Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.917
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2320655121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959043

RESUMO

SLC7A11 is a cystine transporter and ferroptosis inhibitor. How the stability of SLC7A11 is coordinately regulated in response to environmental cystine by which E3 ligase and deubiquitylase (DUB) remains elusive. Here, we report that neddylation inhibitor MLN4924 increases cystine uptake by causing SLC7A11 accumulation, via inactivating Cullin-RING ligase-3 (CRL-3). We identified KCTD10 as the substrate-recognizing subunit of CRL-3 for SLC7A11 ubiquitylation, and USP18 as SLC7A11 deubiquitylase. Upon cystine deprivation, the protein levels of KCTD10 or USP18 are decreased or increased, respectively, contributing to SLC7A11 accumulation. By destabilizing or stabilizing SLC7A11, KCTD10, or USP18 inversely regulates the cystine uptake and ferroptosis. Biologically, MLN4924 combination with SLC7A11 inhibitor Imidazole Ketone Erastin (IKE) enhanced suppression of tumor growth. In human breast tumor tissues, SLC7A11 levels were negatively or positively correlated with KCTD10 or USP18, respectively. Collectively, our study defines how SLC7A11 and ferroptosis is coordinately regulated by the CRL3KCTD10/E3-USP18/DUB axis, and provides a sound rationale of drug combination to enhance anticancer efficacy.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Cistina , Ferroptose , Pirimidinas , Ubiquitina Tiolesterase , Humanos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Pirimidinas/farmacologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Animais , Cistina/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Linhagem Celular Tumoral , Ubiquitinação , Feminino , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Piperazinas/farmacologia , Células HEK293
2.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968116

RESUMO

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Humanos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina/metabolismo , Histonas/metabolismo , Histonas/genética , Poliubiquitina/metabolismo
3.
Nat Commun ; 15(1): 5961, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013878

RESUMO

Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-ß and exerts a crucial role in the therapeutic efficacy of IFN-ß for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.


Assuntos
Diferenciação Celular , Proteína Forkhead Box O1 , Interferon beta , Linfócitos T Reguladores , Ubiquitina-Proteína Ligases , Ubiquitinação , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Camundongos , Humanos , Interferon beta/metabolismo , Camundongos Endogâmicos C57BL , Núcleo Celular/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Transporte Ativo do Núcleo Celular , Feminino , Camundongos Knockout , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/genética , Células HEK293
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000251

RESUMO

Ubiquitination plays a crucial role in regulating signal pathways during the post-translation stage of protein synthesis in response to various environmental stresses. E3 ubiquitin ligase has been discovered to ultimately control various intracellular activities by imparting specificity to proteins to be degraded. This study was conducted to confirm biological and genetic functions of the U-box type E3 ubiquitin ligase (PUB) gene against biotic stress in rice (Oryza sativa L.). OsPUB9 gene-specific sgRNA were designed and transformants were developed through Agrobacterium-mediated transformation. Deep sequencing using callus was performed to confirm the mutation type of T0 plants, and a total of three steps were performed to select null individuals without T-DNA insertion. In the case of the OsPUB9 gene-edited line, a one bp insertion was generated by gene editing, and it was confirmed that early stop codon and multiple open reading frame (ORF) sites were created by inserting thymine. It is presumed that ubiquitination function also changed according to the change in protein structure of U-box E3 ubiquitin ligase. The OsPUB9 gene-edited null lines were inoculated with bacterial leaf blight, and finally confirmed to have a resistance phenotype similar to Jinbaek, a bacterial blight-resistant cultivar. Therefore, it is assumed that the amino acid sequence derived from the OsPUB9 gene is greatly changed, resulting in a loss of the original protein functions related to biological mechanisms. Comprehensively, it was confirmed that resistance to bacterial leaf blight stress was enhanced when a mutation occurred at a specific site of the OsPUB9 gene.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença , Edição de Genes , Oryza , Doenças das Plantas , Proteínas de Plantas , Ubiquitina-Proteína Ligases , Oryza/genética , Oryza/microbiologia , Edição de Genes/métodos , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
5.
Nat Commun ; 15(1): 5515, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951495

