Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 19(1): 5, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918711

RESUMO

BACKGROUND: Heterologous expression of secondary metabolite gene clusters is used to achieve increased production of desired compounds, activate cryptic gene clusters, manipulate clusters from genetically unamenable strains, obtain natural products from uncultivable species, create new unnatural pathways, etc. Several Streptomyces species are genetically engineered for use as hosts for heterologous expression of gene clusters. S. lividans TK24 is one of the most studied and genetically tractable actinobacteria, which remain untapped. It was therefore important to generate S. lividans chassis strains with clean metabolic backgrounds. RESULTS: In this study, we generated a set of S. lividans chassis strains by deleting endogenous gene clusters and introducing additional φC31 attB loci for site-specific integration of foreign DNA. In addition to the simplified metabolic background, the engineered S. lividans strains had better growth characteristics than the parental strain in liquid production medium. The utility of the developed strains was validated by expressing four secondary metabolite gene clusters responsible for the production of different classes of natural products. Engineered strains were found to be superior to the parental strain in production of heterologous natural products. Furthermore, S. lividans-based strains were better producers of amino acid-based natural products than other tested common hosts. Expression of a Streptomyces albus subsp. chlorinus NRRL B-24108 genomic library in the modified S. lividans ΔYA9 and S. albus Del14 strains resulted in the production of 7 potentially new compounds, only one of which was produced in both strains. CONCLUSION: The constructed S. lividans-based strains are a great complement to the panel of heterologous hosts for actinobacterial secondary metabolite gene expression. The expansion of the number of such engineered strains will contribute to an increased success rate in isolation of new natural products originating from the expression of genomic and metagenomic libraries, thus raising the chance to obtain novel biologically active compounds.


Assuntos
Antibacterianos/biossíntese , Produtos Biológicos , Metabolismo Secundário/genética , Streptomyces lividans/genética , Actinobacteria/genética , Actinobacteria/metabolismo , Antibacterianos/química , Bacteriocinas/biossíntese , Bacteriocinas/química , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Clonagem Molecular , Engenharia Genética/métodos , Família Multigênica , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Streptomyces lividans/metabolismo , Tunicamicina/biossíntese , Tunicamicina/química
2.
J Antibiot (Tokyo) ; 72(12): 913-923, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31554958

RESUMO

Nucleoside antibiotics are a diverse class of natural products with promising biomedical activities. These compounds contain a saccharide core and a nucleobase. Despite the large number of nucleoside antibiotics that have been reported, biosynthetic studies on these compounds have been limited compared with those on other types of natural products such as polyketides, peptides, and terpenoids. Due to recent advances in genome sequencing technology, the biosynthesis of nucleoside antibiotics has rapidly been clarified. This review covering 2009-2019 focuses on recent advances in the biosynthesis of nucleoside antibiotics.


Assuntos
Antibacterianos/biossíntese , Nucleosídeos/biossíntese , Aminoglicosídeos/biossíntese , Antibacterianos/química , Azepinas , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Formicinas/biossíntese , Estrutura Molecular , Nucleosídeos/análogos & derivados , Nucleosídeos/química , Peptídeos , Nucleosídeos de Pirimidina/biossíntese , Tunicamicina/biossíntese , Uridina/análogos & derivados , Uridina/biossíntese
3.
J Antibiot (Tokyo) ; 72(12): 924-933, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31235901

RESUMO

Tunicamycins are nucleoside natural products and show antibacterial, antiviral and antitumor activities, which are attributed to their inhibition of enzymatic reactions between polyisoprenyl phosphate and UDP-GlcNAc or UDP-MurNAc-pentapeptide. Because of their various intriguing biological activities, tunicamycins have potential as therapeutic agents for infectious diseases or cancers. Structurally, tunicamycins have a unique structure composed of an undecodialdose skeleton, a lipid chain and a GlcNAc fragment linked by a 1,1-ß,α-trehalose-type glycosidic bond. In this mini review, we summarize the total chemical syntheses and biosynthetic studies of tunicamycins.


Assuntos
Streptomyces/metabolismo , Tunicamicina/biossíntese , Tunicamicina/síntese química , Família Multigênica , Streptomyces/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-29844049

RESUMO

The tunicamycin biosynthetic gene cluster of Streptomyces chartreusis consists of 14 genes (tunA to tunN) with a high degree of apparent translational coupling. Transcriptional analysis revealed that all of these genes are likely to be transcribed as a single operon from two promoters, tunp1 and tunp2. In-frame deletion analysis revealed that just six of these genes (tunABCDEH) are essential for tunicamycin production in the heterologous host Streptomyces coelicolor, while five (tunFGKLN) with likely counterparts in primary metabolism are not necessary, but presumably ensure efficient production of the antibiotic at the onset of tunicamycin biosynthesis. Three genes are implicated in immunity, namely, tunI and tunJ, which encode a two-component ABC transporter presumably required for export of the antibiotic, and tunM, which encodes a putative S-adenosylmethionine (SAM)-dependent methyltransferase. Expression of tunIJ or tunM in S. coelicolor conferred resistance to exogenous tunicamycin. The results presented here provide new insights into tunicamycin biosynthesis and immunity.


