Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.129
Filtrar
1.
J Environ Manage ; 365: 121611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959769

RESUMO

Ultrafiltration technology, separating water from impurities by the core membrane, is an effective strategy for treating wastewater to meet the ever-growing requirement of clean and drinking water. However, the similar nature of hydrophobic organic pollutants and the membrane surface leads to severe adsorption and aggregation, resulting unavoidable membrane degradation of penetration and rejection. The present study presents a novel block amphiphilic polymer, polyethersulfone-g-carboxymethyl chitosan@MWCNT (PES-g-CMC@MWCNT), which is synthesized by grafting hydrophobic polyethersulfone to hydrophilic carboxymethyl chitosan in order to suspend CMC in organic solution. A mixture of hydrophilic carboxymethyl chitosan and hydrophobic polymers (polyethersulfone), in which hydrophilic segments are bonded to hydrophobic segments, could provide hydrophilic groups, as well as gather and remain stable on membrane surfaces by their hydrophobic interaction for improved compatibility and durability. The resultant ultrafiltration membranes exhibit high water flux (198.10 L m-2·h-1), suitable hydrophilicity (64.77°), enhanced antifouling property (82.96%), while still maintains excellent rejection of bovine serum albumin (91.75%). There has also been an improvement in membrane cross-sectional morphology, resulting in more regular pores size (47.64 nm) and higher porosity (84.60%). These results indicate that amphiphilic polymer may be able to significantly promote antifouling and permeability of ultrafiltration membranes.


Assuntos
Quitosana , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Polímeros , Sulfonas , Ultrafiltração , Polímeros/química , Quitosana/química , Quitosana/análogos & derivados , Sulfonas/química , Adsorção , Purificação da Água/métodos , Incrustação Biológica/prevenção & controle
2.
J Environ Sci (China) ; 146: 217-225, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969449

RESUMO

Membrane fouling is a bottleneck issue that hindered the further application of ultrafiltration technology. To alleviate membrane fouling, coagulation-ultrafiltration (C-UF) process using polyaluminum chloride (PACl) and PACl-Al13 with high proportion of Al13O4(OH)247+ as coagulants, respectively, were investigated at various pH conditions. Results indicated that an increase in solution pH contributed to larger floc size and looser floc structure for both PACl and PACl-Al13. It was conducive to the formation of more porous cake, as evidenced by mean pore area and pore area distribution of cake, leading to lower reversible fouling. Furthermore, humic acid (HA) removal presented a trend of first increasing and then decreasing with the increase of pH. The optimal HA removal was achieved at pH 6 regardless of coagulant type, suggesting that the slightest irreversible fouling should be occurred at this point. Interestingly, the irreversible fouling with PACl coagulant achieved a minimum value at pH 9, while the minimal irreversible fouling with PACl-Al13 was observed at pH 6. We speculated that the cake formed by PACl could further intercept HA prior to UF process at alkaline pH. Furthermore, compared with PACl, PACl-Al13 had a stronger charge neutralization ability, thus contributing to more compact floc structure and higher HA removal at various pH conditions. By UF fractionation measurement, higher HA removal for PACl-Al13 was due to higher removal of HA with molecular weight less than 50 kDa.


Assuntos
Substâncias Húmicas , Membranas Artificiais , Ultrafiltração , Ultrafiltração/métodos , Substâncias Húmicas/análise , Floculação , Hidróxido de Alumínio/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos
3.
Methods Mol Biol ; 2810: 329-353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926289

RESUMO

In the recent years, there has been a rapid development of new technologies and strategies when it comes to protein purification and quality control (QC), but the basic technologies for these processes go back a long way, with many improvements over the past few decades. The purpose of this chapter is to review these approaches, as well as some other topics such as the advantages and disadvantages of various purification methods for intracellular or extracellular proteins, the most effective and widely used genetically engineered affinity tags, solubility-enhancing tags, and specific proteases for removal of nontarget sequences. Affinity chromatography (AC), like Protein A or G resins for the recovery of antibodies or Fc fusion proteins or immobilized metals for the recovery of histidine-tagged proteins, will be discussed along with other conventional chromatography techniques: ion exchange (IEC), hydrophobic exchange (HEC), mixed mode (MMC), size exclusion (SEC), and ultrafiltration (UF) systems. How to select and combine these different technologies for the purification of any given protein and the minimal criteria for QC characterization of the purity, homogeneity, identity, and integrity of the final product will be presented.