RESUMO

Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein's activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA's nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Transativadores , Ubiquitinação , Replicação Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Células HEK293 , Transativadores/metabolismo , Transativadores/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ativação Viral , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Núcleo Celular/metabolismo
6.
Biochem J ; 481(14): 923-944, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38985307

RESUMO

Maintenance of genome stability is of paramount importance for the survival of an organism. However, genomic integrity is constantly being challenged by various endogenous and exogenous processes that damage DNA. Therefore, cells are heavily reliant on DNA repair pathways that have evolved to deal with every type of genotoxic insult that threatens to compromise genome stability. Notably, inherited mutations in genes encoding proteins involved in these protective pathways trigger the onset of disease that is driven by chromosome instability e.g. neurodevelopmental abnormalities, neurodegeneration, premature ageing, immunodeficiency and cancer development. The ability of cells to regulate the recruitment of specific DNA repair proteins to sites of DNA damage is extremely complex but is primarily mediated by protein post-translational modifications (PTMs). Ubiquitylation is one such PTM, which controls genome stability by regulating protein localisation, protein turnover, protein-protein interactions and intra-cellular signalling. Over the past two decades, numerous ubiquitin (Ub) E3 ligases have been identified to play a crucial role not only in the initiation of DNA replication and DNA damage repair but also in the efficient termination of these processes. In this review, we discuss our current understanding of how different Ub E3 ligases (RNF168, TRAIP, HUWE1, TRIP12, FANCL, BRCA1, RFWD3) function to regulate DNA repair and replication and the pathological consequences arising from inheriting deleterious mutations that compromise the Ub-dependent DNA damage response.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Neoplasias/genética , Neoplasias/metabolismo , Instabilidade Genômica , Processamento de Proteína Pós-Traducional , Animais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
J Med Virol ; 96(7): e29789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988206

RESUMO

Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with integration of Merkel cell polyomavirus (MCPyV). MCPyV-encoded T-antigens (TAs) are pivotal for sustaining MCC's oncogenic phenotype, i.e., repression of TAs results in reactivation of the RB pathway and subsequent cell cycle arrest. However, the MCC cell line LoKe, characterized by a homozygous loss of the RB1 gene, exhibits uninterrupted cell cycle progression after shRNA-mediated TA repression. This unique feature allows an in-depth analysis of the effects of TAs beyond inhibition of the RB pathway, revealing the decrease in expression of stem cell-related genes upon panTA-knockdown. Analysis of gene regulatory networks identified members of the E2F family (E2F1, E2F8, TFDP1) as key transcriptional regulators that maintain stem cell properties in TA-expressing MCC cells. Furthermore, minichromosome maintenance (MCM) genes, which encodes DNA-binding licensing proteins essential for stem cell maintenance, were suppressed upon panTA-knockdown. The decline in stemness occurred simultaneously with neural differentiation, marked by the increased expression of neurogenesis-related genes such as neurexins, BTG2, and MYT1L. This upregulation can be attributed to heightened activity of PBX1 and BPTF, crucial regulators of neurogenesis pathways. The observations in LoKe were confirmed in an additional MCPyV-positive MCC cell line in which RB1 was silenced before panTA-knockdown. Moreover, spatially resolved transcriptomics demonstrated reduced TA expression in situ in a part of a MCC tumor characterized by neural differentiation. In summary, TAs are critical for maintaining stemness of MCC cells and suppressing neural differentiation, irrespective of their impact on the RB-signaling pathway.