Assuntos
Antibacterianos/biossíntese , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Família Multigênica , Streptomyces/genética , Tunicamicina/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Antibacterianos/imunologia , Sequência de Bases , Deleção de Genes , Teste de Complementação Genética , Metiltransferases/genética , Metiltransferases/imunologia , Óperon , Regiões Promotoras Genéticas , Streptomyces/imunologia , Streptomyces/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/imunologia , Streptomyces coelicolor/metabolismo , Tunicamicina/imunologia
5.
Nat Prod Rep ; 35(7): 660-694, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29633774

RESUMO

Covering: up to the end of 2017 C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.


Assuntos
Produtos Biológicos/química , Coenzimas/biossíntese , Enzimas/química , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Adenina/análogos & derivados , Adenina/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/biossíntese , Produtos Biológicos/metabolismo , Carbono/química , Coenzimas/química , Endopeptidases/química , Endopeptidases/metabolismo , Hidrolases/química , Hidrolases/metabolismo , Molibdênio/química , Molibdênio/metabolismo , Tunicamicina/biossíntese , Vitamina K 2/metabolismo
6.
Appl Microbiol Biotechnol ; 102(6): 2621-2633, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423631

RESUMO

The genus Streptomyces have been highly regarded for their important source of natural products. Combined with the technology of genome sequencing and mining, we could identify the active ingredients from fermentation broth quickly. Here, we report on Streptomyces sp. strain fd1-xmd, which was isolated from a soil sample collected in Shanghai. Interestingly, the fermentation broth derived from this strain demonstrated broad-spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and eukaryotes. To identify the antimicrobial substances and their biosynthetic gene clusters, we sequenced the fd1-xmd strain and obtained a genome 7,929,999 bp in length. The average GC content of the chromosome was 72.5 mol%. Knockout experiments demonstrated that out of eight biosynthetic gene clusters we could identify, two are responsible for the biosynthesis of the antibiotics streptothricin (ST) and tunicamycin (TM). The ST biosynthetic gene cluster from fd1-xmd was verified via successful heterologous expression in Streptomyces coelicolor M1146. ST production had a yield of up to 0.5 g/L after the optimization of culture conditions. This study describes a novel producer of ST and TM and outlines the complete process undertaken for Streptomyces sp. strain fd1-xmd genome mining.


Assuntos
Vias Biossintéticas/genética , Genômica , Família Multigênica , Streptomyces/genética , Streptomyces/metabolismo , Estreptotricinas/biossíntese , Tunicamicina/biossíntese , Bactérias/efeitos dos fármacos , China , Biologia Computacional , Meios de Cultura/química , Mineração de Dados , Eucariotos/efeitos dos fármacos , Microbiologia do Solo , Streptomyces/classificação , Streptomyces/isolamento & purificação , Sequenciamento Completo do Genoma
8.
Nat Chem ; 4(7): 539-46, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22717438

RESUMO

The tunicamycins are archetypal nucleoside antibiotics targeting bacterial peptidoglycan biosynthesis and eukaryotic protein N-glycosylation. Understanding the biosynthesis of their unusual carbon framework may lead to variants with improved selectivity. Here, we demonstrate in vitro recapitulation of key sugar-manipulating enzymes from this pathway. TunA is found to exhibit unusual regioselectivity in the reduction of a key α,ß-unsaturated ketone. The product of this reaction is shown to be the preferred substrate for TunF--an epimerase that converts the glucose derivative to a galactose. In Streptomyces strains in which another gene (tunB) is deleted, the biosynthesis is shown to stall at this exo-glycal product. These investigations confirm the combined TunA/F activity and delineate the ordering of events in the metabolic pathway. This is the first time these surprising exo-glycal intermediates have been seen in biology. They suggest that construction of the aminodialdose core of tunicamycin exploits their enol ether motif in a mode of C-C bond formation not previously observed in nature, to create an 11-carbon chain.


