Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Clin Exp Pharmacol Physiol ; 51(7): e13874, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797519

RESUMO

Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.


Assuntos
Ciclo Celular , Sobrevivência Celular , Glicólise , Queratinócitos , Fator de Transcrição STAT3 , Uridina Fosforilase , Humanos , Proliferação de Células , Epiderme/metabolismo , Epiderme/patologia , Interleucina-6/metabolismo , Interleucina-6/genética , Queratinócitos/metabolismo , Psoríase/patologia , Psoríase/metabolismo , Psoríase/genética , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Uridina Fosforilase/metabolismo , Uridina Fosforilase/genética
2.
Biochem Biophys Res Commun ; 696: 149422, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38183795

RESUMO

Identification and functional analysis of key genes regulated by the circadian clock system will provide a comprehensive understanding of the underlying mechanisms through which circadian clock disruption impairs the health of living organisms. The initial phase involved bioinformatics analysis, drawing insights from three RNA-seq datasets (GSE184303, GSE114400, and GSE199061) derived from wild-type mouse liver tissues, which encompassed six distinct time points across a day. As expected, 536 overlapping genes exhibiting rhythmic expression patterns were identified. By intersecting these genes with differentially expressed genes (DEGs) originating from liver RNA-seq data at two representative time points (circadian time, CT: CT2 and CT14) in global Bmal1 knockout mice (Bmal1-/-), hepatocyte-specific Bmal1 knockout mice (L-Bmal1-/-), and their corresponding control groups, 80 genes potentially regulated by BMAL1 (referred to as BMAL1-regulated genes, BRGs) were identified. These genes were significantly enriched in glycolipid metabolism, immune response, and tumorigenesis pathways. Eight BRGs (Nr1d1, Cry1, Gys2, Homer2, Serpina6, Slc2a2, Nmrk1, and Upp2) were selected to validate their expression patterns in both control and L-Bmal1-/- mice livers over 24 h. Real-time quantitative polymerase chain reaction results demonstrated a comprehensive loss of rhythmic expression patterns in the eight selected BRGs in L-Bmal1-/- mice, in contrast to the discernible rhythmic patterns observed in the livers of control mice. Additionally, significant reductions in the expression levels of these selected BRGs, excluding Cry1, were also observed in L-Bmal1-/- mice livers. Chromatin immunoprecipitation (ChIP)-seq (GSE13505 and GSE39860) and JASPAR analyses validated the rhythmic binding of BMAL1 to the promoter and intron regions of these genes. Moreover, the progression of conditions, from basic steatosis to non-alcoholic fatty liver disease, and eventual malignancy, demonstrated a continuous gradual decline in Bmal1 transcripts in the human liver. Combining the aforementioned BRGs with DEGs derived from human liver cancer datasets identified Gys2 and Upp2 as potential node genes bridging the circadian clock system and hepatocellular carcinoma (HCC). In addition, CCK8 and wound healing assays demonstrated that the overexpression of human GYS2 and UPP2 proteins inhibited the proliferation and migration of HepG2 cells, accompanied by elevated expression of p53, a tumor suppressor protein. In summary, this study systematically identified rhythmic genes in the mouse liver, and a subset of circadian genes potentially regulated by BMAL1. Two circadian genes, Gys2 and Upp2, have been proposed and validated as potential candidates for advancing the prevention and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Relógios Circadianos , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Carcinoma Hepatocelular/patologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Regulação da Expressão Gênica , Proteínas de Arcabouço Homer/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Knockout , Uridina Fosforilase/metabolismo , Glicogênio Sintase/metabolismo
3.
Parasite ; 30: 46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37921620

RESUMO

Toxoplasmosis is caused by Toxoplasma gondii, which infects all warm-blooded animals, including humans. Currently, control measures for T. gondii infection are insufficient due to the lack of effective medications or vaccines. In this paper, recombinant T. gondii uridine phosphorylase (rTgUPase) was expressed in Escherichia coli and purified via Ni2+-NTA agarose. rTgUPase was inoculated intranasally into BALB/c mice, and the induced immune responses were evaluated by mucosal and humoral antibody and cytokine assays and lymphoproliferative measurements. Moreover, the protective effect against the T. gondii RH strain infection was assessed by calculating the burdens of tachyzoites in the liver and brain and by recording the survival rate and time. Our results revealed that mice immunised with 30 µg rTgUPase produced significantly higher levels of secretory IgA (sIgA) in nasal, intestinal, vaginal and vesical washes and synthesised higher levels of total IgG, IgG1 and, in particular, IgG2a in their blood sera. rTgUPase immunisation increased the production of IFN-gamma, interleukin IL-2 and IL-4, but not IL-10 from isolated mouse spleen cells and enhanced splenocyte proliferation in vitro. rTgUPase-inoculated mice were effectively protected against infection with the T. gondii RH strain, showing considerable reduction of tachyzoite burdens in liver and brain tissues after 30 days of infection, and a 44.29% increase in survival rate during an acute challenge. The above findings show that intranasal inoculation with rTgUPase provoked mucosal, humoral and cellular immune responses and indicate that rTgUPase might serve as a promising vaccine candidate for protecting against toxoplasmosis.


