Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.864
Filtrar
1.
Biomark Med ; 18(9): 431-439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007837

RESUMO

Leptomeningeal metastasis (LM) is a devastating complication of malignancy. Diagnosis relies on both contrast enhancement on imaging and malignant cells in cerebral spinal fluid cytology. Though early detection and prompt intervention improves survival, the detection of LM is limited by false negatives. A rare brainstem imaging finding uncovered specifically in EGFR mutation-positive lung cancer patients may represent an early sign of LM. This sign demonstrates high signal on T2 fluid-attenuated inversion recovery and diffusion-weighted imaging sequences, but paradoxically lacks correlative contrast enhancement. Here we report a case of a 72-year-old female EGFR-positive lung cancer patient who developed this lesion following treatment with two first-generation EGFR tyrosine kinase inhibitors then showed subsequent response to osimertinib, an irreversible third-generation EGFR tyrosine kinase inhibitor.


A non-enhancing, T2 FLAIR hyperintense, diffusion-restricting brainstem lesion in an EGFR-positive lung cancer patient may represent an early indicator of leptomeningeal metastases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Feminino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Idoso , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Tronco Encefálico/patologia , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/metabolismo , Compostos de Anilina/uso terapêutico , Acrilamidas/uso terapêutico , Imagem de Difusão por Ressonância Magnética , Indóis , Pirimidinas
2.
Elife ; 132024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963785

RESUMO

Intonation in speech is the control of vocal pitch to layer expressive meaning to communication, like increasing pitch to indicate a question. Also, stereotyped patterns of pitch are used to create distinct sounds with different denotations, like in tonal languages and, perhaps, the 10 sounds in the murine lexicon. A basic tone is created by exhalation through a constricted laryngeal voice box, and it is thought that more complex utterances are produced solely by dynamic changes in laryngeal tension. But perhaps, the shifting pitch also results from altering the swiftness of exhalation. Consistent with the latter model, we describe that intonation in most vocalization types follows deviations in exhalation that appear to be generated by the re-activation of the cardinal breathing muscle for inspiration. We also show that the brainstem vocalization central pattern generator, the iRO, can create this breath pattern. Consequently, ectopic activation of the iRO not only induces phonation, but also the pitch patterns that compose most of the vocalizations in the murine lexicon. These results reveal a novel brainstem mechanism for intonation.


Assuntos
Vocalização Animal , Animais , Vocalização Animal/fisiologia , Camundongos , Tronco Encefálico/fisiologia , Respiração , Fonação/fisiologia
3.
Biomed Res ; 45(4): 151-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010191

RESUMO

Linalool and linalyl acetate are major components of lavender essential oil. These substances possess many biological activities, such as anti-inflammatory activity, analgesic and anxiolytic effects, and anticonvulsant properties, and they also induce modulation of neuronal activity in the autonomic nervous system. However, there are no reports of the direct effects of linalool on respiratory activity. In the present study, we analyzed the effects of linalool and linalyl acetate on central respiratory activity in the brainstem-spinal cord preparation isolated from newborn rats. Linalool dose-dependently decreased the rate of respiratory activity. This effect was reversed by bicuculline, suggesting that linalool enhanced inhibitory synaptic connections via GABAA receptors. In addition, linalool reduced the coefficient of variation of inspiratory burst intervals and thus could work to stabilize the respiratory rhythm. Linalyl acetate did not cause inhibitory effects as observed in linalool treatment. Linalool depressed burst activity of pre-inspiratory neurons in the medullary respiratory networks and increased the amplitude of inspiratory inhibitory postsynaptic potentials of pre-inspiratory neurons. We concluded that linalool caused inhibitory effects on respiratory rhythm generation mainly through activation of presynaptic GABAA receptors of pre-inspiratory neurons.


