Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.403
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1398077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836056

RESUMO

Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.


Assuntos
Vesículas Extracelulares , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis , Tuberculose , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Mycobacterium tuberculosis/imunologia , Humanos , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Animais
2.
Front Immunol ; 15: 1413947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881887

RESUMO

CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.


Assuntos
Antígenos CD36 , Mycobacterium tuberculosis , Tuberculose , Humanos , Antígenos CD36/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Animais , Metabolismo dos Lipídeos , Transdução de Sinais , Biomarcadores , Interações Hospedeiro-Patógeno/imunologia
3.
Front Immunol ; 15: 1402024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873598

RESUMO

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.


Assuntos
Colesterol , Macrófagos , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/imunologia , Colesterol/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Metabolismo dos Lipídeos
4.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731549

RESUMO

Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Biossíntese de Proteínas , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Antituberculosos/farmacologia , Antituberculosos/química , Ribossomos/metabolismo , Modelos Moleculares , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/metabolismo , Conformação Proteica
5.
PLoS Pathog ; 20(5): e1012205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701094

RESUMO

Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.


Assuntos
Lisossomos , Macrófagos Alveolares , Monócitos , Mycobacterium tuberculosis , Lisossomos/metabolismo , Lisossomos/microbiologia , Animais , Monócitos/metabolismo , Monócitos/microbiologia , Camundongos , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/metabolismo , Pulmão/microbiologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Doença Crônica , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Humanos , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
6.
PLoS Pathog ; 20(5): e1012214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722857

RESUMO

Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.


Assuntos
Proteínas de Bactérias , Caderinas , Células Epiteliais , Mycobacterium tuberculosis , Serina Proteases , Caderinas/metabolismo , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/metabolismo , Animais , Humanos , Camundongos , Serina Proteases/metabolismo , Serina Proteases/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Células A549 , Tuberculose/microbiologia , Tuberculose/metabolismo , Feminino
7.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803236

RESUMO

Neutrophils can be beneficial or deleterious during tuberculosis (TB). Based on the expression of MHC-II and programmed death ligand 1 (PD-L1), we distinguished two functionally and transcriptionally distinct neutrophil subsets in the lungs of mice infected with mycobacteria. Inflammatory [MHC-II-, PD-L1lo] neutrophils produced inflammasome-dependent IL-1ß in the lungs in response to virulent mycobacteria and "accelerated" deleterious inflammation, which was highly exacerbated in IFN-γR-/- mice. Regulatory [MHC-II+, PD-L1hi] neutrophils "brake" inflammation by suppressing T-cell proliferation and IFN-γ production. Such beneficial regulation, which depends on PD-L1, is controlled by IFN-γR signaling in neutrophils. The hypervirulent HN878 strain from the Beijing genotype curbed PD-L1 expression by regulatory neutrophils, abolishing the braking function and driving deleterious hyperinflammation in the lungs. These findings add a layer of complexity to the roles played by neutrophils in TB and may explain the reactivation of this disease observed in cancer patients treated with anti-PD-L1.


Assuntos
Antígeno B7-H1 , Inflamação , Interleucina-1beta , Pulmão , Neutrófilos , Tuberculose , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos , Interleucina-1beta/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Modelos Animais de Doenças , Feminino , Humanos
8.
PLoS Pathog ; 20(5): e1012148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728367

RESUMO

Previously, we found that Mycobacterium tuberculosis (Mtb) infection in type 2 diabetes mellitus (T2DM) mice enhances inflammatory cytokine production which drives pathological immune responses and mortality. In the current study, using a T2DM Mtb infection mice model, we determined the mechanisms that make T2DM mice alveolar macrophages (AMs) more inflammatory upon Mtb infection. Among various cell death pathways, necroptosis is a major pathway involved in inflammatory cytokine production by T2DM mice AMs. Anti-TNFR1 antibody treatment of Mtb-infected AMs from T2DM mice significantly reduced expression of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) (necroptosis markers) and IL-6 production. Metabolic profile comparison of Mtb-infected AMs from T2DM mice and Mtb-infected AMs of nondiabetic control mice indicated that 2-ketohexanoic acid and deoxyadenosine monophosphate were significantly abundant, and acetylcholine and pyridoxine (Vitamin B6) were significantly less abundant in T2DM mice AMs infected with Mtb. 2-Ketohexanoic acid enhanced expression of TNFR1, RIPK3, MLKL and inflammatory cytokine production in the lungs of Mtb-infected nondiabetic mice. In contrast, pyridoxine inhibited RIPK3, MLKL and enhanced expression of Caspase 3 (apoptosis marker) in the lungs of Mtb-infected T2DM mice. Our findings demonstrate that metabolic changes in Mtb-infected T2DM mice enhance TNFR1-mediated necroptosis of AMs, which leads to excess inflammation and lung pathology.