Assuntos
Cromatografia de Afinidade , Controle de Qualidade , Proteínas Recombinantes , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Animais , Humanos , Cromatografia de Afinidade/métodos , Cromatografia por Troca Iônica/métodos , Ultrafiltração/métodos , Cromatografia em Gel/métodos
4.
Methods Mol Biol ; 2820: 139-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941021

RESUMO

Our understanding of how fungi respond and adapt to external environments can be increased by the comprehensive data sets of fungal-secreted proteins. Fungi produce a variety of secreted proteins, and environmental conditions can easily influence the fungal secretome. However, the low abundance of secreted proteins and their post-translational modifications make protein extraction more challenging. Hence, the enrichment of secreted proteins is a crucial procedure for secretome analysis. This chapter illustrates a protocol for iTRAQ-based quantitative secretome analysis describing the example of fungi exposed to different environmental conditions. The fungal-secreted proteins can be extracted by combining ultrafiltration and TCA-acetone precipitation. Subsequently, the secreted proteins can be identified and quantified by the iTRAQ-based quantitative proteomics approach.


Assuntos
Proteínas Fúngicas , Proteômica , Proteômica/métodos , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Espectrometria de Massas em Tandem/métodos , Proteoma , Ultrafiltração/métodos , Cromatografia Líquida/métodos
5.
Food Res Int ; 190: 114606, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945574

RESUMO

To meet the high consumer demand, butter production has increased over the last few years. As a result, the buttermilk (BM) co-produced volumes require new ways of adding value, such as in cheese manufacturing. However, BM use in cheese milk negatively influences the cheesemaking process (e.g., altered coagulation properties) and the product's final quality (e.g., high moisture content). The concentration of BM by ultrafiltration (UF) could potentially facilitate its use in cheese manufacturing through an increased protein content while maintaining the milk salt balance. Simultaneously, little is known about the digestion of UF BM cheese. Therefore, this study aimed to characterize the impact of UF BM on cheese manufacture, its structure, and its behavior during in vitro digestion. A 2-fold UF concentrated BM was used for cheese manufacture (skim milk [SM] - control). Compositional, textural, and microstructural analyses of cheeses were first conducted. In a second step, the cheeses were fed into an in vitro TNO gastrointestinal digestion model (TIM-1) of the stomach and small intestine and protein and phospholipid (PL) bioaccessibility was studied. The results showed that UF BM cheese significantly differed from SM cheese regarding its composition, hardness (p < 0.05) and microstructure. However, in TIM-1, UF BM and SM cheeses showed similar digestion behavior as a percentage of protein and PL intake. Despite relatively more non-digested and non-absorbed PL in the ileum efflux of UF BM cheese, the initially higher PL concentration contributes to an enhanced nutritional value compared to SM cheese. To our knowledge, this study is the first to compare the bioaccessibility of proteins and PL from UF BM and SM cheeses.


Assuntos
Leitelho , Queijo , Digestão , Fosfolipídeos , Ultrafiltração , Queijo/análise , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Leitelho/análise , Manipulação de Alimentos/métodos , Animais , Proteínas do Leite/metabolismo , Proteínas do Leite/análise , Trato Gastrointestinal/metabolismo , Disponibilidade Biológica
6.
Food Res Int ; 190: 114595, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945610

RESUMO

R-phycoerythrin (R-PE) is the most abundant, naturally occurring phycobiliproteins found in red algae. The spectroscopic and structural properties of phycobiliproteins exhibit unique absorption characteristics with two significant absorption maxima at 498 and 565 nm, indicating two different chromophores of R-PE, phycourobilin and phycoerythrobilin respectively. This study aimed to clarify how the stability of R-PE purified from F. lumbricalis was affected by different purification strategies. Crude extracts were compared to R-PE purified by i) microfiltration, ii) ultrafiltration, and iii) multi-step ammonium sulphate precipitation followed by dialysis. The stability of the different R-PE preparations was evaluated with respect to pH (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 40, 60, 80 and 100 °C). The absorbance spectra indicated higher stability of phycourobilin as compared to phycoerythrobilin for heat and pH stability in the samples. All preparations of R-PE showed heat stability till 40 °C from the findings of color, concentration of R-PE and fluorescence emission. The crude extract showed stability from pH 6 to 8, whereas R-PE purified by ultrafiltration and multi-step ammonium sulphate precipitation were both stable from pH 4 to 8 and R-PE purified by microfiltration exhibited stability from pH 4 to 10 from the results of color, SDS-PAGE, and concentration of R-PE. At pH 2, the color changed to violet whereas a yellow color was observed at pH 12 in the samples along with the precipitation of the protein.


