/efeitos dos fármacos , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Masculino
2.
Oncol Res ; 32(7): 1173-1184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948026

RESUMO

Background: Inhibitor of NF-κB kinase-interacting protein (IKIP) is known to promote proliferation of glioblastoma (GBM) cells, but how it affects migration and invasion by those cells is unclear. Methods: We compared levels of IKIP between glioma tissues and normal brain tissue in clinical samples and public databases. We examined the effects of IKIP overexpression and knockdown on the migration and invasion of GBM using transwell and wound healing assays, and we compared the transcriptomes under these different conditions to identify the molecular mechanisms involved. Results: Based on data from our clinical samples and from public databases, IKIP was overexpressed in GBM tumors, and its expression level correlated inversely with survival. IKIP overexpression in GBM cells inhibited migration and invasion in transwell and wound healing assays, whereas IKIP knockdown exerted the opposite effects. IKIP overexpression in GBM cells that were injected into mouse brain promoted tumor growth but inhibited tumor invasion of surrounding tissue. The effects of IKIP were associated with downregulation of THBS1 mRNA and concomitant inhibition of THBS1/FAK signaling. Conclusions: IKIP inhibits THBS1/FAK signaling to suppress migration and invasion of GBM cells.


Assuntos
Neoplasias Encefálicas , Movimento Celular , Quinase 1 de Adesão Focal , Glioblastoma , Invasividade Neoplásica , Transdução de Sinais , Trombospondina 1 , Humanos , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Animais , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Trombospondina 1/metabolismo , Trombospondina 1/genética , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
3.
Elife ; 122024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979889

RESUMO

Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47-/- mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47-/- spleens but significantly depleted in Thbs1-/- spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119-CD34+ progenitors and Ter119+CD34- committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1-/- spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.


Assuntos
Antígeno CD47 , Eritropoese , Baço , Trombospondina 1 , Animais , Antígeno CD47/metabolismo , Antígeno CD47/genética , Trombospondina 1/metabolismo , Trombospondina 1/genética , Baço/metabolismo , Camundongos , Camundongos Knockout , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Células Precursoras Eritroides/metabolismo
4.
Food Res Int ; 190: 114581, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945601

RESUMO

Microplastics (MPs) pose a significant threat to livestock health. Yet, the roles of polystyrene MPs (PS-MPs) on meat quality and skeletal muscle development in pigs have not been fully determined. To investigate the effect of PS-MPs on skeletal muscle, piglets were given diets supplementation with 0 mg/kg (CON group), 75 mg/kg (75 mg/kg PS-MPs group), and 150 mg/kg PS-MPs (150 mg/kg PS-MPs group), respectively. The results indicated that the average daily gain (ADG) of piglets in the 150 mg/kg PS-MPs group was significantly lower than that in the CON group. No significant differences were observed in the final body weight and ADG between the CON group and the 75 mg/kg PS-MPs group. Piglets in the 150 mg/kg PS-MPs group exhibited decreased meat redness index and type I muscle fiber density. Metabolomic analysis revealed that the contents of meat flavor compounds carnosine, beta-alanine, palmitic acid, and niacinamide in muscle were lower in the 150 mg/kg PS-MPs group than in the CON group. Additionally, piglets subjected to 150 mg/kg PS-MPs exhibited impaired muscle angiogenesis. Further analysis indicated that PS-MPs exposure up-regulated thrombospondin 1 (THBS1) expression by inhibiting THBS1 mRNA and protein degradation, thereby disrupting skeletal muscle angiogenesis. These findings indicate that PS-MPs exposure adversely affects meat quality and hinders skeletal muscle angiogenesis in pigs, providing deeper insights into the detrimental effects of PS-MPs on meat quality and skeletal muscle development.


Assuntos
Microplásticos , Músculo Esquelético , Poliestirenos , Trombospondina 1 , Animais , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Trombospondina 1/metabolismo , Suínos , Carne/análise , Neovascularização Fisiológica/efeitos dos fármacos , Carnosina/farmacologia , Ração Animal , Qualidade dos Alimentos , Contaminação de Alimentos/análise , Masculino , Angiogênese
5.
Biol Direct ; 19(1): 43, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840223