Assuntos
Diabetes Mellitus Tipo 2 , Mycobacterium tuberculosis , Necroptose , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Camundongos Endogâmicos C57BL , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Masculino , Citocinas/metabolismo
9.
Biochem Biophys Res Commun ; 711: 149920, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38615574

RESUMO

Tuberculosis (TB), a deadly infectious disease induced by Mycobacterium tuberculosis (Mtb), continues to be a global public health issue that kill millions of patents every year. Despite significant efforts have been paid to identify effective TB treatments, the emergence of drug-resistant strains of the disease and the presence of comorbidities in TB patients urges us to explore the detailed mechanisms involved in TB immunity and develop more effective innovative anti-TB strategies. HIF-1α, a protein involved in regulating cellular immune responses during TB infection, has been highlighted as a promising target for the development of novel strategies for TB treatment due to its critical roles in anti-TB host immunity. This review provides a summary of current research progress on the roles of HIF-1α in TB infection, highlighting its importance in regulating the host immune response upon Mtb infection and summarizing the influences and mechanisms of HIF-1α on anti-TB immunological responses of host cells. This review also discusses the various challenges associated with developing HIF-1α as a target for anti-TB therapies, including ensuring specificity and avoiding off-target effects on normal cell function, determining the regulation and expression of HIF-1α in TB patients, and developing drugs that can inhibit HIF-1α. More deep understanding of the molecular mechanisms involved in HIF-1α signaling, its impact on TB host status, and systematic animal testing and clinical trials may benefit the optimization of HIF-1α as a novel therapeutic target for TB.


Assuntos
Antituberculosos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Mycobacterium tuberculosis , Transdução de Sinais , Tuberculose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/imunologia , Transdução de Sinais/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Animais , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Terapia de Alvo Molecular/métodos
10.
Org Lett ; 26(10): 2034-2038, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486497

RESUMO

Tuberculosis (TB) is one of the most dreadful diseases, killing more than 3 million humans annually. M. tuberculosis (MTb) is the causative agent for TB and has a thick and waxy cell wall, making it an attractive target for immunological studies. In this study, a heptamannopyranoside containing 1 → 2 and 1 → 6 α-mannopyranosidic linkages has been explored for the immunological evaluations. The conjugation-ready heptamannopyranoside was synthesized by exploiting the salient features of recently discovered [Au]/[Ag]-glycosidation of ethynylcyclohexyl glycosyl carbonate donors. The glycan was conjugated to the ESAT6, an early secreted protein of MTb for further characterization as a potential subunit vaccine candidate.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/metabolismo , Carbonatos , Catálise
11.
Tuberculosis (Edinb) ; 147: 102493, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547568

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.


Assuntos
Apoptose , Caveolina 1 , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis , Esfingomielina Fosfodiesterase , Tuberculose , Animais , Caveolina 1/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Mycobacterium bovis/patogenicidade , Macrófagos/microbiologia , Macrófagos/metabolismo , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/patologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/deficiência , Autofagia , Interações Hospedeiro-Patógeno , Modelos Animais de Doenças , Carga Bacteriana , Citocinas/metabolismo , Ceramidas/metabolismo , Fígado/microbiologia , Fígado/metabolismo , Fígado/patologia , Células Cultivadas , Camundongos , Mediadores da Inflamação/metabolismo , Fatores de Tempo
13.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397085

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a global health crisis with substantial morbidity and mortality rates. Type II alveolar epithelial cells (AEC-II) play a critical role in the pulmonary immune response against Mtb infection by secreting effector molecules such as antimicrobial peptides (AMPs). Here, human ß-defensin 1 (hBD1), an important AMP produced by AEC-II, has been demonstrated to exert potent anti-tuberculosis activity. HBD1 overexpression effectively inhibited Mtb proliferation in AEC-II, while mice lacking hBD1 exhibited susceptibility to Mtb and increased lung tissue inflammation. Mechanistically, in A549 cells infected with Mtb, STAT1 negatively regulated hBD1 transcription, while CEBPB was the primary transcription factor upregulating hBD1 expression. Furthermore, we revealed that the ERK1/2 signaling pathway activated by Mtb infection led to CEBPB phosphorylation and nuclear translocation, which subsequently promoted hBD1 expression. Our findings suggest that the ERK1/2-CEBPB-hBD1 regulatory axis can be a potential therapeutic target for anti-tuberculosis therapy aimed at enhancing the immune response of AEC-II cells.