Title: L'immunisation intranasale avec l'uridine phosphorylase recombinante de Toxoplasma gondii confère une résistance contre la toxoplasmose aiguë chez la souris. Abstract: La toxoplasmose est causée par Toxoplasma gondii, qui infecte tous les animaux à sang chaud, y compris les humains. Actuellement, les mesures de contrôle de l'infection à T. gondii sont insuffisantes en raison du manque de médicaments ou de vaccins efficaces. Dans cet article, l'uridine phosphorylase recombinante de T. gondii (rTgUPase) a été exprimée dans Escherichia coli et purifiée via de l'agarose Ni2+-NTA. La rTgUPase a été inoculée par voie intranasale à des souris BALB/c et les réponses immunitaires induites ont été évaluées par des dosages d'anticorps et de cytokines muqueuses et humorales et par des mesures de lymphoprolifération. De plus, l'effet protecteur contre l'infection par la souche RH de T. gondii a été évalué en calculant la charge de tachyzoïtes dans le foie et le cerveau et en enregistrant le taux et la durée de survie. Nos résultats ont révélé que les souris immunisées avec 30 µg de rTgUPase produisaient des taux significativement plus élevés d'IgA sécrétoires (sIgA) dans les lavages nasaux, intestinaux, vaginaux et vésicaux et synthétisaient des taux plus élevés d'IgG totales, d'IgG1 et, en particulier, d'IgG2a dans leur sérum sanguin. L'immunisation par la rTgUPase a augmenté la production d'IFN-gamma, d'interleukine IL-2 et IL-4, mais pas d'IL-10 à partir de cellules de rate de souris isolées et a amélioré la prolifération des splénocytes in vitro. Les souris inoculées par la rTgUPase ont été efficacement protégées contre l'infection par la souche RH de T. gondii, montrant une réduction considérable de la charge de tachyzoïtes dans les tissus hépatiques et cérébraux après 30 jours d'infection et une augmentation de 44,29 % du taux de survie lors d'une épreuve aiguë. Les résultats ci-dessus montrent que l'inoculation intranasale de rTgUPase provoque des réponses immunitaires muqueuses, humorales et cellulaires et indiquent que la rTgUPase pourrait servir de candidat vaccin prometteur pour la protection contre la toxoplasmose.


Assuntos
Vacinas Protozoárias , Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Humanos , Feminino , Animais , Camundongos , Toxoplasma/genética , Uridina Fosforilase/genética , Proteínas de Protozoários/genética , Citocinas , Imunização , Imunoglobulina G , Camundongos Endogâmicos BALB C , Anticorpos Antiprotozoários , Toxoplasmose Animal/prevenção & controle
4.
Nature ; 618(7963): 151-158, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198494

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Assuntos
Glucose , Neoplasias Pancreáticas , Ribose , Microambiente Tumoral , Uridina , Animais , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ribose/metabolismo , Uridina/química , Glucose/deficiência , Divisão Celular , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Uridina Fosforilase/deficiência , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo , Humanos
5.
Arthritis Rheumatol ; 74(3): 462-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34569725