Assuntos
Ficoeritrina , Rodófitas , Ficoeritrina/química , Ficoeritrina/isolamento & purificação , Concentração de Íons de Hidrogênio , Rodófitas/química , Ultrafiltração/métodos , Estabilidade Proteica , Precipitação Química , Sulfato de Amônio/química , Temperatura Alta , Temperatura
7.
Biofouling ; 40(5-6): 348-365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836472

RESUMO

Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.


Assuntos
Anacardium , Incrustação Biológica , Escherichia coli , Membranas Artificiais , Extratos Vegetais , Ultrafiltração , Purificação da Água , Incrustação Biológica/prevenção & controle , Ultrafiltração/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Escherichia coli/efeitos dos fármacos , Anacardium/química , Purificação da Água/métodos , Staphylococcus aureus/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Ácido Gálico/química , Soroalbumina Bovina/química
8.
Eur J Pharm Sci ; 199: 106794, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788908

RESUMO

Myocardial fibrosis can induce cardiac dysfunction and remodeling. Great attention has been paid to traditional chinese medicine (TCM) 's effectiveness in treating MF. Radix Angelica sinensis (Oliv.) Diels and Radix Astragalus mongholicus Bunge ultrafiltration extract (RAS-RA), which is a key TCM compound preparation, have high efficacy in regulating inflammation. However, studies on its therapeutic effect on radiation-induced myocardial fibrosis (RIMF) are rare. In this study, RAS-RA had therapeutic efficacy in RIMF and elucidated its mechanism of action. First, we formulated the prediction network that described the relation of RAS-RA with RIMF according to data obtained in different databases. Then, we conducted functional enrichment to investigate the functions and pathways associated with potential RIMF targets for RAS-RA. In vivo experiments were also performed to verify these functions and pathways. Second, small animal ultrasound examinations, H&E staining, Masson staining, transmission electron microscopy, Enzyme-linked immunosorbent assay (ELISA), Western-blotting, Immunohistochemical method and biochemical assays were conducted to investigate the possible key anti-RIMF pathway in RAS-RA. In total, 440 targets were detected in those 21 effective components of RAS-RA; meanwhile, 1,646 RIMF-related disease targets were also discovered. After that, PPI network analysis was conducted to identify 20 key targets based on 215 overlap gene targets. As indicated by the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis results, inflammation and PI3K/AKT/mTOR pathways might have important effects on the therapeutic effects on RIMF. Molecular docking analysis revealed high binding of effective components to targets (affinity < -6 kcal/mol). Based on experimental verification results, RAS-RA greatly mitigated myocardial fibrosis while recovering the cardiac activity of rats caused by X-rays. According to relevant protein expression profiles, the PI3K/AKT/mTOR pathway was important for anti-fibrosis effect of RAS-RA. Experimental studies showed that RAS-RA improved cardiac function, decreased pathological damage and collagen fiber deposition in cardiac tissues, and improved the mitochondrial structure of the heart of rats. RAS-RA also downregulated TNF-α, IL-6, and IL-1ß levels. Additionally, RAS-RA improved the liver and kidney functions and pathological injury of rat kidney and liver tissues, enhanced liver and kidney functions, and protected the liver and kidneys. RAS-RA also increased PI3K, AKT and mTOR protein levels within cardiac tissues and downregulated α-SMA, Collagen I, and Collagen III. The findings of this study suggested that RAS-RA decreased RIMF by suppressing collagen deposition and inflammatory response by inhibiting the PI3K/AKT/mTOR pathway. Thus, RAS-RA was the potential therapeutic agent used to alleviate RIMF.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Fibrose , Farmacologia em Rede , Ratos Sprague-Dawley , Animais , Angelica sinensis/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Masculino , Ratos , Astrágalo/química , Miocárdio/patologia , Miocárdio/metabolismo , Ultrafiltração/métodos , Transdução de Sinais/efeitos dos fármacos , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
Mar Drugs ; 22(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786588