Assuntos
Antibacterianos/biossíntese , Tunicamicina/biossíntese , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Biologia Computacional , Hidroliases/química , Hidroliases/metabolismo , Cetonas/química , Cetonas/metabolismo , Família Multigênica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia , Estereoisomerismo , Especificidade por Substrato , Tunicamicina/química
9.
J Bacteriol ; 193(24): 7021-2, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22123769

RESUMO

We announce the sequencing of Streptomyces chartreusis NRRL 12338 and NRRL 3882 and Streptomyces lysosuperificus ATCC 31396. These are producers of tunicamycins, chartreusins, cephalosporins, holomycins, and calcimycin. The announced genomes, together with the published Streptomyces clavuligerus genome, will facilitate data mining of these secondary metabolites.


Assuntos
Antibacterianos/metabolismo , Genoma Bacteriano , Streptomyces/genética , Tunicamicina/biossíntese , Sequência de Bases , Cefalosporinas/metabolismo , Dados de Sequência Molecular , Streptomyces/metabolismo
10.
Protein Cell ; 1(12): 1093-105, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21153459

RESUMO

Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, ß-1″,11'-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA-tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.


Assuntos
Actinobacteria/enzimologia , Carboidratos/biossíntese , Proteínas Recombinantes/biossíntese , Streptomyces/enzimologia , Streptomyces/genética , Tunicamicina/biossíntese , Actinobacteria/genética , Sequência de Bases , Bioensaio , Sequência de Carboidratos , Carboidratos/genética , Clonagem Molecular , Deleção de Genes , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Família Multigênica , Proteínas Recombinantes/genética , Análise de Sequência de DNA , Tunicamicina/química , Tunicamicina/genética
11.
J Antibiot (Tokyo) ; 60(8): 485-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17827659

RESUMO

Tunicamycins are nucleotide sugar analogs produced by several Streptomyces species. In eukaryotes, tunicamycins inhibit UDP-N-acetylglucosamine: dolichol phosphate GlcNAc-1-P transferase (GPT) that catalyzes the first step in protein glycosylation. In bacteria they inhibit UDP-N-acetylmuramoyl-pentapeptide: undecaprenol phosphate MurNAc-pentapeptide-1-P transtransferase (MraY) that catalyzes an early stage in peptidoglycan cell wall assembly. Tunicamycins are substrate analog of GPT and MraY, such that the alphabeta-1'',11'-linked GlcNAc residue of the tunicamycins mimics the transferred GlcNAc-1-phosphate. The unusual structure of tunicamycins, particularly the unique 11-carbon sugar, tunicamine, and the alphabeta-1'',11'-O-glycosidic linkage, suggest its biosynthesis to be unique. This review discusses potential biosyntheses for tunicamycins via the synthesis and conjugation of uridine-5'-aldehyde and UDP-4-keto-N-acetylgalactosamine-5,6-ene and the subsequent formation of the alpha,beta-1'',11' glycosidic linkage.


Assuntos
Tunicamicina/biossíntese , Aldeídos/metabolismo , Configuração de Carboidratos , Dissacarídeos , Galactosamina/análogos & derivados , Glicosídeos/metabolismo , Glicosilação , Oxirredutases/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Proteínas/metabolismo , Streptomyces/metabolismo , Tunicamicina/química , Uridina/metabolismo
12.
J Biol Chem ; 277(38): 35289-96, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12093793

RESUMO

Tunicamycin is a reversible inhibitor of polyprenol-phosphate: N-acetylhexosamine-1-phosphate translocases and is produced by several Streptomyces species. We have examined tunicamycin biosynthesis, an important but poorly characterized biosynthetic pathway. Biosynthetic precursors have been identified by incorporating radioactive and stable isotopes, and by determining the labeling pattern using electrospray ionization-collision induced dissociation-mass spectrometry (ESI-CID-MS), and proton, deuterium, and C-13 nuclear magnetic resonance (NMR) spectroscopy. Preparation and analysis of [uracil-5-(2)H]-labeled tunicamycin established the complete ESI-CID-MS fragmentation pathway for the major components of the tunicamycin complex. Competitive metabolic experiments indicate that 7 deuteriums incorporate into tunicamycin from [6,6'-(2)H,(2)H]-labeled D-glucose, 6 of which arise from D-GlcNAc and 1 from uridine and/or D-ribose. Inverse correlation NMR experiments (heteronuclear single-quantum coherence (HSQC)) of (13)C-labeled tunicamycin enriched from D-[1-(13)C]glucose suggest that the unique tunicamine 11-carbon dialdose sugar backbone arises from a 5-carbon furanose precursor derived from uridine and a 6-carbon N-acetylamino-pyranose precursor derived from UDP-D-N-acetylglucosamine. The equivalent incorporation of (13)C into both the alpha-1" and beta-11' anomeric carbons of tunicamycin supports a direct biosynthesis via 6-carbon metabolism. It also indicates that the tunicamine motif and the alpha-1"-linked GlcNAc residue are both derived from the same metabolic pool of UDP-GlcNAc, without significant differential metabolic processing. A biosynthetic pathway is therefore proposed for tunicamycin for the first time: an initial formation of the 11-carbon tunicamine sugar motif from uridine and UDP-GlcNAc via uridine-5'-aldehyde and UDP-4-keto-6-ene-N-acetylhexosamine, respectively, and subsequent formation of the anomeric-to-anomeric alpha, beta-1",11'-glycosidic bond.