RESUMO

OBJECTIVE: Protein tyrosine kinases regulate osteoarthritis (OA) progression by activating a series of signal transduction pathways. However, the roles of protein tyrosine phosphatases (PTPs) in OA remain obscure. This study was undertaken to identify specific PTPs involved in OA and investigate their underlying mechanisms. METHODS: The expression of 107 PTP genes in human OA cartilage was analyzed based on a single-cell sequencing data set. The enzyme activity of the PTP SH2 domain-containing phosphatase 2 (SHP-2) was detected in primary chondrocytes after interleukin-1ß (IL-1ß) treatment and in human OA cartilage. Mice subjected to destabilization of the medial meniscus (DMM) and IL-1ß-stimulated mouse primary chondrocytes were treated with an SHP-2 inhibitor or celecoxib (a drug used for the clinical treatment of OA). The function of SHP-2 in OA pathogenesis was further verified in Aggrecan-CreERT ;SHP2flox/flox mice. The downstream protein expression profile and dephosphorylated substrate of SHP-2 were examined by tandem mass tag labeling-based global proteomic analysis and stable isotope labeling with amino acids in cell culture-labeled tyrosine phosphoproteomic analysis, respectively. RESULTS: SHP-2 enzyme activity significantly increased in human OA samples with serious articular cartilage injury and in IL-1ß-stimulated mouse chondrocytes. Pharmacologic inhibition or genetic deletion of SHP-2 ameliorated OA progression. SHP-2 inhibitors dramatically reduced the expression of cartilage degradation-related genes and simultaneously promoted the expression of cartilage synthesis-related genes. Mechanistically, SHP-2 inhibition suppressed the dephosphorylation of docking protein 1 and subsequently reduced the expression of uridine phosphorylase 1 and increased the uridine level, thereby contributing to the homeostasis of cartilage metabolism. CONCLUSION: SHP-2 is a novel accelerator of the imbalance in cartilage homeostasis. Specific inhibition of SHP-2 may ameliorate OA by maintaining the anabolic-catabolic balance.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Uridina Fosforilase/metabolismo , Animais , Cartilagem Articular/efeitos dos fármacos , Celecoxib/farmacologia , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Humanos , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Cell Death Differ ; 28(11): 3176-3192, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34050318

RESUMO

Colorectal cancer (CRC) is commonly associated with aberrant transcription regulation, but characteristics of the dysregulated transcription factors in CRC pathogenesis remain to be elucidated. In the present study, core-binding factor ß (CBFß) is found to be significantly upregulated in human CRC tissues and correlates with poor survival rate of CRC patients. Mechanistically, CBFß is found to promote CRC cell proliferation, migration, invasion, and inhibit cell apoptosis in a RUNX2-dependent way. Transcriptome studies reveal that CBFß and RUNX2 form a transcriptional complex that activates gene expression of OPN, FAM129A, and UPP1. Furthermore, CBFß significantly promotes CRC tumor growth and live metastasis in a mouse xenograft model and a mouse liver metastasis model. In addition, tumor-suppressive miR-143/145 are found to inhibit CBFß expression by specifically targeting its 3'-UTR region. Consistently, an inverse correlation between miR-143/miR-145 and CBFß expression levels is present in CRC patients. Taken together, this study uncovers a novel regulatory role of CBFß-RUNX2 complex in the transcriptional activation of OPN, FAM129A, and UPP1 during CRC development, and may provide important insights into CRC pathogenesis.


Assuntos
Neoplasias Colorretais/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Uridina Fosforilase/metabolismo , Animais , Proliferação de Células , Neoplasias Colorretais/mortalidade , Progressão da Doença , Humanos , Camundongos , Análise de Sobrevida
7.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498463

RESUMO

DNA methylation is an epigenetic change to the genome that impacts gene activities without modification to the DNA sequence. Alteration in the methylation pattern is a naturally occurring event throughout the human life cycle which may result in the development of diseases such as cancer. In this study, we analyzed methylation data from The Cancer Genome Atlas, under the Lower-Grade Glioma (LGG) and Glioblastoma Multiforme (GBM) projects, to identify methylation markers that exhibit unique changes in DNA methylation pattern along with tumor grade progression, to predict patient survival. We found ten glioma grade-associated Cytosine-phosphate-Guanine (CpG) sites that targeted four genes (SMOC1, KCNA4, SLC25A21, and UPP1) and the methylation pattern is strongly associated with glioma specific molecular alterations, primarily isocitrate dehydrogenase (IDH) mutation and chromosome 1p/19q codeletion. The ten CpG sites collectively distinguished a cohort of diffuse glioma patients with remarkably poor survival probability. Our study highlights genes (KCNA4 and SLC25A21) that were not previously associated with gliomas to have contributed to the poorer patient outcome. These CpG sites can aid glioma tumor progression monitoring and serve as prognostic markers to identify patients diagnosed with less aggressive and malignant gliomas that exhibit similar survival probability to GBM patients.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Glioma/genética , Neoplasias Encefálicas/patologia , Transportadores de Ácidos Dicarboxílicos/genética , Glioma/patologia , Humanos , Canal de Potássio Kv1.4/genética , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/genética , Osteonectina/genética , Prognóstico , Uridina Fosforilase/genética
8.
Eur J Pharmacol ; 890: 173670, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33098831