Assuntos
Monoterpenos Acíclicos , Animais Recém-Nascidos , Tronco Encefálico , Monoterpenos , Neurônios , Medula Espinal , Animais , Monoterpenos Acíclicos/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ratos , Monoterpenos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Receptores de GABA-A/metabolismo , Respiração/efeitos dos fármacos , Bicuculina/farmacologia
4.
Medicine (Baltimore) ; 103(27): e38783, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968477

RESUMO

BACKGROUND: The objective of this study is to assess the impact of an early-graded pulmonary rehabilitation training program on patients undergoing mechanical ventilation due to brainstem hemorrhage. METHODS: Eighty patients receiving mechanical ventilation due to brainstem hemorrhage at our hospital's neurosurgery department between August 2022 and October 2023 were enrolled as participants. A sampling table was generated based on the order of admission, and 80 random sequences were generated using SPSS software. These sequences were then sorted in ascending order, with the first half designated as the control group and the second half as the intervention group, each comprising 40 cases. The control group received standard nursing care for mechanical ventilation in brainstem hemorrhage cases, while the intervention group underwent early-graded pulmonary rehabilitation training in addition to standard care. This intervention was conducted in collaboration with a multidisciplinary respiratory critical care rehabilitation team. The study compared respiratory function indices, ventilator weaning success rates, ventilator-associated pneumonia incidence, mechanical ventilation duration, and patient discharge duration between the 2 groups. RESULTS: The comparison between patients in the observation group and the control group regarding peak expiratory flow and maximum inspiratory pressure on days 1, 3, 5, and 7 revealed statistically significant differences (P < .05). Additionally, there was a statistically significant interaction between the main effect of intervention and the main effect of time (P < .05). The success rate of ventilator withdrawal was notably higher in the observation group (62.5%) compared to the control group (32.5%), with a statistically significant difference (P < .05). Moreover, the incidence rate of ventilator-associated pneumonia was significantly lower in the observation group (2.5%) compared to the control group (17.5%) (P < .05). Furthermore, both the duration of mechanical ventilation and hospitalization were significantly shorter in the observation group compared to the control group (P < .05). CONCLUSION: Early-graded pulmonary rehabilitation training demonstrates effectiveness in enhancing respiratory function, augmenting the ventilator withdrawal success rate, and reducing both the duration of mechanical ventilation and hospitalization in mechanically ventilated patients with brainstem hemorrhage. These findings suggest the potential value of promoting the application of this intervention in clinical practice.


Assuntos
Respiração Artificial , Humanos , Respiração Artificial/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Tronco Encefálico , Hemorragias Intracranianas/reabilitação , Idoso , Adulto , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Desmame do Respirador/métodos , Resultado do Tratamento
5.
J Neuroinflammation ; 21(1): 158, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879567

RESUMO

Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.


Assuntos
Animais Recém-Nascidos , Infecções por Chlamydia , Chlamydia muridarum , Animais , Camundongos , Feminino , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Masculino , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Tronco Encefálico/patologia , Doenças Neuroinflamatórias/microbiologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/imunologia , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
6.
Headache ; 64(7): 729-737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38923561

RESUMO

BACKGROUND: Pain thresholds and primary headaches, including cluster headache attacks, have circadian rhythmicity. Thus, they might share a common neuronal mechanism. OBJECTIVE: This study aimed to elucidate how the modulation of nociceptive input in the brainstem changes from noon to midnight. Insights into the mechanism of these fluctuations could allow for new hypotheses about the pathophysiology of cluster headache. METHODS: This repeated measure observational study was conducted at the University Hospital Zurich from December 2019 to November 2022. Healthy adults between 18 and 85 years of age were eligible. All participants were examined at noon and midnight. We tested the pain threshold on both sides of the foreheads with quantitative sensory testing, assessed tiredness levels, and obtained high-field (7 Tesla) and high-resolution functional magnetic resonance imaging (MRI) at each visit. Functional connectivity was assessed at the two visits by performing a region-of-interest analysis. We defined nuclei in the brainstem implicated in processing nociceptive input as well as the thalamus and suprachiasmatic nucleus as the region-of-interest. RESULTS: Ten people were enrolled, and seven participants were included. First, we did not find statistically significant differences between noon and midnight of A-delta-mediated pain thresholds (median mechanical pain threshold at noon: left 9.2, right 9.2; at night: left 6.5, right 6.1). Second, after correction for a false discovery rate, we found changes in the mechanical pain sensitivity to have a statistically significant effect on changes in the functional connectivity between the left parabrachial nucleus and the suprachiasmatic nucleus (T = -40.79). CONCLUSION: The MRI data analysis suggested that brain stem nuclei and the hypothalamus modulate A-delta-mediated pain perception; however, these changes in pain perception did not lead to statistically significantly differing pain thresholds between noon and midnight. Hence, our findings shed doubt on our hypothesis that the physiologic circadian rhythmicity of pain thresholds could drive the circadian rhythmicity of cluster headache attacks.