RESUMO

BACKGROUND: Myocardial infarction (MI) is a major cause of mortality and morbidity worldwide. The intercellular communication in post-infarction angiogenesis remains unclear. METHODS: In this study, we explored the role and mechanism of action of M2 macrophage-derived exosomes (M2-exos) in angiogenesis after MI. M2-exos were harvested and injected intramyocardially at the onset of MI. Two distinct endothelial cells (ECs) were cultured with M2-exos to explore the direct effects on angiogenesis. RESULTS: We showed that M2-exos improved cardiac function, reduced infarct size, and enhanced angiogenesis after MI. Moreover, M2-exos promoted angiogenesis in vitro; the molecules loaded in the vesicles were responsible for its proangiogenic effects. We further validated that higher abundance of miR-132-3p in M2-exos, which recapitulate their functions, was required for the cardioprotective effects exerted by M2-exos. Mechanistically, miR-132-3p carried by M2-exos down-regulate the expression of THBS1 through direct binding to its 3´UTR and the proangiogenic effects of miR-132-3p were largely reversed by THBS1 overexpression. CONCLUSION: Our findings demonstrate that M2-exos promote angiogenesis after MI by transporting miR-132-3p to ECs, and by binding to THBS1 mRNA directly and negatively regulating its expression. These findings highlight the role of M2-exos in cardiac repair and provide novel mechanistic understanding of intercellular communication in post-infarction angiogenesis.


Assuntos
Exossomos , Macrófagos , MicroRNAs , Infarto do Miocárdio , Neovascularização Fisiológica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Infarto do Miocárdio/genética , Exossomos/metabolismo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Camundongos , Masculino , Humanos , Células Endoteliais/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Camundongos Endogâmicos C57BL , Angiogênese
6.
Front Immunol ; 15: 1372957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779688

RESUMO

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Assuntos
Hipertensão Pulmonar , Macrófagos , Animais , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/parasitologia , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/patologia , Camundongos , Macrófagos/imunologia , Macrófagos/parasitologia , Fenótipo , Schistosoma mansoni/imunologia , Camundongos Endogâmicos C57BL , Esquistossomose/imunologia , Esquistossomose/complicações , Esquistossomose/parasitologia , Modelos Animais de Doenças , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/complicações , Esquistossomose mansoni/patologia , Trombospondina 1/genética , Trombospondina 1/metabolismo , Monócitos/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Feminino , Schistosoma/imunologia , Schistosoma/fisiologia , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia
7.
Nat Immunol ; 25(7): 1296-1305, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806708

RESUMO

Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.


Assuntos
Nociceptores , Dor , Animais , Camundongos , Dor/imunologia , Dor/metabolismo , Nociceptores/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Masculino , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Animais de Doenças , Trombospondina 1/metabolismo , Trombospondina 1/genética , Pele/imunologia , Pele/metabolismo , Pele/patologia , Zimosan , Análise de Célula Única , Neuroimunomodulação , Perfilação da Expressão Gênica , Neutrófilos/imunologia , Neutrófilos/metabolismo
8.
Arab J Gastroenterol ; 25(2): 194-204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705811

RESUMO

BACKGROUND AND STUDY AIMS: Immunotherapy has emerged as a hot topic in cancer treatment in recent years and has also shown potential in the treatment of Helicobacter pylori-associated gastric cancer. However, there is still a need to identify potential immunotherapy targets. MATERIAL AND METHODS: We used the GSE116312 dataset of Helicobacter pylori-associated gastric cancer to identify differentially expressed genes, which were then overlapped with immune genes from the ImmPort database. The identified immune genes were used to classify gastric cancer samples and evaluate the relationship between classification and tumor mutations, as well as immune infiltration. An immune gene-based prognostic model was constructed, and the expression levels of the genes involved in constructing the model were explored in the tumor immune microenvironment. RESULTS: We successfully identified 60 immune genes and classified gastric cancer samples into two subtypes, which showed differences in prognosis, tumor mutations, immune checkpoint expression, and immune cell infiltration. Subsequently, we constructed an immune prognostic model consisting of THBS1 and PDGFD, which showed significant associations with macrophages and fibroblasts. CONCLUSION: We identified abnormal expression of THBS1 and PDGFD in cancer-associated fibroblasts (CAFs) within the tumor immune microenvironment, suggesting their potential as therapeutic targets.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Fator de Crescimento Derivado de Plaquetas , Neoplasias Gástricas , Trombospondina 1 , Microambiente Tumoral , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Helicobacter pylori/imunologia , Helicobacter pylori/genética , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/complicações , Trombospondina 1/genética , Prognóstico , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Mutação , Linfocinas
10.
Int Immunopharmacol ; 132: 111953, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599097