RESUMO

Potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65) is a potent inhibitor of the uridine phosphorylase 1 (UPP1) enzyme. Its non-ionized analog has already demonstrated biological properties by reducing adverse effects caused by the chemotherapeutic 5-fluorouracil (5-FU). In addition, it has been demonstrated that uridine inhibits inflammation and fibrosis in bleomycin lung injury, decreasing collagen production. The purpose of this study was to investigate the in vitro and in vivo effects of CPBMF65 on activated hepatic stellate cells (HSC) and on carbon tetrachloride-induced liver fibrosis in mice. After incubation with CPBMF65, decreased cell proliferation and phenotype reversion were observed in vitro. In addition, CPBMF65 promoted a protective effect on tetrachloride-induced liver fibrosis in mice, demonstrated by its antifibrotic and anti-inflammatory actions. The results of the present study indicate that the UPP1 inhibitor (CPBMF65) may have potential as a novel therapeutic agent for the treatment of liver fibrosis.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Uridina Fosforilase/antagonistas & inibidores , Animais , Tetracloreto de Carbono/toxicidade , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Estreladas do Fígado/enzimologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Uridina Fosforilase/metabolismo
9.
Protein Sci ; 29(11): 2189-2200, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32864839

RESUMO

Metabolic pathways in cancer cells typically become reprogrammed to support unconstrained proliferation. These abnormal metabolic states are often accompanied by accumulation of high concentrations of ATP in the cytosol, a phenomenon known as the Warburg Effect. However, how high concentrations of ATP relate to the functional state of proteins is poorly understood. Here, we comprehensively studied the influence of ATP levels on the functional state of the human enzyme, uridine phosphorylase I (hUP1), which is responsible for activating the chemotherapeutic pro-drug, 5-fluorouracil. We found that elevated levels of ATP decrease the stability of hUP1, leading to the loss of its proper folding and function. We further showed that the concentration of hUP1 exerts a critical influence on this ATP-induced destabilizing effect. In addition, we found that ATP interacts with hUP1 through a partially unfolded state and accelerates the rate of hUP1 unfolding. Interestingly, some structurally similar metabolites showed similar destabilization effects on hUP1. Our findings suggest that metabolites can alter the folding and function of a human protein, hUP1, through protein destabilization. This phenomenon may be relevant in studying the functions of proteins that exist in the specific metabolic environment of a cancer cell.


Assuntos
Trifosfato de Adenosina/química , Fluoruracila/química , Desdobramento de Proteína , Uridina Fosforilase/química , Trifosfato de Adenosina/metabolismo , Estabilidade Enzimática , Humanos , Uridina Fosforilase/metabolismo
10.
Sci Rep ; 10(1): 9051, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493959

RESUMO

Uridine phosphorylase (UP) is a key enzyme of pyrimidine salvage pathways that enables the recycling of endogenous or exogenous-supplied pyrimidines and plays an important intracellular metabolic role. Here, we biochemically and structurally characterized two evolutionarily divergent uridine phosphorylases, PcUP1 and PcUP2 from the oomycete pathogen Phytophthora capsici. Our analysis of other oomycete genomes revealed that both uridine phosphorylases are present in Phytophthora and Pythium genomes, but only UP2 is seen in Saprolegnia spp. which are basal members of the oomycetes. Moreover, uridine phosphorylases are not found in obligate oomycete pathogens such as Hyaloperonospora arabidopsidis and Albugo spp. PcUP1 and PcUP2 are upregulated 300 and 500 fold respectively, within 90 min after infection of pepper leaves. The crystal structures of PcUP1 in ligand-free and in complex with uracil/ribose-1-phosphate, 2'-deoxyuridine/phosphate and thymidine/phosphate were analyzed. Crystal structure of this uridine phosphorylase showed strict conservation of key residues in the binding pocket. Structure analysis of PcUP1 with bound ligands, and site-directed mutagenesis of key residues provide additional support for the "push-pull" model of catalysis. Our study highlights the importance of pyrimidine salvage during the earliest stages of infection.


Assuntos
Phytophthora/metabolismo , Uridina Fosforilase/química , Uridina Fosforilase/metabolismo , Sítios de Ligação/fisiologia , Catálise , Domínio Catalítico/fisiologia , Cristalografia por Raios X/métodos , Desoxiuridina/química , Desoxiuridina/metabolismo , Ligantes , Pirimidinas/química , Pirimidinas/metabolismo , Ribosemonofosfatos/química , Ribosemonofosfatos/metabolismo , Timidina/química , Timidina/metabolismo , Uracila/química , Uracila/metabolismo , Uridina/química , Uridina/metabolismo
11.
Cancer Med ; 9(16): 5940-5947, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32583596

