Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.662
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928403

RESUMO

Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Humanos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Nanopartículas/química , Animais , Vírion/química , Sistemas de Liberação de Medicamentos/métodos
2.
Methods Mol Biol ; 2822: 387-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907930

RESUMO

Plant viruses such as brome mosaic virus and cowpea chlorotic mottle virus are effectively purified through PEG precipitation and sucrose cushion ultracentrifugation. Increasing ionic strength and an alkaline pH cause the viruses to swell and disassemble into coat protein subunits. The coat proteins can be reassembled into stable virus-like particles (VLPs) that carry anionic molecules at low ionic strength and through two-step dialysis from neutral pH to acidic buffer. VLPs have been extensively studied due to their ability to protect and deliver cargo, particularly RNA, while avoiding degradation under physiological conditions. Furthermore, chemical functionalization of the surface of VLPs allows for the targeted drug delivery. VLPs derived from plants have demonstrated great potential in nanomedicine by offering a versatile platform for drug delivery, imaging, and therapeutic applications.


Assuntos
Vírus de Plantas , Vírus de Plantas/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vírion/química , Vírion/genética , Bromovirus/química , Bromovirus/genética , RNA/química , Concentração de Íons de Hidrogênio , RNA Viral/genética
3.
Anal Chem ; 96(25): 10302-10312, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38873697

RESUMO

Virus detection is highly important; the last several years, since the onset of the SARS-CoV-2 pandemic, have highlighted a weakness in the field: the need for highly specialized and complex methodology for sensitive virus detection, which also manifests as sacrifices in limits of detection made to achieve simple and rapid sensing. Surface-enhanced Raman spectroscopy (SERS) has the potential to fill this gap, and two novel approaches to the development of a detection scheme are presented in this study. First, the physical entrapment of vesicular stomatitis virus (VSV) and additional virus-like particles through substrate design to localize virus analytes into SERS hotspots is explored. Then, the use of nonspecific linear polymers as affinity agents to facilitate polymer-enabled capture of the VSV for SERS detection is studied. Quantitative detection of the VSV is achieved down to 101 genetic copies per milliliter with an R2 of 0.987 using the optimized physical entrapment method. Physical entrapment of two more virus-like particles is demonstrated with electron microscopy, and distinctive SERS fingerprints are shown. This study shows great promise for the further exploration of label-free virus detection methods involving thoughtful substrate design and unconventional affinity agents.


Assuntos
Polímeros , SARS-CoV-2 , Análise Espectral Raman , Análise Espectral Raman/métodos , Polímeros/química , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , COVID-19/diagnóstico , Vírion/isolamento & purificação , Vírion/química , Humanos , Propriedades de Superfície , Limite de Detecção
4.
Biomed Khim ; 70(3): 161-167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38940205

RESUMO

Electrochemical profiling of formaldehyde-inactivated poliovirus particles demonstrated a relationship between the D-antigen concentration and the intensity of the maximum amplitude currents of the poliovirus samples. The resultant signal was therefore identified as electrochemical oxidation of the surface proteins of the poliovirus. Using registration of electrooxidation of amino acid residues of the capsid proteins, a comparative electrochemical analysis of poliovirus particles inactivated by electrons accelerated with doses of 5 kGy, 10 kGy, 15 kGy, 25 kGy, 30 kGy at room temperature was carried out. An increase in the radiation dose was accompanied by an increase in electrooxidation signals. A significant increase in the signals of electrooxidation of poliovirus capsid proteins was detected upon irradiation at doses of 15-30 kGy. The data obtained suggest that the change in the profile and increase in the electrooxidation signals of poliovirus capsid proteins are associated with an increase in the degree of structural reorganization of surface proteins and insufficient preservation of the D-antigen under these conditions of poliovirus inactivation.


Assuntos
Proteínas do Capsídeo , Poliovirus , Poliovirus/efeitos da radiação , Poliovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Oxirredução , Formaldeído/química , Humanos , Vírion/química , Vírion/efeitos da radiação
5.
Viruses ; 16(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38932164

RESUMO

The HIV-1 nucleocapsid protein (NC) is a multifunctional viral protein necessary for HIV-1 replication. Recent studies have demonstrated that reverse transcription (RT) completes in the intact viral capsid, and the timing of RT and uncoating are correlated. How the small viral core stably contains the ~10 kbp double stranded (ds) DNA product of RT, and the role of NC in this process, are not well understood. We showed previously that NC binds and saturates dsDNA in a non-specific electrostatic binding mode that triggers uniform DNA self-attraction, condensing dsDNA into a tight globule against extending forces up to 10 pN. In this study, we use optical tweezers and atomic force microscopy to characterize the role of NC's basic residues in dsDNA condensation. Basic residue mutations of NC lead to defective interaction with the dsDNA substrate, with the constant force plateau condensation observed with wild-type (WT) NC missing or diminished. These results suggest that NC's high positive charge is essential to its dsDNA condensing activity, and electrostatic interactions involving NC's basic residues are responsible in large part for the conformation, size, and stability of the dsDNA-protein complex inside the viral core. We observe DNA re-solubilization and charge reversal in the presence of excess NC, consistent with the electrostatic nature of NC-induced DNA condensation. Previous studies of HIV-1 replication in the presence of the same cationic residue mutations in NC showed significant defects in both single- and multiple-round viral infectivity. Although NC participates in many stages of viral replication, our results are consistent with the hypothesis that cationic residue mutations inhibit genomic DNA condensation, resulting in increased premature capsid uncoating and contributing to viral replication defects.