Assuntos
Tronco Encefálico , Ritmo Circadiano , Cefaleia Histamínica , Imageamento por Ressonância Magnética , Limiar da Dor , Humanos , Cefaleia Histamínica/fisiopatologia , Cefaleia Histamínica/diagnóstico por imagem , Adulto , Masculino , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/fisiopatologia , Feminino , Ritmo Circadiano/fisiologia , Pessoa de Meia-Idade , Limiar da Dor/fisiologia , Adulto Jovem , Idoso
7.
Sci Rep ; 14(1): 14734, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926520

RESUMO

Based on the auditory periphery and the small head size, Etruscan shrews (Suncus etruscus) approximate ancestral mammalian conditions. The auditory brainstem in this insectivore has not been investigated. Using labelling techniques, we assessed the structures of their superior olivary complex (SOC) and the nuclei of the lateral lemniscus (NLL). There, we identified the position of the major nuclei, their input pattern, transmitter content, expression of calcium binding proteins (CaBPs) and two voltage-gated ion channels. The most prominent SOC structures were the medial nucleus of the trapezoid body (MNTB), the lateral nucleus of the trapezoid body (LNTB), the lateral superior olive (LSO) and the superior paraolivary nucleus (SPN). In the NLL, the ventral (VNLL), a specific ventrolateral VNLL (VNLLvl) cell population, the intermediate (INLL) and dorsal (DNLL) nucleus, as well as the inferior colliculus's central aspect were discerned. INLL and VNLL were clearly separated by the differential distribution of various marker proteins. Most labelled proteins showed expression patterns comparable to rodents. However, SPN neurons were glycinergic and not GABAergic and the overall CaBPs expression was low. Next to the characterisation of the Etruscan shrew's auditory brainstem, our work identifies conserved nuclei and indicates variable structures in a species that approximates ancestral conditions.


Assuntos
Musaranhos , Complexo Olivar Superior , Animais , Musaranhos/anatomia & histologia , Complexo Olivar Superior/anatomia & histologia , Complexo Olivar Superior/metabolismo , Vias Auditivas/anatomia & histologia , Neurônios/metabolismo , Colículos Inferiores/anatomia & histologia , Colículos Inferiores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Tronco Encefálico/anatomia & histologia , Tronco Encefálico/metabolismo , Masculino , Núcleo Olivar/anatomia & histologia , Núcleo Olivar/metabolismo
8.
Dev Psychobiol ; 66(6): e22518, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924086

RESUMO

All terrestrial vertebrate life must transition from aquatic gas exchange in the embryonic environment to aerial or pulmonary respiration at birth. In addition to being able to breathe air, neonates must possess functional sensory feedback systems for maintaining acid-base balance. Respiratory neurons in the brainstem act as pH sensors that can adjust breathing to regulate systemic pH. The central pH sensitivity of breathing-related motor output develops over the embryonic period in the zebra finch (Taeniopygia guttata). Due to the key role of chloride ions in electrochemical stability and developmental plasticity, we tested chloride's role in the development of central pH sensitivity. We blocked gamma-aminobutyric acid-A receptors and cation-chloride cotransport that subtly modulated the low-pH effects on early breathing biorhythms. Further, chloride-free artificial cerebrospinal fluid altered the pattern and timing of breathing biorhythms and blocked the stimulating effect of acidosis in E12-14 brainstems. Early and middle stage embryos exhibited rebound plasticity in brainstem motor outputs during low-pH treatment, which was eliminated by chloride-free solution. Results show that chloride modulates low-pH sensitivity and rebound plasticity in the zebra finch embryonic brainstem, but work is needed to determine the cellular and circuit mechanisms that control functional chloride balance during acid-base disturbances.


Assuntos
Tronco Encefálico , Cloretos , Tentilhões , Plasticidade Neuronal , Respiração , Animais , Concentração de Íons de Hidrogênio , Tentilhões/fisiologia , Cloretos/metabolismo , Cloretos/farmacologia , Tronco Encefálico/fisiologia , Tronco Encefálico/efeitos dos fármacos , Respiração/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Embrião não Mamífero/fisiologia
9.
J Neurophysiol ; 132(1): 68-77, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838298