RESUMO

Uridine phosphorylase 1 (UPP1) has been reported as an oncogene in several malignancies. In glioma, the role of UPP1 remains unclear. This study was performed to explore its role in glioma at transcriptional level. Totally, 998 glioma patients with clinical data were enrolled, including 301 mRNA microarray data from Chinese Glioma Genome Atlas (CGGA) dataset and 697 RNAseq data from The Cancer Genome Atlas (TCGA) dataset. Statistical analysis was performed with R language. UPP1 expression level was positively correlated with WHO grade of glioma. UPP1 was significantly upregulated in mesenchymal subtype and could serve as a potential biomarker for this subtype. Based on most correlated genes of UPP1, Gene ontology analysis revealed that UPP1 was profoundly associated with immune and inflammatory response. Gene Sets Variation Analysis was further performed and showed that UPP1 was particularly correlated with MHC-II and LCK, which were mainly associated with activities of antigen-presenting cells and T cells. Moreover, UPP1 was found to be synergistic with various immune checkpoint members, especially with PD1 pathway and B7-H3. Finally, Kaplan-Meier curves revealed that higher UPP1 indicated significantly shorter survival for glioma patients. Taken together, UPP1 played an oncogenic role in glioma via suppressing tumor-related immune response.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/mortalidade , Glioma/enzimologia , Glioma/mortalidade , Uridina Fosforilase/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Isocitrato Desidrogenase/genética , Estimativa de Kaplan-Meier , Prognóstico , Regulação para Cima , Uridina Fosforilase/genética
12.
Invest New Drugs ; 38(6): 1653-1663, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32367200

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent type of tumor among primary liver tumors and is the second highest cause of cancer-related deaths worldwide. Current therapies are controversial, and more research is needed to identify effective treatments. A new synthetic compound, potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65), is a potent inhibitor of the human uridine phosphorylase-1 (hUP1) enzyme, which controls the cell concentration of uridine (Urd). Urd is a natural pyrimidine nucleoside involved in cellular processes, such as RNA synthesis. In addition, it is considered a promising biochemical modulator, as it may reduce the toxicity caused by chemotherapeutics without impairing its anti-tumor activity. Thus, the objective of this study is to evaluate the effects of CPBMF65 on the proliferation of the human hepatocellular carcinoma cell line (HepG2). Cell proliferation, cytotoxicity, apoptosis, senescence, autophagy, intracellular Urd levels, cell cycle arrest, and drug resistance were analyzed. Results demonstrate that, after incubation with CPBMF65, HepG2 cell proliferation decreased, mainly through cell cycle arrest and senescence, increasing the levels of intracellular Urd and maintaining cell proliferation reduced during chronic treatment. In conclusion, results show, for the first time, the ability of a hUP1 inhibitor (CPBMF65) to reduce HepG2 cell proliferation through cell cycle arrest and senescence.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Piridinas/farmacologia , Uridina Fosforilase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células Hep G2 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Uridina/farmacologia
13.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235494

RESUMO

Renal transplantation is the preferred treatment of end stage renal disease, but allograft survival is limited by the development of interstitial fibrosis and tubular atrophy in response to various stimuli. Much effort has been put into identifying new protein markers of fibrosis to support the diagnosis. In the present work, we performed an in-depth quantitative proteomics analysis of allograft biopsies from 31 prevalent renal transplant patients and correlated the quantified proteins with the volume fraction of fibrosis as determined by a morphometric method. Linear regression analysis identified four proteins that were highly associated with the degree of interstitial fibrosis, namely Coagulation Factor XIII A chain (estimate 18.7, adjusted p < 0.03), Uridine Phosphorylase 1 (estimate 19.4, adjusted p < 0.001), Actin-related protein 2/3 subunit 2 (estimate 34.2, adjusted p < 0.05) and Cytochrome C Oxidase Assembly Factor 6 homolog (estimate -44.9, adjusted p < 0.002), even after multiple testing. Proteins that were negatively associated with fibrosis (p < 0.005) were primarily related to normal metabolic processes and respiration, whereas proteins that were positively associated with fibrosis (p < 0.005) were involved in catabolic processes, cytoskeleton organization and the immune response. The identified proteins may be candidates for further validation with regards to renal fibrosis. The results support the notion that cytoskeleton organization and immune responses are prevalent processes in renal allograft fibrosis.