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is an important cause of early dysfunction and exacerbation of immune rejection in transplanted hearts. The integrin-related protein CD47 exacerbates myocardial ischemia-reperfusion injury by inhibiting the nitric oxide signaling pathway through interaction with thrombospondin-1 (TSP-1). In addition, the preservation quality of the donor hearts is a key determinant of transplant success. Preservation duration beyond four hours is associated with primary graft dysfunction. We hypothesized that blocking the CD47-TSP-1 system would attenuate ischemia-reperfusion injury in the transplanted heart and, thus, improve the preservation of donor hearts. METHODS: We utilized a syngeneic mouse heart transplant model to assess the effect of CD47 monoclonal antibody (CD47mAb) to treat MIRI. Donor hearts were perfused with CD47mAb or an isotype-matched control immunoglobulin (IgG2a) and were implanted into the abdominal cavity of the recipients after being stored in histidine-tryptophan-ketoglutarate (HTK) solution at 4 °C for 4 h or 8 h. RESULTS: At both the 4-h and 8-h preservation time points, mice in the experimental group perfused with CD47mAb exhibited prolonged survival in the transplanted heart, reduced inflammatory response and oxidative stress, significantly decreased inflammatory cell infiltration, and fewer apoptosis-related biomarkers. CONCLUSION: The application of CD47mAb for the blocking of CD47 attenuates MIRI as well as improves the preservation and prognosis of the transplanted heart in a murine heart transplant model.


Assuntos
Antígeno CD47 , Transplante de Coração , Camundongos Endogâmicos C57BL , Animais , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Camundongos , Masculino , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Preservação de Órgãos/métodos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Trombospondina 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
11.
Cell Rep ; 43(5): 114149, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678560

RESUMO

Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor ß (TGFß)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFß-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFß-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFß-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.


Assuntos
Fator 4 Ativador da Transcrição , Músculo Esquelético , Atrofia Muscular , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Trombospondina 1 , Fator de Crescimento Transformador beta , Animais , Masculino , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Autofagia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Fator de Crescimento Transformador beta/metabolismo
13.
Adv Sci (Weinh) ; 11(21): e2309002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569496

RESUMO

Preeclampsia (PE) is considered as a disease of placental origin. However, the specific mechanism of placental abnormalities remains elusive. This study identified thrombospondin-1 (THBS1) is downregulated in preeclamptic placentae and negatively correlated with blood pressure. Functional studies show that THBS1 knockdown inhibits proliferation, migration, and invasion and increases the cycle arrest and apoptosis rate of HTR8/SVneo cells. Importantly, THBS1 silencing induces necroptosis in HTR8/SVneo cells, accompanied by the release of damage-associated molecular patterns (DAMPs). Necroptosis inhibitors necrostatin-1 and GSK'872 restore the trophoblast survival while pan-caspase inhibitor Z-VAD-FMK has no effect. Mechanistically, the results show that THBS1 interacts with transforming growth factor B-activated kinase 1 (TAK1), which is a central modulator of necroptosis quiescence and affects its stability. Moreover, THBS1 silencing up-regulates the expression of neuronal precursor cell-expressed developmentally down-regulated 4 (NEDD4), which acts as an E3 ligase of TAK1 and catalyzes K48-linked ubiquitination of TAK1 in HTR8/SVneo cells. Besides, THBS1 attenuates PE phenotypes and improves the placental necroptosis in vivo. Taken together, the down-regulation of THBS1 destabilizes TAK1 by activating NEDD4-mediated, K48-linked TAK1 ubiquitination and promotes necroptosis and DAMPs release in trophoblast cells, thus participating in the pathogenesis of PE.


Assuntos
MAP Quinase Quinase Quinases , Necroptose , Ubiquitina-Proteína Ligases Nedd4 , Pré-Eclâmpsia , Trombospondina 1 , Trofoblastos , Ubiquitinação , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Feminino , Gravidez , Trofoblastos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Necroptose/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Trombospondina 1/metabolismo , Trombospondina 1/genética , Adulto , Placenta/metabolismo
14.
Int J Biol Macromol ; 268(Pt 2): 131779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679250

RESUMO

Natto contains a potent fibrinolytic enzyme called nattokinase (NK), which has thrombolytic, antihypertensive, antiatherosclerotic and lipid-lowering effects. Although NK has been recognized for its beneficial effect on humans with atherosclerotic cardiovascular disease (ASCVD), the underlying mechanisms involved in vascular inflammation-atherosclerosis development remain largely unknown. The current study aimed to explore the effects of NK on gene regulation, autophagy, necroptosis and inflammasome in vascular inflammation. The transcriptional profiles of NK in endothelial cells (ECs) by RNA sequencing (RNA-seq) revealed that NK affected THBS1, SRF and SREBF1 mRNA expression. In Q-PCR analysis, SRF and THBS1 were upregulated but SREBF1 was unaffected in ECs treated with NK. NK treatment induced autophagy and inhibited NLRP3 inflammasome and necroptosis in ECs. Furthermore, the inhibition of SRF or THBS1 by siRNA suppressed autophagy and enhanced the NLRP3 inflammasome and necroptosis. In a mouse model, NK reduced vascular inflammation by activating autophagy and inhibiting NLRP3 inflammasome and necroptosis. Our findings provide the first evidence that NK upregulates SRF and THBS1 genes, subsequently increasing autophagy and decreasing necroptosis and NLRP3 inflammasome formation to reduce vascular inflammation. Therefore, NK could serve as nutraceuticals or adjuvant therapies to reduce vascular inflammation and possible atherosclerosis progression.