RESUMO

The prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC) are involved in the control of horizontal and vertical gaze, respectively. A previous study showed that PHN neurons exhibit depolarized or hyperpolarized responses to noradrenaline (NA). However, the adrenoceptor types that participate in NA-induced responses and the effects of NA on INC neurons have not yet been investigated. Furthermore, the relationship between NA-induced responses and neuron types defined by neurotransmitter phenotypes has not been determined. In this study, we investigated NA-induced current responses in PHN and INC neurons and the relationships between these responses and neuron types using whole cell recordings in wild-type and transgenic rat brainstem slices. Local application of NA to the cell soma induced slow inward (SI) and slow outward (SO) currents that were mainly mediated by α1 and α2 adrenoceptors, respectively. These current responses were observed in both PHN and INC neurons, although the proportion of INC neurons that responded to NA was low. Analyses of the distributions of the current responses revealed that in the PHN, all fluorescently identified inhibitory neurons exhibited SI currents, whereas glutamatergic and cholinergic neurons exhibited both SI and SO currents. In the INC, glutamatergic and inhibitory neurons preferentially exhibited SI and SO currents, respectively. When the PHN and INC neurons were characterized by their firing pattern, we found that the proportions of the currents depended on their firing pattern. These results suggest that various modes of noradrenergic modulation in horizontal and vertical neural integrators are dependent on neuron type.NEW & NOTEWORTHY Noradrenergic modulation of oculomotor neural integrators involved in gaze control has not been elucidated. Here, we report that noradrenaline (NA)-induced slow inward (SI) and outward (SO) currents are mediated mainly by α1 and α2 adrenoceptors in neurons that participate in horizontal and vertical gaze control. The NA-induced current responses differed depending on the neurotransmitter phenotype and firing pattern. These results suggest various modes of noradrenergic modulation in horizontal and vertical integrator neurons.


Assuntos
Norepinefrina , Animais , Norepinefrina/farmacologia , Ratos , Masculino , Ratos Transgênicos , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Neurônios Adrenérgicos/fisiologia , Neurônios Adrenérgicos/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/fisiologia , Técnicas de Patch-Clamp , Tronco Encefálico/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Neurônios Colinérgicos/efeitos dos fármacos
10.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38940832

RESUMO

Nonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high-resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo functional magnetic resonance imaging acquisition at 3T with multi-echo independent component analysis denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to nonpainful brushing of the right hand, left hand, and right foot (n = 10 per location), and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we differentiated the adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.


Assuntos
Mapeamento Encefálico , Tronco Encefálico , Imageamento por Ressonância Magnética , Humanos , Tronco Encefálico/fisiologia , Tronco Encefálico/diagnóstico por imagem , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Adulto , Mapeamento Encefálico/métodos , Adulto Jovem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Percepção do Tato/fisiologia , Estimulação Física , Mãos/fisiologia
12.
Nat Commun ; 15(1): 5133, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879548

RESUMO

Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.


Assuntos
Progressão da Doença , Corpos de Lewy , Doença por Corpos de Lewy , alfa-Sinucleína , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , alfa-Sinucleína/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Tronco Encefálico/patologia , Tronco Encefálico/metabolismo , Corpos de Lewy/patologia , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/metabolismo
13.
Cell ; 187(13): 3233-3235, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906100

RESUMO

Somatic and sympathetic tones fluctuate together seamlessly across daily behaviors. In this issue of Cell, Zhang et al. describe populations of spinal projecting neurons in the rostral ventromedial medulla (rVMM) that harmonize somatic motor function and sympathetic activation. The coordinated regulation plays a vital role in supporting behaviors associated with various arousal states.


Assuntos
Tronco Encefálico , Bulbo , Publicações Periódicas como Assunto , Animais , Nível de Alerta/fisiologia , Sistema Nervoso Autônomo/fisiologia , Tronco Encefálico/fisiologia , Bulbo/fisiologia , Neurônios/fisiologia , Sistema Nervoso Simpático/fisiologia , Nervos Espinhais/fisiologia
14.
J Neurosci Res ; 102(6): e25362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895852