Assuntos
Aloenxertos/patologia , Transplante de Rim , Rim/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina/análise , Adulto , Idoso , Biomarcadores/análise , Fator XIII/análise , Feminino , Fibrose , Humanos , Nefropatias/patologia , Masculino , Pessoa de Meia-Idade , Proteômica , Uridina Fosforilase/análise
14.
Life Sci ; 248: 117456, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32097666

RESUMO

AIMS: In this study, we will investigate the therapeutic effects of berberine (BBR) in Helicobacter pylori (H. pylori) induced chronic atrophic gastritis (CAG). Furthermore, potential mechanisms of BBR in regulating IRF8-IFN-γ signaling axis will also be investigated. MATERIALS AND METHODS: H. pylori were utilized to establish CAG model of rats. Therapeutic effects of BBR on serum supernatant indices, and histopathology of stomach were analyzed in vivo. Moreover, GES-1 cells were infected by H. pylori, and intervened with BBR in vitro. Cell viability, morphology, proliferation, and quantitative analysis were detected by high-content screening (HCS) imaging assay. To further investigate the potential mechanisms of BBR, relative mRNA, immunohistochemistry and protein expression in IRF8-IFN-γ signaling axis were measured. KEY FINDINGS: Results showed serum supernatant indices including IL-17, CXCL1, and CXCL9 were downregulated by BBR intervention, while, G-17 increased significantly. Histological injuries of gastric mucosa induced by H. pylori also were alleviated. Moreover, cell viability and morphology changes of GES-1 cells were improved by BBR intervention. In addition, proinflammatory genes and IRF8-IFN-γ signaling axis related genes, including Ifit3, Upp1, USP18, Nlrc5, were suppressed by BBR administration in vitro and in vivo. The proteins expression related to IRF8-IFN-γ signaling axis, including Ifit3, IRF1 and Ifit1 were downregulated by BBR intervention.


Assuntos
Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Gastrite Atrófica/tratamento farmacológico , Infecções por Helicobacter/tratamento farmacológico , Fatores Reguladores de Interferon/genética , Interferon gama/genética , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL9/antagonistas & inibidores , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Doença Crônica , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Gastrite Atrófica/genética , Gastrite Atrófica/imunologia , Gastrite Atrófica/microbiologia , Regulação da Expressão Gênica , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/patogenicidade , Humanos , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/imunologia , Interferon gama/antagonistas & inibidores , Interferon gama/imunologia , Interleucina-17/agonistas , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Proteínas NLR/antagonistas & inibidores , Proteínas NLR/genética , Proteínas NLR/imunologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Uridina Fosforilase/antagonistas & inibidores , Uridina Fosforilase/genética , Uridina Fosforilase/imunologia
15.
J Cell Mol Med ; 23(11): 7438-7448, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31496029

RESUMO

Thyroid cancer incidence has been continuity increasing worldwide. Uridine phosphorylase 1 (UPP1) is a protein-coding gene and has been detected that UPP1 was the higher expression in many solid malignancies, just as head and neck cancers, breast cancer, compared with paired normal tissue. But the act of UPP1 in thyroid cancer is not explicit. In this article, we investigate the function of UPP1 expression in thyroid cancer. The Cancer Genome Atlas (TCGA) unpaired thyroid cancer and normal RNA-seq data were downloaded, and our paired thyroid cancer and normal samples were analysed by a polymerase chain reaction. The expression of UPP1 was regulated by transfected small interfering RNA, and the function of UPP1 was determined via migration, invasion and cell proliferation assays. Western blot assay was achieved to determine the UPP1 expression correlates with the function of 5-FU regulate epithelial-mesenchymal transition. The significant upregulation of UPP1 in thyroid cancer tissues compared with normal thyroid tissues was revealed by our data and TCGA data. UPP1 overexpression was significantly correlated with lymph node metastasis, tumour stage and tumour size. In the cell, experiments showed that UPP1 low expression significantly suppressed the migration, invasion and proliferation. Western blot assay proves the effect of UPP1 expression on 5-FU regulates epithelial-mesenchymal transition pathway. UPP1 plays a crucial oncogene in thyroid cancer. Our findings indicate that UPP1 might be a biomarker of thyroid cancer and may act by regulating epithelial-mesenchymal transition (EMT).


Assuntos
Neoplasias da Glândula Tireoide/genética , Uridina Fosforilase/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , RNA Interferente Pequeno/genética , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima/genética
16.
Microbiol Immunol ; 63(7): 261-268, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209918

RESUMO

Pasteurella multocida is one of the most important bacteria responsible for diseases of animals. Crude extracts from sonicated P. multocida strain Dainai-1, which is serotype A isolated from bovine pneumonia, were found to inhibit proliferation of mouse spleen cells stimulated with Con A. The crude extract was purified by cation and anion exchange chromatography and hydroxyapatite chromatography. Its molecular weight was 27 kDa by SDS-PAGE and it was named PM27. PM27 was found to inhibit proliferation of mouse spleen cells stimulated with Con A as effectively as did the crude extract; however, its activity was lost after heating to 100°C for 20 min. PM27 did not directly inhibit proliferation of HT-2 cells, which are an IL-2-dependent T cell line, nor did it modify IL-2 production by Con A-stimulated mouse spleen cells. The N-terminal amino acid sequence of PM27 was determined and BLAST analysis revealed its identity to uridine phosphorylase (UPase) from P. multocida. UPase gene from P. multocida Dainai-1 was cloned into expression vector pQE-60 in Escherichia coli XL-1 Blue. Recombinant UPase (rUPase) tagged with His at the C-terminal amino acid was purified with Ni affinity chromatography. rUPase was found to inhibit proliferation of mouse spleen cells stimulated with Con A; however, as was true for PM27, its activity was lost after heating to 100°C for 20 min. Thus, PM27/UPase purified from P. multocida has significant antiproliferative activity against Con A-stimulated mouse spleen cells and may be a virulence factor.