RESUMO

Red phycoerythrin (R-PE) is a highly valuable protein found in an edible seaweed, Pyropia yezoensis. It is used extensively in biotechnological applications due to its strong fluorescence and stability in diverse environments. However, the current methods for extracting and purifying R-PE are costly and unsustainable. The aim of the present study was to enhance the financial viability of the process by improving the extraction and purification of R-PE from dried P. yezoensis and to further enhance R-PE value by incorporating it into a tandem dye for molecular biology applications. A combination of ultrafiltration, ion exchange chromatography, and gel filtration yielded concentrated (1 mg·mL-1) R-PE at 99% purity. Using purified PE and Cyanine5 (Cy5), an organic tandem dye, phycoerythrin-Cy5 (PE-Cy5), was subsequently established. In comparison to a commercially available tandem dye, PE-Cy5 exhibited 202.3% stronger fluorescence, rendering it suitable for imaging and analyzes that require high sensitivity, enhanced signal-to-noise ratio, broad dynamic range, or shorter exposure times to minimize potential damage to samples. The techno-economic analysis confirmed the financial feasibility of the innovative technique for the extraction and purification of R-PE and PE-Cy5 production.


Assuntos
Carbocianinas , Ficoeritrina , Ficoeritrina/química , Ficoeritrina/isolamento & purificação , Carbocianinas/química , Alga Marinha/química , Corantes Fluorescentes/química , Cromatografia por Troca Iônica/métodos , Cromatografia em Gel/métodos , Ultrafiltração/métodos , Rodófitas/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/química , Algas Comestíveis , Porphyra
11.
Anal Methods ; 16(20): 3179-3191, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38738644

RESUMO

Extracellular vesicles (EVs) are nanoparticles secreted by cells with a closed phospholipid bilayer structure, which can participate in various physiological and pathological processes and have significant clinical value in disease diagnosis, targeted therapy and prognosis assessment. EV isolation methods currently include differential ultracentrifugation, ultrafiltration, size exclusion chromatography, immunoaffinity, polymer co-precipitation and microfluidics. In addition, material-based biochemical or biophysical approaches relying on intrinsic properties of the material or its surface-modified functionalized monomers, demonstrated unique advantages in the efficient isolation of EVs. In order to provide new ideas for the subsequent development of material-based EV isolation methods, this review will focus on the principle, research status and application prospects of material-based EV isolation methods based on different material carriers and functional monomers.


Assuntos
Vesículas Extracelulares , Ultracentrifugação , Vesículas Extracelulares/química , Humanos , Ultracentrifugação/métodos , Cromatografia em Gel/métodos , Animais , Ultrafiltração/métodos
12.
Water Sci Technol ; 89(9): 2290-2310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747950

RESUMO

In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper explores cutting-edge membrane-based approaches, including reverse osmosis, nanofiltration, ultrafiltration, microfiltration, gas separation membranes, and pervaporation. Each technology's efficacy in removing distinct organic pollutants while producing purified water is scrutinized. This review delves into membrane fouling, discussing its influencing factors and preventative strategies. It sheds light on the merits, limitations, and prospects of these various membrane techniques, contributing to the advancement of wastewater treatment. It advocates for future research in membrane technology with a focus on fouling control and the development of energy-efficient devices. Interdisciplinary collaboration among researchers, engineers, policymakers, and industry players is vital for shaping water purification innovation. Ongoing research and collaboration position us to fulfill the promise of accessible, clean water for all.