Assuntos
Antígenos Virais de Tumores , Diferenciação Celular , Técnicas de Silenciamento de Genes , Poliomavírus das Células de Merkel , Proteínas de Ligação a Retinoblastoma , Humanos , Poliomavírus das Células de Merkel/genética , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Linhagem Celular Tumoral , Diferenciação Celular/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/genética , Células-Tronco Neoplásicas/virologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Redes Reguladoras de Genes , Neurônios/virologia
9.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955187

RESUMO

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autoimunidade , Resistência à Doença , Fusarium , Doenças das Plantas , Imunidade Vegetal , Ubiquitina-Proteína Ligases , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Fusarium/imunologia , Proteínas NLR/metabolismo , Proteínas NLR/genética , Regulação da Expressão Gênica de Plantas , Ubiquitinação , Proteínas de Transporte
10.
Sci Rep ; 14(1): 15848, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982159

RESUMO

E3 ubiquitin protein ligase encoded by ARIH2 gene catalyses the ubiquitination of target proteins and plays a crucial role in posttranslational modifications across various cellular processes. As prior documented, mutations in genes involved in the ubiquitination process are often associated with autism spectrum disorder (ASD) and/or intellectual disability (ID). In the current study, a de novo heterozygous mutation was identified in the splicing intronic region adjacent to the last exon of the ARIH2 gene using whole exome sequencing (WES). We hypothesize that this mutation, found in an ASD/ID patient, disrupts the protein Ariadne domain which is involved in the autoinhibition of ARIH2 enzyme. Predictive analyses elucidated the implications of the novel mutation in the splicing process and confirmed its autosomal dominant inheritance model. Nevertheless, we cannot exclude the possibility that other genetic factors, undetectable by WES, such as mutations in non-coding regions and polygenic risk in inter-allelic complementation, may contribute to the patient's phenotype. This work aims to suggest potential relationship between the detected mutation in ARIH2 gene and both ASD and ID, even though functional studies combined with new sequencing approaches will be necessary to validate this hypothesis.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Mutação , Ubiquitina-Proteína Ligases , Humanos , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Ubiquitina-Proteína Ligases/genética , Masculino , Sequenciamento do Exoma , Feminino , Predisposição Genética para Doença , Criança
11.
Nat Commun ; 15(1): 5818, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987265

RESUMO

A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.


Assuntos
Asma , Proteínas de Ciclo Celular , Células Epiteliais , Ferroptose , Proteínas de Membrana Transportadoras , Mitocôndrias , Mitofagia , Fenótipo , Fator de Transcrição TFIIIA , Humanos , Mitocôndrias/metabolismo , Asma/metabolismo , Asma/patologia , Células Epiteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Fator de Transcrição TFIIIA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Proteínas Quinases/metabolismo , Feminino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Peroxidação de Lipídeos , Camundongos , Pessoa de Meia-Idade
12.
PLoS Genet ; 20(7): e1011288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990837

RESUMO

We examined the associations of vegetarianism with metabolic biomarkers using traditional and genetic epidemiology. First, we addressed inconsistencies in self-reported vegetarianism among UK Biobank participants by utilizing data from two dietary surveys to find a cohort of strict European vegetarians (N = 2,312). Vegetarians were matched 1:4 with nonvegetarians for non-genetic association analyses, revealing significant effects of vegetarianism in 15 of 30 biomarkers. Cholesterol measures plus vitamin D were significantly lower in vegetarians, while triglycerides were higher. A genome-wide association study revealed no genome-wide significant (GWS; 5×10-8) associations with vegetarian behavior. We performed genome-wide gene-vegetarianism interaction analyses for the biomarkers, and detected a GWS interaction impacting calcium at rs72952628 (P = 4.47×10-8). rs72952628 is in MMAA, a B12 metabolic pathway gene; B12 has major deficiency potential in vegetarians. Gene-based interaction tests revealed two significant genes, RNF168 in testosterone (P = 1.45×10-6) and DOCK4 in estimated glomerular filtration rate (eGFR) (P = 6.76×10-7), which have previously been associated with testicular and renal traits, respectively. These nutrigenetic findings indicate genotype can modify the associations between vegetarianism and health outcomes.