Assuntos
Proteínas da Membrana Bacteriana Externa/farmacologia , Proliferação de Células/efeitos dos fármacos , Pasteurella multocida/metabolismo , Uridina Fosforilase/isolamento & purificação , Uridina Fosforilase/farmacologia , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bovinos , Linhagem Celular/efeitos dos fármacos , Escherichia coli/genética , Humanos , Interleucina-2/metabolismo , Camundongos , Peso Molecular , Pasteurella multocida/genética , Fosforilases , Proteínas Recombinantes , Baço , Linfócitos T/efeitos dos fármacos , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
17.
Exp Eye Res ; 185: 107650, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075223

RESUMO

THE AIM OF THE STUDY: was to investigate the molecular genetic mechanisms of the influence of laser radiation with 577 nm wavelength in a microimpulse mode on the retina in the experimental conditions after the intravitreal injection of VEGF. MATERIALS AND METHODS: The study was performed on 4-5 week-old male mice of the line C57BL/6J. The animals were divided into 4 groups of 5 mice in each group, one eye was excremental, the contralateral eye remained intact. In the first group, intravitreal injection of PBS was performed; in the second group, intravitreal injection of 50 ng/ml of recombinant VEGF165 in 2 µL of phosphate-buffered saline (PBS) was performed; in the third and fourth groups, a day after the intravitreal injection of recombinant VEGF165, laser radiation with wavelength 577 nm was applied in the micropulse and continuous modes, respectively. Tissue samples (neuroepithelium, pigment epithelium) for the microarray transcription analysis in the animals from group 1 and 2 were taken 2 days after the injection of PBS and VEGF, in the animals from group 3 and 4 - a day after the retina was exposed to laser radiation. RESULTS AND CONCLUSION: Molecular genetic mechanisms of the influence of laser radiation with wavelength 577 nm in a microimpulse mode on the retina in experimental conditions were studied and the genes that significantly changed the level of expression (the genes that take part in the regulation of neoangiogenesis, structural cell functions, processes of cells proliferation, transcription, differentiation, transmembrane transport, signaling, synaptic transmission, etc.) were identified.


Assuntos
Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Terapia a Laser , Retina/efeitos da radiação , Animais , Proteínas Ligadas por GPI/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Injeções Intravítreas , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Biologia Molecular , Proteínas Recombinantes/administração & dosagem , Retina/metabolismo , Uridina Fosforilase/genética , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
18.
Proc Natl Acad Sci U S A ; 116(1): 52-57, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559182

RESUMO

Characterization of tumor metabolism with spatial information contributes to our understanding of complex cancer metabolic reprogramming, facilitating the discovery of potential metabolic vulnerabilities that might be targeted for tumor therapy. However, given the metabolic variability and flexibility of tumors, it is still challenging to characterize global metabolic alterations in heterogeneous cancer. Here, we propose a spatially resolved metabolomics approach to discover tumor-associated metabolites and metabolic enzymes directly in their native state. A variety of metabolites localized in different metabolic pathways were mapped by airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) in tissues from 256 esophageal cancer patients. In combination with in situ metabolomics analysis, this method provided clues into tumor-associated metabolic pathways, including proline biosynthesis, glutamine metabolism, uridine metabolism, histidine metabolism, fatty acid biosynthesis, and polyamine biosynthesis. Six abnormally expressed metabolic enzymes that are closely associated with the altered metabolic pathways were further discovered in esophageal squamous cell carcinoma (ESCC). Notably, pyrroline-5-carboxylate reductase 2 (PYCR2) and uridine phosphorylase 1 (UPase1) were found to be altered in ESCC. The spatially resolved metabolomics reveal what occurs in cancer at the molecular level, from metabolites to enzymes, and thus provide insights into the understanding of cancer metabolic reprogramming.