Assuntos
Membranas Artificiais , Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Filtração/métodos , Filtração/instrumentação , Ultrafiltração/métodos , Compostos Orgânicos/isolamento & purificação
13.
Water Res ; 259: 121834, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820729

RESUMO

Widespread outbreaks of threatening infections caused by unknown pathogens and water transmission have spawned the development of adsorption methods for pathogen elimination. We proposed a biochar functionalization strategy involving ε-polylysine (PLL), a bio-macromolecular poly(amino acid)s with variable folding conformations, as a "pathogen gripper" on biochar. PLL was successfully bridged onto biochar via polydopamine (PDA) crosslinking. The extension of electropositive side chains within PLL enables the capture of both nanoscale viruses and micrometer-scale bacteria in water, achieving excellent removal performances. This functionalized biochar was tentatively incorporated into ultrafiltration (UF) system, to achieve effective and controllable adsorption and retention of pathogens, and to realize the transfer of pathogens from membrane surface/pore to biochar surface as well as flushing water. The biochar-amended UF systems presents complete retention (∼7 LRV) and hydraulic elution of pathogens into membrane flushing water. Improvements in removal of organics and anti-fouling capability were observed, indicating the broken trade-off in UF pathogen removal dependent on irreversible fouling. Chemical characterizations revealed adsorption mechanisms encompassing electrostatic/hydrophobic interactions, pore filling, electron transfer, chemical bonding and secondary structure transitions. Microscopic and mechanical analyses validated the mechanisms for rapid adsorption and pathogen lysis. Low-concentration alkaline solution for used biochar regeneration, facilitated the deprotonation and transformation of PLL side chain to folded structures (α-helix/ß-sheet). Biochar regeneration process also promoted the effective detachment/inactivation of pathogens and protection of functional groups on biochar, corroborated by physicochemical inspection and molecular dynamics simulation. The foldability of poly(amino acid)s acting like dynamic arms, significantly contributed to pathogen capture/desorption/inactivation and biochar regeneration. This study also inspires future investigation for performances of UF systems amended by poly(amino acid)s-functionalized biochar under diverse pressure, temperature, reactive oxygen species of feeds and chemical cleaning solutions, with far-reaching implications for public health, environmental applications of biochar, and UF process improvement.


Assuntos
Carvão Vegetal , Polilisina , Ultrafiltração , Purificação da Água , Polilisina/química , Carvão Vegetal/química , Adsorção , Purificação da Água/métodos , Polímeros/química , Indóis
14.
J Ethnopharmacol ; 332: 118356, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763372

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY: Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS: Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS: H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS: This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Glutationa Redutase , Espectrometria de Massas , Simulação de Acoplamento Molecular , Extratos Vegetais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/metabolismo , Acetilcolinesterase/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Ultrafiltração , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Antiparasitários/farmacologia , Antiparasitários/química , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/química , Espectrometria de Massa com Cromatografia Líquida
15.
Cardiorenal Med ; 14(1): 320-333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38810607

RESUMO

BACKGROUND: Some patients with cardiorenal syndrome 1 and congestion exhibit resistance to diuretics. This scenario complicates management and is associated with a worse prognosis. In some cases, rescue treatment may be considered by starting kidney replacement therapies or ultrafiltration. This decision is complex and necessitates a profound understanding of these techniques and the pathophysiology of this syndrome. These modalities are classified into continuous, intermittent, and ultrafiltration therapies, each with its own advantages and disadvantages that are pertinent in selecting the optimal treatment. SUMMARY: In patients with diuretic-resistant cardiorenal syndrome, extracorporeal ultrafiltration and kidney replacement therapies have the potential to relieve congestion, restore the neurohormonal system, and improve quality of life. KEY MESSAGES: (i) In cardiorenal syndrome, the resistance to diuretics is common. (ii) Extracorporeal ultrafiltration and renal replacement therapies are rescue options that may improve the management of these patients. (iii) Better understanding of these modalities will help the development of new devices which are friendlier, safer, and more affordable for patients in these clinical settings.


Assuntos
Síndrome Cardiorrenal , Terapia de Substituição Renal , Ultrafiltração , Humanos , Síndrome Cardiorrenal/terapia , Síndrome Cardiorrenal/fisiopatologia , Ultrafiltração/métodos , Terapia de Substituição Renal/métodos , Diuréticos/uso terapêutico , Qualidade de Vida
16.
Biotechnol J ; 19(5): e2400154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719568

RESUMO

Maximizing product yield in biopharmaceutical manufacturing processes is a critical factor in determining the overall cost of goods, especially given the high value of these biological products. However, there has been relatively limited research on the quantitative analysis of protein losses due to adsorption and fouling during the different membrane filtration processes employed in typical downstream operations. This study aims to provide a comprehensive analysis of protein loss in the range of membrane systems used in downstream processing including clarification, virus removal filtration, ultrafiltration/diafiltration for formulation, and final sterile filtration, all using commercially available membranes with three model proteins (bovine serum albumin, human serum albumin, and immunoglobulin G). The correlation between protein loss and various parameters (i.e., protein type, protein concentration, throughput, membrane morphology, and protein removal mechanism) was also investigated. This study provides important insights into the nature of protein loss during membrane processes as well as a methodology for quantifying protein yield loss in bioprocesses.