Assuntos
Inflamação , Subtilisinas , Trombospondina 1 , Animais , Masculino , Camundongos , Autofagia/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamassomos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Subtilisinas/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Camundongos Endogâmicos C57BL
15.
BMC Med ; 22(1): 95, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439091

RESUMO

BACKGROUND: The key role of thrombospondin 1 (THBS1) in the pathogenesis of acute-on-chronic liver failure (ACLF) is unclear. Here, we present a transcriptome approach to evaluate THBS1 as a potential biomarker in ACLF disease pathogenesis. METHODS: Biobanked peripheral blood mononuclear cells (PBMCs) from 330 subjects with hepatitis B virus (HBV)-related etiologies, including HBV-ACLF, liver cirrhosis (LC), and chronic hepatitis B (CHB), and normal controls (NC) randomly selected from the Chinese Group on the Study of Severe Hepatitis B (COSSH) prospective multicenter cohort underwent transcriptome analyses (ACLF = 20; LC = 10; CHB = 10; NC = 15); the findings were externally validated in participants from COSSH cohort, an ACLF rat model and hepatocyte-specific THBS1 knockout mice. RESULTS: THBS1 was the top significantly differentially expressed gene in the PBMC transcriptome, with the most significant upregulation in ACLF, and quantitative polymerase chain reaction (ACLF = 110; LC = 60; CHB = 60; NC = 45) was used to verify that THBS1 expression corresponded to ACLF disease severity outcome, including inflammation and hepatocellular apoptosis. THBS1 showed good predictive ability for ACLF short-term mortality, with an area under the receiver operating characteristic curve (AUROC) of 0.8438 and 0.7778 at 28 and 90 days, respectively. Enzyme-linked immunosorbent assay validation of the plasma THBS1 using an expanded COSSH cohort subjects (ACLF = 198; LC = 50; CHB = 50; NC = 50) showed significant correlation between THBS1 with ALT and γ-GT (P = 0.01), and offered a similarly good prognostication predictive ability (AUROC = 0.7445 and 0.7175) at 28 and 90 days, respectively. ACLF patients with high-risk short-term mortality were identified based on plasma THBS1 optimal cut-off value (< 28 µg/ml). External validation in ACLF rat serum and livers confirmed the functional association between THBS1, the immune response and hepatocellular apoptosis. Hepatocyte-specific THBS1 knockout improved mouse survival, significantly repressed major inflammatory cytokines, enhanced the expression of several anti-inflammatory mediators and impeded hepatocellular apoptosis. CONCLUSIONS: THBS1 might be an ACLF disease development-related biomarker, promoting inflammatory responses and hepatocellular apoptosis, that could provide clinicians with a new molecular target for improving diagnostic and therapeutic strategies.


Assuntos
Insuficiência Hepática Crônica Agudizada , Trombospondina 1 , Animais , Humanos , Camundongos , Ratos , Biomarcadores , Vírus da Hepatite B , Inflamação , Leucócitos Mononucleares , Cirrose Hepática , Estudos Prospectivos , Trombospondina 1/genética
16.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Eferocitose , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
17.
Phytomedicine ; 128: 155557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547622

RESUMO

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliais da Veia Umbilical Humana , Óxido Nítrico Sintase Tipo III , Transdução de Sinais , Trombospondina 1 , Animais , Humanos , Antraquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Ratos , Camundongos , Ratos Sprague-Dawley , Endotélio Vascular/efeitos dos fármacos , Glucose/metabolismo , Camundongos Endogâmicos C57BL
18.
Neurosci Bull ; 40(5): 658-672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528256

RESUMO

Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.


Assuntos
Epilepsia , Trombospondina 1 , Humanos , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Trombospondina 1/metabolismo , Animais , Astrócitos/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
20.
Int J Oral Sci ; 16(1): 17, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403794

RESUMO

A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model, treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-ß1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs) were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (vFAOs). Consistently, treatment with arecoline reduced the expression of CD31 in vFAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.


Assuntos
Fibrose Oral Submucosa , Humanos , Animais , Ratos , Fibrose Oral Submucosa/patologia , Arecolina/efeitos adversos , Arecolina/metabolismo , Mucosa Bucal/patologia , Trombospondina 1/metabolismo , Trombospondina 1/farmacologia , Angiogênese , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibroblastos , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...