Assuntos
Metabolômica/métodos , Neoplasias/metabolismo , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Espectrometria de Massas , Neoplasias/enzimologia , Neoplasias/patologia , Pirrolina Carboxilato Redutases/metabolismo , Uridina Fosforilase/metabolismo
19.
Gastroenterology ; 155(4): 1192-1204.e9, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29964038

RESUMO

BACKGROUND & AIMS: African Americans have the greatest colorectal cancer (CRC) burden in the United States; interethnic differences in protective effects of vitamin D might contribute to disparities. 1α,25(OH)2D3 vitamin D (the active form of vitamin D) induces transcription of the uridine phosphorylase gene (UPP1) in colon tissues of European Americans but to a lesser extent in colon tissues of African Americans. UPP1-knockout mice have increased intestinal concentrations of uridine and Deoxyuridine triphosphate (dUTP), have increased uridine-induced DNA damage, and develop colon tumors. We studied 1α,25(OH)2D3 regulation of UPP1 and uridine-induced DNA damage in the colon and differences in these processes between African and European Americans. METHODS: We quantified expression and activity of UPP1 in response to 1α,25(OH)2D3 in young adult mouse colonic cells, human CRC cells (LS174T), and organoids (derived from rectosigmoid biopsy samples of healthy individuals undergoing colonoscopies) using quantitative polymerase chain reaction, immunoblot, and immunocytochemistry assays. Binding of the vitamin D receptor to UPP1 was tested by chromatin immunoprecipitation. Uridine-induced DNA damage was measured by fragment-length analysis in repair enzyme assays. Allele-specific 1α,25(OH)2D3 responses were tested using luciferase assays. RESULTS: Vitamin D increased levels of UPP1 mRNA, protein, and enzymatic activity and increased vitamin D receptor binding to the UPP1 promoter in young adult mouse colonic cells, LS174T cells, and organoids. 1α,25(OH)2D3 significantly reduced levels of uridine and uridine-induced DNA damage in these cells, which required UPP1 expression. Organoids derived from colon tissues of African Americans expressed lower levels of UPP1 after exposure to 1α,25(OH)2D3 and had increased uridine-induced DNA damage compared with organoids derived from tissues of European Americans. Luciferase assays with the T allele of single nucleotide polymorphism rs28605337 near UPP1, which is found more frequently in African Americans than European Americans, expressed lower levels of UPP1 after exposure to 1α,25(OH)2D3 than assays without this variant. CONCLUSIONS: We found vitamin D to increase expression of UPP1, leading to reduce uridine-induced DNA damage, in colon cells and organoids. A polymorphism in UPP1 found more frequently in African Americans than European Americans reduced UPP1 expression upon cell exposure to 1α,25(OH)2D3. Differences in expression of UPP1 in response to vitamin D could contribute to the increased risk of CRC in African Americans.


Assuntos
Negro ou Afro-Americano/genética , Calcitriol/farmacologia , Colo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Uridina Fosforilase/metabolismo , Uridina/toxicidade , População Branca/genética , Animais , Sítios de Ligação , Linhagem Celular , Colo/enzimologia , Colo/patologia , Citoproteção , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Organoides/efeitos dos fármacos , Organoides/enzimologia , Organoides/patologia , Polimorfismo Genético , Regiões Promotoras Genéticas , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos , Uridina/metabolismo , Uridina Fosforilase/genética
20.
Arch Biochem Biophys ; 634: 11-20, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28917600

RESUMO

Uridine phosphorylase is one of the critical enzymes in the pyrimidine salvage pathway. Cells regenerate uridine for nucleotide metabolism by incorporating uracil with ribose-1-phosphate with this enzyme. Recent studies indicate that Escherichia coli uridine phosphorylase is destabilized in the presence of ATP. However, the mechanism underlying the destabilization process and its influence on uridine phosphorylase function remain to be established. Here, we comprehensively investigated the effects of ATP on protein folding and function of Escherichia coli uridine phosphorylase. Our results demonstrate that ATP apparently decreases the stability of uridine phosphorylase in a concentration-dependent manner. Additionally, simply increasing the level of ATP led to a reduction of enzymatic activity to complete inhibition. Further studies showed that uridine phosphorylase accumulates as a partially unfolded state in the presence of ATP. Moreover, ATP specifically accelerated the unfolding rate of uridine phosphorylase with no observable effects on the refolding process. Our preliminary findings suggest that ATP can alter the protein folding and function of enzymes via apparent destabilization. This mechanism may be significant for proteins functioning under conditions of high levels of ATP, such as cancer cell environments.


Assuntos
Trifosfato de Adenosina/química , Escherichia coli/enzimologia , Modelos Químicos , Uridina Fosforilase/química , Uridina Fosforilase/ultraestrutura , Simulação por Computador , Ativação Enzimática , Estabilidade Enzimática , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...