Assuntos
Membranas Artificiais , Ultrafiltração , Humanos , Ultrafiltração/métodos , Filtração/métodos , Animais , Produtos Biológicos/química , Soroalbumina Bovina/química , Imunoglobulina G/química , Adsorção , Bovinos , Albumina Sérica Humana/química
17.
Water Environ Res ; 96(5): e11018, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712584

RESUMO

Applicable and low-cost ultrafiltration membranes based on waste polystyrene (WPS) blend and poly vinylidene fluoride (PVDF) were effectively cast on nonwoven support using phase inversion method. Analysis was done into how the WPS ratio affected the morphology and antifouling performance of the fabricated membranes. Cross flow filtration of pure water and various types of polluted aqueous solutions as the feed was used to assess the performance of the membranes. The morphology analysis shows that the WPS/PVDF membrane layer has completely changed from a spongy structure to a finger-like structure. In addition, the modified membrane with 50% WPS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection of the membrane with a reduction in permeate flux due to the addition of PVDF. With a water permeability of 50 LMH and 44 LMH, respectively, the optimized WPS-PVDF membrane with 50% WPS could reject 81% and 74% of Congo red dye (CR) and methylene blue dye (MB), respectively. The flux recovery ratio (FRR) reached to 88.2% by increasing PVDF concentration with 50% wt. Also, this membrane has the lowest irreversible fouling (Rir) value of 11.7% and lowest reversible fouling (Rr) value of 27.9%. The percent of cleaning efficiency reach to 71%, 90%, and 85% after eight cycles of humic acid (HA), CR, and MB filtration, respectively, for the modified PS-PVDF (50%-50%). However, higher PVDF values cause the membrane's pores to become clogged, increase the irreversible fouling, and decrease the cleaning efficiency. In addition to providing promising filtration results, the modified membrane is inexpensive because it was made from waste polystyrene, and as a result, it could be scaled up to treat colored wastewater produced by textile industries. PRACTITIONER POINTS: Recycling of plastic waste as an UF membrane for water/wastewater treatment was successfully prepared and investigated. Mechanical properties showed reasonable response with adding PVDF. The modified membrane with 50% PS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection.


Assuntos
Corantes , Polímeros de Fluorcarboneto , Membranas Artificiais , Ultrafiltração , Poluentes Químicos da Água , Purificação da Água , Ultrafiltração/métodos , Corantes/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Plásticos/química , Eliminação de Resíduos Líquidos/métodos , Polivinil/química , Permeabilidade
18.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791271

RESUMO

Phenolic compounds from a hydroalcoholic extract of wet olive pomace were purified and concentrated by an integrated membrane process in organic media. First, UF010104 (Solsep BV) and UP005 (Microdyn Nadir) membranes were tested to be implemented in the ultrafiltration stage, with the aim of purifying the extract and obtaining a permeate enriched in phenolic compounds. Despite the high flux observed with the UF010104 membrane (20.4 ± 0.7 L·h-1·m-2, at 2 bar), the UP005 membrane was selected because of a more suitable selectivity. Even though some secoiridoids were rejected, the permeate stream obtained with this membrane contained high concentrations of valuable simple phenols and phenolic acids, whereas sugars and macromolecules were retained. Then, the ultrafiltration permeate was subjected to a nanofiltration step employing an NF270 membrane (DuPont) for a further purification and fractionation of the phenolic compounds. The permeate flux was 50.2 ± 0.2 L·h-1·m-2, working at 15 bar. Hydroxytyrosol and some phenolic acids (such as vanillic acid, caffeic acid, and ferulic acid) were recovered in the permeate, which was later concentrated by reverse osmosis employing an NF90 membrane. The permeate flux obtained with this membrane was 15.3 ± 0.3 L·h-1·m-2. The concentrated phenolic mixture that was obtained may have important applications as a powerful antioxidant and for the prevention of diabetes and neurodegenerative diseases.