Assuntos
Mycobacterium tuberculosis , Tuberculose , beta-Defensinas , Animais , Humanos , Camundongos , Células Epiteliais Alveolares , beta-Defensinas/genética , beta-Defensinas/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Células Epiteliais , Sistema de Sinalização das MAP Quinases , Tuberculose/metabolismo
14.
J Immunol ; 212(5): 765-770, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251918

RESUMO

AIM2 (absent in melanoma 2), an inflammasome component, mediates IL-1ß release in murine macrophages and cell lines. AIM2 and IL-1ß contribute to murine control of Mycobacterium tuberculosis (M.tb) infection, but AIM2's impact in human macrophages, the primary niche for M.tb, remains unclear. We show that M.tb, Mycobacterium bovis bacillus Calmette-Guérin (BCG), and M. smegmatis induce AIM2 expression in primary human macrophages. M.tb-induced AIM2 expression is peroxisome proliferator-activated receptor γ (PPARγ)-dependent and M.tb ESX-1-independent, whereas BCG- and M. smegmatis-induced AIM2 expression is PPARγ-independent. PPARγ and NLRP3, but not AIM2, are important for IL-1ß release in response to M.tb, and NLRP3 colocalizes with M.tb. This is in contrast to the role for AIM2 in inflammasome activation in mice and peritoneal macrophages. Altogether, we show that mycobacteria induce AIM2 expression in primary human macrophages, but AIM2 does not contribute to IL-1ß release during M.tb infection, providing further evidence that AIM2 expression and function are regulated in a cell- and/or species-specific manner.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , PPAR gama/metabolismo , Tuberculose/metabolismo
15.
J Infect Dis ; 229(4): 1229-1238, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788578

RESUMO

Positron emission tomography-computed tomography (PET-CT) has the potential to revolutionize research in infectious diseases, as it has done with cancer. There is growing interest in it as a biomarker in the setting of early-phase tuberculosis clinical trials, particularly given the limitations of current biomarkers as adequate predictors of sterilizing cure for tuberculosis. PET-CT is a real-time tool that provides a 3-dimensional view of the spatial distribution of tuberculosis within the lung parenchyma and the nature of lesions with uptake (ie, whether nodular, consolidative, or cavitary). Its ability to provide functional data on changes in metabolism, drug penetration, and immune control of tuberculous lesions has the potential to facilitate drug development and regimen selection for advancement to phase 3 trials in tuberculosis. In this narrative review, we discuss the role that PET-CT may have in evaluating responses to drug therapy in active tuberculosis treatment and the challenges in taking PET-CT forward as predictive biomarker of relapse-free cure in the setting of phase 2 clinical trials.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tuberculose , Humanos , Tuberculose/diagnóstico por imagem , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Pulmão/patologia , Recidiva , Biomarcadores , Fluordesoxiglucose F18/uso terapêutico , Tomografia por Emissão de Pósitrons , Ensaios Clínicos Fase II como Assunto
16.
Front Immunol ; 14: 1254347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928531

RESUMO

Exosomes as double-membrane vesicles contain various contents of lipids, proteins, mRNAs and non-coding RNAs, and involve in multiple physiological processes, for instance intercellular communication and immunomodulation. Currently, numerous studies found that the components of exosomal proteins, nucleic acids or lipids released from host cells are altered following infection with Mycobacterium tuberculosis. Exosomal contents provide excellent biomarkers for the auxiliary diagnosis, efficacy evaluation, and prognosis of tuberculosis. This study aimed to review the current literatures detailing the functions of exosomes in the procedure of M. tuberculosis infection, and determine the potential values of exosomes as biomarkers to assist in the diagnosis and monitoring of tuberculosis.


Assuntos
Exossomos , Mycobacterium tuberculosis , Tuberculose , Humanos , Exossomos/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Tuberculose/diagnóstico , Tuberculose/metabolismo , Lipídeos
17.
Tuberculosis (Edinb) ; 143: 102421, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37879126

RESUMO

Mycobacterium tuberculosis secrets various effector proteins to evade host immune responses for facilitating its intracellular survival. The bacterial genome encodes several unique PE/PPE family proteins, which have been implicated to play important role in mycobacterial pathogenesis. A member of this family, PPE2 have been shown to contain a monopartite nuclear localization signal (NLS) and a DNA binding domain. In this study, we demonstrate that PPE2 protein is present in the sera of mice infected with either M. smegmatis expressing PPE2 or a clinical strain of M. tuberculosis (CDC1551). It was found that exogenously added PPE2 can permeate through the macrophage cell membrane and eventually translocate into the nucleus which requires the presence of NLS which showed considerable homology to HIV-tat like cell permeable peptides. Exogenously added PPE2 could inhibit NO production and decreased mycobacterial survival in macrophages. PPE2-null mutant of M. tuberculosis failed to inhibit NO production and had poor survival in macrophages which could be rescued by complementation with full-length PPE2. PPE2-null mutants also had poor survival in the lungs of infected mice indicating that PPE2 even when present in the bloodstream can confer a survival advantage to mycobacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Tuberculose/metabolismo , Tuberculose/microbiologia
18.
mBio ; 14(5): e0094323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37676004