RESUMO

Sudden infant death syndrome (SIDS)-the sudden and unexplained death of a seemingly healthy infant, <1 year old-may be associated with abnormalities in the brain regions that underlie breathing and arousal during sleep. While post-mortem studies suggest abnormalities in SIDS infants' brainstems, there are no studies of these infants' brainstem function before death. One way to assess the function of the brainstem is with auditory brainstem response (ABR), a routine hearing-screening method that noninvasively measures the brainstem's response to sound. We hypothesize that anomalies in newborns' ABR measures may predict SIDS. Indeed, previous studies identified abnormalities in ABR characteristics in small samples of near-miss SIDS infants hospitalized for infant apnea syndrome. However, there is a need to examine the ABRs of infants who died of SIDS. Therefore, in the current study, we propose integrating two secondary datasets to examine newborns' ABRs (N = 156,972), including those who later died of SIDS (n = ~42; .27 out of every 1000 infants), using existing archived records of neonatal ABR results from a sample of newborns born in Florida. We hypothesize that infants who die from SIDS are more likely than non-SIDS infants to have abnormal ABRs as newborns. Understanding the association between SIDS and ABR may facilitate more accurate identification of an infant's risk for SIDS at birth, enabling increased monitoring, which may facilitate interventions and improve survivorship.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Morte Súbita do Lactente , Humanos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Recém-Nascido , Masculino , Feminino , Tronco Encefálico/fisiopatologia , Lactente
15.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891784

RESUMO

The central nervous system of Pacific salmon retains signs of embryonic structure throughout life and a large number of neuroepithelial neural stem cells (NSCs) in the proliferative areas of the brain, in particular. However, the adult nervous system and neurogenesis studies on rainbow trout, Oncorhynchus mykiss, are limited. Here, we studied the localization of glutamine synthetase (GS), vimentin (Vim), and nestin (Nes), as well as the neurons formed in the postembryonic period, labeled with doublecortin (DC), under conditions of homeostatic growth in adult cerebellum and brainstem of Oncorhynchus mykiss using immunohistochemical methods and Western Immunoblotting. We observed that the distribution of vimentin (Vim), nestin (Nes), and glutamine synthetase (GS), which are found in the aNSPCs of both embryonic types (neuroepithelial cells) and in the adult type (radial glia) in the cerebellum and the brainstem of trout, has certain features. Populations of the adult neural stem/progenitor cells (aNSPCs) expressing GS, Vim, and Nes have different morphologies, localizations, and patterns of cluster formation in the trout cerebellum and brainstem, which indicates the morphological and, obviously, functional heterogeneity of these cells. Immunolabeling of PCNA revealed areas in the cerebellum and brainstem of rainbow trout containing proliferating cells which coincide with areas expressing Vim, Nes, and GS. Double immunolabeling revealed the PCNA/GS PCNA/Vim coexpression patterns in the neuroepithelial-type cells in the PVZ of the brainstem. PCNA/GS coexpression in the RG was detected in the submarginal zone of the brainstem. The results of immunohistochemical study of the DC distribution in the cerebellum and brainstem of trout have showed a high level of expression of this marker in various cell populations. This may indicate: (i) high production of the adult-born neurons in the cerebellum and brainstem of adult trout, (ii) high plasticity of neurons in the cerebellum and brainstem of trout. We assume that the source of new cells in the trout brain, along with PVZ and SMZ, containing proliferating cells, may be local neurogenic niches containing the PCNA-positive and silent (PCNA-negative), but expressing NSC markers, cells. The identification of cells expressing DC, Vim, and Nes in the IX-X cranial nerve nuclei of trout was carried out.


Assuntos
Tronco Encefálico , Cerebelo , Células-Tronco Neurais , Neurogênese , Plasticidade Neuronal , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Cerebelo/metabolismo , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Tronco Encefálico/metabolismo , Tronco Encefálico/citologia , Vimentina/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Glutamato-Amônia Ligase/metabolismo
16.
Curr Opin Neurol ; 37(4): 361-368, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38884636

RESUMO

PURPOSE OF REVIEW: The brainstem's complex anatomy and relatively small size means that structural and functional assessment of this structure is done less frequently compared to other brain areas. However, recent years have seen substantial progress in brainstem imaging, enabling more detailed investigations into its structure and function, as well as its role in neuropathology. RECENT FINDINGS: Advancements in ultrahigh field MRI technology have allowed for unprecedented spatial resolution in brainstem imaging, facilitating the new creation of detailed brainstem-specific atlases. Methodological improvements have significantly enhanced the accuracy of physiological (cardiac and respiratory) noise correction within brainstem imaging studies. These technological and methodological advancements have allowed for in-depth analyses of the brainstem's anatomy, including quantitative assessments and examinations of structural connectivity within both gray and white matter. Furthermore, functional studies, including assessments of activation patterns and functional connectivity, have revealed the brainstem's roles in both specialized functions and broader neural integration. Notably, these investigations have identified alterations in brainstem structure and function associated with various neurological disorders. SUMMARY: The aforementioned developments have allowed for a greater appreciation of the importance of the brainstem in the wider context of neuroscience and clinical neurology.