Assuntos
Biomarcadores , Cálcio , Dieta Vegetariana , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular , Testosterona , Humanos , Masculino , Taxa de Filtração Glomerular/genética , Testosterona/sangue , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Cálcio/metabolismo , Polimorfismo de Nucleotídeo Único , Vegetarianos , Idoso , Vitamina D/sangue , Adulto , Ubiquitina-Proteína Ligases/genética
13.
Int J Biol Sci ; 20(9): 3656-3674, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993561

RESUMO

Ubiquitination plays a pivotal regulatory role in tumor progression. Among the components of the ubiquitin-proteasome system (UPS), ubiquitin-protein ligase E3 has emerged as a key molecule. Nevertheless, the biological functions of E3 ubiquitin ligases and their potential mechanisms orchestrating glycolysis in gastric cancer (GC) remain to be elucidated. In this study, we conducted a comprehensive transcriptomic analysis to identify the core E3 ubiquitin ligases in GC, followed by extensive validation of the expression patterns and clinical significance of Tripartite motif-containing 50 (TRIM50) both in vitro and in vivo. Remarkably, we found that TRIM50 was downregulated in GC tissues, associated with malignant progression and poor patient survival. Functionally, overexpression of TRIM50 suppressed GC cell proliferation and indirectly mitigated the invasion and migration of GC cells by inhibiting the M2 polarization of tumor-associated macrophages (TAMs). Mechanistically, TRIM50 inhibited the glycolytic pathway by ubiquitinating Phosphoglycerate Kinase 1 (PGK1), thereby directly suppressing GC cell proliferation. Simultaneously, the reduction in lactate led to diminished M2 polarization of TAMs, indirectly inhibiting the invasion and migration of GC cells. Notably, the downregulation of TRIM50 in GC was mediated by the METTL3/YTHDF2 axis in an m6A-dependent manner. In our study, we definitively identified TRIM50 as a tumor suppressor gene (TSG) that effectively inhibits glycolysis and the malignant progression of GC by ubiquitinating PGK1, thus offering novel insights and promising targets for the diagnosis and treatment of GC.


Assuntos
Glicólise , Fosfoglicerato Quinase , Neoplasias Gástricas , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Humanos , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Quinase/genética , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proliferação de Células/genética , Animais , Camundongos , Camundongos Nus , Progressão da Doença , Movimento Celular/genética , Camundongos Endogâmicos BALB C , Regulação Neoplásica da Expressão Gênica , Metiltransferases/metabolismo , Metiltransferases/genética
14.
Sci Adv ; 10(28): eadg1421, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996019

RESUMO

Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.


Assuntos
Transtorno Autístico , Transcriptoma , Ubiquitina-Proteína Ligases , Animais , Masculino , Feminino , Transtorno Autístico/genética , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Comportamento Animal , Caracteres Sexuais , Encéfalo/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença
15.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000606

RESUMO

Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.


Assuntos
Dexametasona , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Músculo Esquelético , Atrofia Muscular , Animais , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/induzido quimicamente , Camundongos , Dexametasona/farmacologia , Dexametasona/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Probióticos/administração & dosagem , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Lactobacillus plantarum
16.
Nat Commun ; 15(1): 5514, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951492

RESUMO

HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.


Assuntos
HIV-1 , Imunidade Inata , Macrófagos , Proteínas Proto-Oncogênicas , Transativadores , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , HIV-1/fisiologia , HIV-1/imunologia , Transativadores/metabolismo , Transativadores/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/genética , Células HEK293 , Vírion/metabolismo , Proteínas Serina-Treonina Quinases
17.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38967608

RESUMO

Peroxisomes are membrane-bound organelles harboring metabolic enzymes. In humans, peroxisomes are required for normal development, yet the genes regulating peroxisome function remain unclear. We performed a genome-wide CRISPRi screen to identify novel factors involved in peroxisomal homeostasis. We found that inhibition of RNF146, an E3 ligase activated by poly(ADP-ribose), reduced the import of proteins into peroxisomes. RNF146-mediated loss of peroxisome import depended on the stabilization and activity of the poly(ADP-ribose) polymerases TNKS and TNKS2, which bind the peroxisomal membrane protein PEX14. We propose that RNF146 and TNKS/2 regulate peroxisome import efficiency by PARsylation of proteins at the peroxisome membrane. Interestingly, we found that the loss of peroxisomes increased TNKS/2 and RNF146-dependent degradation of non-peroxisomal substrates, including the ß-catenin destruction complex component AXIN1, which was sufficient to alter the amplitude of ß-catenin transcription. Together, these observations not only suggest previously undescribed roles for RNF146 in peroxisomal regulation but also a novel role in bridging peroxisome function with Wnt/ß-catenin signaling during development.