RESUMO

IMPORTANCE: Tuberculosis still remains a global burden and is one of the top infectious diseases from a single pathogen. Mycobacterium tuberculosis, the causative agent, has perfected many ways to replicate and persist within its host. While mycobacteria induce vacuole damage to evade the toxic environment and eventually escape into the cytosol, the host recruits repair machineries to restore the MCV membrane. However, how lipids are delivered for membrane repair is poorly understood. Using advanced fluorescence imaging and volumetric correlative approaches, we demonstrate that this involves the recruitment of the endoplasmic reticulum (ER)-Golgi lipid transfer protein OSBP8 in the Dictyostelium discoideum/Mycobacterium marinum system. Strikingly, depletion of OSBP8 affects lysosomal function accelerating mycobacterial growth. This indicates that an ER-dependent repair pathway constitutes a host defense mechanism against intracellular pathogens such as M. tuberculosis.


Assuntos
Dictyostelium , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculose , Humanos , Vacúolos/metabolismo , Dictyostelium/microbiologia , Retículo Endoplasmático , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/metabolismo
19.
J Innate Immun ; 15(1): 751-764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37734337

RESUMO

Epigenetic reprogramming of innate immune cells by ß-glucan in a process called trained immunity leads to an enhanced host response to a secondary infection. ß-Glucans are structural components of plants, algae, fungi, and bacteria and thus recognized as non-self by human macrophages. We selected the ß-glucan curdlan from Alcaligenes faecalis, WGP dispersible from Saccharomyces cerevisiae, and ß-glucan-rich culture supernatant of Alternaria and investigated whether they could produce trained immunity effects leading to an increased control of virulent Mycobacterium tuberculosis. We observed a significant M. tuberculosis growth reduction in macrophages trained with curdlan and Alternaria, which also correlated with increased IL-6 and IL-1ß release. WGP dispersible-trained macrophages were stratified into "non-responders" and "responders," according to their ability to control M. tuberculosis, with "responders" producing higher IL-6 levels. The addition of neutrophils to infected macrophage cultures further enhanced macrophage control of virulent M. tuberculosis, but not in a stimuli-dependent manner. Pathway enrichment analysis of DNA methylome data also highlighted hypomethylation of genes in pathways associated with signaling and cellular reorganization and motility, and "responders" to WGP training were enriched in the interferon-gamma signaling pathway. This study adds evidence that certain ß-glucans show promise as immune-training agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , beta-Glucanas , Humanos , Projetos Piloto , Interleucina-6/metabolismo , Macrófagos , beta-Glucanas/metabolismo , Imunidade Inata , Saccharomyces cerevisiae/metabolismo , Tuberculose/metabolismo
20.
J Cell Biochem ; 124(9): 1423-1434, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642132

RESUMO

Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and is still one of the global health burdens. The occurrence of various cases and multidrug resistance confirm that TB has not been completely conquered. For these reasons, the present research has been conducted to explore TB vaccine and drug candidate possibility using Mtb-secreted proteins. Among these proteins, MPT32 is known to have antigenicity and immunogenicity. There has not been a report on the host immune responses and regulation in macrophage cells. The present study was conducted with MPT32 in RAW 264.7 murine macrophage cells that control immune responses by sensing pathogen invasion and environmental change. We have found that MPT32 could activate lipopolysaccharide (LPS)-induced gene expression of metalloproteinase-9 (MMP-9) and inflammation in RAW 264.7 cells. After treating cells with MPT32, the increase in pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß (IL-1ß) and IL-6, was observed. In addition, activated macrophages expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) to generate various inflammatory mediator molecules, such as nitric oxide (NO). The increase in iNOS and COX-2 levels, which are up-regulators of MMP-9 expression, was also confirmed. The biochemical events are involved in the downstream of activated MAPK signaling and translocation of NF-κ B transcription factor. The present results prove the immunomodulatory effect of MPT32 in the RAW 264.7 murine macrophage cells. it claims the possibility of a TB vaccination and drug candidate using MPT32, contributing to the prevention of TB.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Animais , Camundongos , Ciclo-Oxigenase 2/genética , Inflamação , Macrófagos , Metaloproteinase 9 da Matriz , NF-kappa B , Regulação para Cima , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...