Assuntos
Tronco Encefálico , Imageamento por Ressonância Magnética , Humanos , Tronco Encefálico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/patologia
17.
Nature ; 629(8014): 1133-1141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750368

RESUMO

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Assuntos
Maleato de Dizocilpina , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Obesidade , Receptores de N-Metil-D-Aspartato , Animais , Humanos , Masculino , Camundongos , Ratos , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/efeitos adversos , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/uso terapêutico , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
18.
World Neurosurg ; 188: e120-e127, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762023

RESUMO

BACKGROUND: Supratentorial craniotomy represents the upper part of the combined trans-tentorial or the supra-infratentorial presigmoid approach. In this study, we provide qualitative and quantitative analyses for the supratentorial extension of the presigmoid retrolabyrinthine suprameatal approach (PRSA). METHODS: The infratentorial PRSA followed by the supratentorial extension craniotomy with dividing and removal of the tentorial strip were performed on both sides of 5 injected human cadaver heads (n = 10 sides). Quantitative analysis was performed for the surface area gained (surgical accessibility) by adding the supratentorial craniotomy. Qualitative analysis was performed for the parts of the brainstem, cranial nerves, and vascular structures that became accessible by adding the supratentorial craniotomy. The anatomical obstacles encountered in the added operative corridor were analyzed. RESULTS: The supratentorial extension of PRSA provides an increase in surgical accessibility of 102.65% as compared to the PRSA standalone. The mean surface area of the exposed brainstem is 197.98 (standard deviation: 76.222) and 401.209 (standard deviation: 123.96) for the infratentorial and the combined supra-infratentorial presigmoid approach, respectively. Exposure for parts of III, IV, and V cranial nerves is added after the extension, and the surface area of the outer craniotomy defect has increased by 60.32%. Parts of the basilar, anterior inferior cerebellar, and superior cerebellar arteries are accessible after the supratentorial extension. CONCLUSIONS: The supratentorial extension of PRSA allows access to the supra-trigeminal area of the pons and the lower part of the midbrain. Considering this surgical accessibility and exposure significantly assists in planning such complex approaches while targeting central skull base lesions.


Assuntos
Cadáver , Craniotomia , Humanos , Craniotomia/métodos , Procedimentos Neurocirúrgicos/métodos , Tronco Encefálico/anatomia & histologia , Tronco Encefálico/cirurgia , Nervos Cranianos/anatomia & histologia , Nervos Cranianos/cirurgia
20.
Neurology ; 102(10): e209421, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38701401

RESUMO

Pupillary assessment is a quintessential part of the clinical examination in neuro-intensive care patients because it provides insight into the integrity of midbrain reflex arcs. Abnormal pupils, particularly anisocoria and later bilateral fixed mydriasis, are classically used to assess expansive intracranial processes because they are frequently considered early indicators of transtentorial midbrain compression due to elevated intracranial pressure. Complex ocular motor deficits mapping to the midbrain are rarely described in the setting of high transtentorial pressure. This is likely because ocular motor deficits typically occur in conjunction with decreased consciousness and corticospinal tract dysfunction reflecting advanced midbrain compromise. We present a case of left midbrain compression due to downward herniation in a patient with acute-on-chronic bilateral subdural hematoma. Ocular motor assessment demonstrated left internuclear ophthalmoplegia (INO) and an ocular tilt reaction, termed INO plus. However, pupillary, mental status, and sensorimotor examinations were unremarkable. Head magnetic resonance imaging revealed acute perforator ischemia in the left pontomesencephalic tegmentum, localizing to the ipsilateral medial longitudinal fasciculus and graviceptive oculocephalic circuits. Microvascular compromise secondary to mechanical pressure is discussed as a causative mechanism. We caution against overreliance on "telltale pupils" in suspected brainstem compression and recommend checking for other oculomotor signs.


Assuntos
Transtornos da Motilidade Ocular , Humanos , Transtornos da Motilidade Ocular/etiologia , Tronco Encefálico/diagnóstico por imagem , Masculino , Imageamento por Ressonância Magnética , Feminino , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...