Assuntos
Proteína Axina , Peroxissomos , Ubiquitina-Proteína Ligases , Via de Sinalização Wnt , Peroxissomos/metabolismo , Peroxissomos/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Humanos , Proteína Axina/metabolismo , Proteína Axina/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , beta Catenina/metabolismo , beta Catenina/genética , Células HEK293 , Transporte Proteico , Sistemas CRISPR-Cas
18.
Cell Mol Biol Lett ; 29(1): 103, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997648

RESUMO

BACKGROUND: Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved. METHODS: The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays. RESULTS: The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression. CONCLUSIONS: FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.


Assuntos
DNA Circular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Ubiquitina-Proteína Ligases , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Animais , DNA Circular/genética , DNA Circular/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proliferação de Células/genética , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Inibidor de Quinase Dependente de Ciclina p27
19.
Cell Death Dis ; 15(7): 473, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956064

RESUMO

Damage to renal tubular epithelial cells (RTECs) signaled the onset and progression of sepsis-associated acute kidney injury (SA-AKI). Recent research on mitochondria has revealed that mitophagy plays a crucial physiological role in alleviating injury to RTECs and it is suppressed progressively by the inflammation response in SA-AKI. However, the mechanism by which inflammation influences mitophagy remains poorly understood. We examined how macrophage migration inhibitory factor (MIF), a pro-inflammatory protein, influences the PINK1-Parkin pathway of mitophagy by studying protein-protein interactions when MIF was inhibited or overexpressed. Surprisingly, elevated levels of MIF were found to directly bind to PINK1, disrupting its interaction with Parkin. This interference hindered the recruitment of Parkin to mitochondria and impeded the initiation of mitophagy. Furthermore, this outcome led to significant apoptosis of RTECs, which could, however, be reversed by an MIF inhibitor ISO-1 and/or a new mitophagy activator T0467. These findings highlight the detrimental impact of MIF on renal damage through its disruption of the interaction between PINK1 and Parkin, and the therapeutic potential of ISO-1 and T0467 in mitigating SA-AKI. This study offers a fresh perspective on treating SA-AKI by targeting MIF and mitophagy.


Assuntos
Injúria Renal Aguda , Fatores Inibidores da Migração de Macrófagos , Mitofagia , Proteínas Quinases , Sepse , Ubiquitina-Proteína Ligases , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Sepse/complicações , Sepse/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Apoptose , Ligação Proteica , Masculino , Oxirredutases Intramoleculares/metabolismo
20.
Vet Res ; 55(1): 84, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965634

RESUMO

Pseudorabies virus (PRV) has evolved multiple strategies to evade host antiviral responses to benefit virus replication and establish persistent infection. Recently, tripartite motif 26 (TRIM26), a TRIM family protein, has been shown to be involved in a broad range of biological processes involved in innate immunity, especially in regulating viral infection. Herein, we found that the expression of TRIM26 was significantly induced after PRV infection. Surprisingly, the overexpression of TRIM26 promoted PRV production, while the depletion of this protein inhibited virus replication, suggesting that TRIM26 could positively regulate PRV infection. Further analysis revealed that TRIM26 negatively regulates the innate immune response by targeting the RIG-I-triggered type I interferon signalling pathway. TRIM26 was physically associated with MAVS independent of viral infection and reduced MAVS expression. Mechanistically, we found that NDP52 interacted with both TRIM26 and MAVS and that TRIM26-induced MAVS degradation was almost entirely blocked in NDP52-knockdown cells, demonstrating that TRIM26 degrades MAVS through NDP52-mediated selective autophagy. Our results reveal a novel mechanism by which PRV escapes host antiviral innate immunity and provide insights into the crosstalk among virus infection, autophagy, and the innate immune response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Autofagia , Imunidade Inata , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Suínos , Replicação Viral , Humanos , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...