Assuntos
Dissacarídeos/metabolismo , Galactosamina/análogos & derivados , Galactosamina/metabolismo , Tunicamicina/biossíntese , Sequência de Carboidratos , Carbono/metabolismo , Cromatografia Líquida de Alta Pressão , Dissacarídeos/química , Galactosamina/química , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray
14.
Mol Cell Biol ; 9(1): 214-23, 1989 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-2494430

RESUMO

Cell lines established from the lepidopteran insect Spodoptera frugiperda (fall armyworm; Sf9) are used routinely as hosts for the expression of foreign proteins by recombinant baculovirus vectors. We have examined the pathway of protein glycosylation and secretion in these cells, using human tissue plasminogen activator (t-PA) as a model. t-PA expressed in Sf9 cells was both N glycosylated and secreted. At least a subset of the N-linked oligosaccharides in extracellular t-PA was resistant to endo-beta-N-acetyl-D-glucosaminidase H, which removes immature, high-mannose-type oligosaccharides. This refutes the general conclusion from previous studies that Sf9 cells cannot process immature N-linked oligosaccharides to an endo-beta-N-acetyl-D-glucosaminidase H-resistant form. A nonglycosylated t-PA precursor was not detected in Sf9 cells, even with very short pulse-labeling times. This suggests that the mammalian signal sequence of t-PA is efficiently recognized in Sf9 cells and that it can mediate rapid translocation across the membrane of the rough endoplasmic reticulum, where cotranslational N glycosylation takes place. However, t-PA was secreted rather slowly, with a half-time of about 1.6 h. Thus, a rate-limiting step(s) in secretion occurs subsequent to translocation and N glycosylation of the t-PA polypeptide. Treatment of Sf9 cells with tunicamycin, but not with inhibitors of oligosaccharide processing, prevented the appearance of t-PA in the extracellular medium. This suggests that N glycosylation per se, but not processing of the N-linked oligosaccharides, is required directly or indirectly in baculovirus-infected Sf9 cells for the secretion of t-PA. Finally, the relative efficiency of secretion decreased dramatically with time of infection, suggesting that the Sf9 host cell secretory pathway is compromised during the later stages of baculovirus infection.


Assuntos
Regulação da Expressão Gênica , Vetores Genéticos , Vírus de Insetos/genética , Lepidópteros/metabolismo , Modelos Genéticos , Ativador de Plasminogênio Tecidual/metabolismo , Transfecção , Animais , Células Clonais , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilação , Humanos , Cinética , Lepidópteros/genética , Testes de Precipitina , Radiólise de Impulso , Ativador de Plasminogênio Tecidual/genética , Tunicamicina/biossíntese , Tunicamicina/farmacologia
15.
Biochim Biophys Acta ; 923(3): 362-70, 1987 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-3828379

RESUMO

Three analogues of tunicamycin, each with minor alterations in structure in different regions of the molecule, have been employed to study the effects of such modifications upon the biological activity of the antibiotic. The data indicate that any modification of structure results in loss of the ability of the antibiotic to inhibit N-glycosylation of proteins. In contrast to tunicamycin itself, none of the analogues had any deleterious effects upon cellular macromolecule synthesis, nor upon the kinetics of export of de novo synthesised IgM or IgG molecules from treated rat hybridoma cells. In addition, the incorporation of tritiated sugars into acid-precipitable macromolecules was not inhibited. Endoglycosidase H digestion of isolated IgG molecules further suggested that the analogues employed did not interfere with qualitative glycosylation at the level of N-acetylglucosamine transferases I and II in the golgi apparatus. The data are consistent with the interpretation that tunicamycin has very precise structural requirements for expression of inhibitory effects upon protein glycosylation, and that small variations of structure can lead to loss of its inhibitory effects.


Assuntos
Antibacterianos , Tunicamicina , Animais , Linhagem Celular , Glicosilação , Imunoglobulinas/biossíntese , Substâncias Macromoleculares , Ratos , Relação Estrutura-Atividade , Tunicamicina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...