Assuntos
Membranas Artificiais , Olea , Fenóis , Ultrafiltração , Olea/química , Ultrafiltração/métodos , Fenóis/isolamento & purificação , Fenóis/química , Fenóis/análise , Osmose , Solventes/química , Extratos Vegetais/química
19.
Water Sci Technol ; 89(9): 2468-2482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747961

RESUMO

17α-methyltestosterone (MT) hormone is a synthetic androgenic steroid hormone utilized to induce Nile tilapia transitioning for enhanced production yield. This study specifically focuses on the removal of MT through the utilization of photocatalytic membrane reactor (PMR), which employs an in-house polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with 1% nanomaterials (either TiO2 or α-Fe2O3). The molecular weight cut-off (MWCO) of the in-house membrane falls within the ultrafiltration range. Under UV95W radiation, the PMR with PVDF/TiO2 and PVDF/α-Fe2O3 membranes achieved 100% MT removal at 140 and 160 min, respectively. The MT removal by the commercial NF03 membrane was only at 50%. In contrast, without light irradiation, the MT removal by all the membranes remained unchanged after 180 min, exhibiting lower performance. The incorporation of TiO2 and α-Fe2O3 enhanced water flux and MT removal of the membrane. Notably, the catalytic activity was limited by the distribution and concentration of the catalyst at the membrane surface. The water contact angle did not correlate with the water flux for the composited membrane. The degradation of MT aligned well with Pseudo-first-order kinetic models. Thus, the in-house ultrafiltration PMR demonstrated superior removal efficiency and lower operational costs than the commercial nanofiltration membrane, attributable to its photocatalytic activities.


Assuntos
Membranas Artificiais , Metiltestosterona , Ultrafiltração , Poluentes Químicos da Água , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Metiltestosterona/química , Catálise , Purificação da Água/métodos , Titânio/química
20.
Water Res ; 257: 121703, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723354

RESUMO

Hydrothermal liquefaction (HTL) is a promising thermo-chemical technology for municipal sludge treatment due to its potential for biocrude oil recovery and minimizing biosolids management costs. However, the process generates a high volume of an aqueous byproduct that needs to be treated due to its high chemical oxygen demand (COD) and various organic and inorganic compounds. Although the aqueous phase is known to contain recalcitrant and potentially inhibitory substances that may affect its biological treatment, their molecular weight distribution (MwD) and its impact on anaerobic biodegradability are poorly understood. Ultrafiltration (UF) was conducted to fractionate HTL aqueous into different molecular weight (Mw) fractions using 300, 100, 10, and 1 kDa membranes. Mesophilic biochemical methane potential (BMP) assays were conducted to assess the anaerobic biodegradability of each fraction, and the first-order model was used to calculate the degradation kinetics of potential inhibitory compounds. The highest percentage of organics (65 %) was found in the Mw<1 kDa range, whereas the 10>Mw>1 kDa had the lowest percentage (8 %). There was no significant difference in the cumulative specific methane produced from various Mw fractions (p>0.05). The Mw<1 kDa fraction had the highest first-order specific methane production rate (0.53 day-1), whereas the unfiltered HTL had the lowest (0.38 day-1). Although UF fractionation increased the rate of anaerobic degradation of HTL aqueous for the Mw<1 kDa fraction, the observed methane potential was only 55 % of the theoretical value. This implies that 45 % of COD remains undegraded even after permeation through the lowest Mw cut-off membrane. Therefore, further characterization of HTL aqueous is needed for compounds with molecular weights below 1 kDa to fully understand the nature of inhibitory organics and their impact on anaerobic digestion. Furthermore, pretreatments utilizing techniques such as adsorption and advanced oxidation may be necessary to enhance the specific methane yields from various HTL aqueous fractions, thereby bringing them closer to the theoretical yield.


Assuntos
Metano , Esgotos , Ultrafiltração , Esgotos/química , Anaerobiose , Peso Molecular , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...