Assuntos
DNA Viral , HIV-1 , Transcrição Reversa , HIV-1/genética , HIV-1/fisiologia , HIV-1/química , HIV-1/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Humanos , Cátions/metabolismo , Replicação Viral , Microscopia de Força Atômica , Vírion/metabolismo , Vírion/genética , Vírion/química , Mutação
6.
Bioprocess Biosyst Eng ; 47(6): 877-890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703202

RESUMO

Ultracentrifugation is an attractive method for separating full and empty capsids, exploiting their density difference. Changes of the serotype/capsid, density of loading material, or the genetic information contained in the adeno-associated viruses (AAVs) require the adaptation of the harvesting parameters and the density gradient loaded onto the centrifuge. To streamline these adaptations, a mathematical model could support the design and testing of operating conditions.Here, hybrid models, which combine empirical functions with artificial neural networks, are proposed to describe the separation of full and empty capsids as a function of material and operational parameters, i.e., the harvest model. In addition, critical quality attributes are estimated by a quality model which is operating on top of the harvest model. The performance of these models was evaluated using test data and two additional blind runs. Also, a "what-if" analysis was conducted to investigate whether the models' predictions align with expectations.It is concluded that the models are sufficiently accurate to support the design of operating conditions, though the accuracy and applicability of the models can further be increased by training them on more specific data with higher variability.


Assuntos
Dependovirus , Ultracentrifugação , Dependovirus/genética , Dependovirus/isolamento & purificação , Ultracentrifugação/métodos , Vírion/isolamento & purificação , Vírion/química , Redes Neurais de Computação
7.
ACS Sens ; 9(4): 1978-1991, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38564767

RESUMO

This paper presents a sponge-based electrochemical sensor for rapid, on-site collection and analysis of infectious viruses on solid surfaces. The device utilizes a conducting porous sponge modified with graphene, graphene oxide, and specific antibodies. The sponge serves as a hydrophilic porous electrode capable of liquid collection and electrochemical measurements. The device operation involves spraying an aqueous solution on a target surface, swiping the misted surface using the sponge, discharging an electrolyte solution with a simple finger press, and performing in situ incubation and electrochemical measurements. By leveraging the water-absorbing ability of the biofunctionalized conducting sponge, the sensor can effectively collect and quantify virus particles from the surface. The portability of the device is enhanced by introducing a push-release feature that dispenses the liquid electrolyte from a miniature reservoir onto the sensor surface. This reservoir has sharp edges to rupture a liquid sealing film with a finger press. The ability of the device to sample and quantify viral particles is demonstrated by using influenza A virus as the model. The sensor provided a calculated limit of detection of 0.4 TCID50/mL for H1N1 virus, along with a practical concentration range from 1-106 TCID50/mL. Additionally, it achieves a 15% collection efficiency from single-run swiping on a tabletop surface. This versatile device allows for convenient on-site virus detection within minutes, eliminating the need for sample pretreatment and simplifying the entire sample collecting and measuring process. This device presents significant potential for rapid virus detection on solid surfaces.


Assuntos
Técnicas Eletroquímicas , Grafite , Vírus da Influenza A Subtipo H1N1 , Vírion , Grafite/química , Vírion/química , Vírion/isolamento & purificação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Propriedades de Superfície , Porosidade , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Limite de Detecção , Humanos
8.
Biosens Bioelectron ; 257: 116171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636317

RESUMO

The COVID-19 pandemic has highlighted the need for rapid and sensitive detection of SARS-CoV-2. Here, we report an ultrasensitive SARS-CoV-2 immunosensor by integration of an AlGaN/GaN high-electron-mobility transistor (HEMT) and anti-SARS-CoV-2 spike protein antibody. The AlGaN/GaN HEMT immunosensor has demonstrated the capability to detect SARS-CoV-2 spike proteins at an impressively low concentration of 10-22 M. The sensor was also applied to pseudoviruses and SARS-CoV-2 ΔN virions that display the Spike proteins with a single virion particle sensitivity. These features validate the potential of AlGaN/GaN HEMT biosensors for point of care tests targeting SARS-CoV-2. This research not only provides the first HEMT biosensing platform for ultrasensitive and label-free detection of SARS-CoV-2.


Assuntos
Técnicas Biossensoriais , COVID-19 , Gálio , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Transistores Eletrônicos , Vírion , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/análise , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Gálio/química , Vírion/isolamento & purificação , Vírion/química , Limite de Detecção , Compostos de Alumínio/química , Desenho de Equipamento , Imunoensaio/instrumentação , Imunoensaio/métodos , Anticorpos Imobilizados/química , Anticorpos Antivirais
9.
J Virol ; 98(4): e0197223, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470155

RESUMO

The coordinated packaging of the segmented genome of the influenza A virus (IAV) into virions is an essential step of the viral life cycle. This process is controlled by the interaction of packaging signals present in all eight viral RNA (vRNA) segments and the viral nucleoprotein (NP), which binds vRNA via a positively charged binding groove. However, mechanistic models of how the packaging signals and NP work together to coordinate genome packaging are missing. Here, we studied genome packaging in influenza A/SC35M virus mutants that carry mutated packaging signals as well as specific amino acid substitutions at the highly conserved lysine (K) residues 184 and 229 in the RNA-binding groove of NP. Because these lysines are acetylated and thus neutrally charged in infected host cells, we replaced them with glutamine to mimic the acetylated, neutrally charged state or arginine to mimic the non-acetylated, positively charged state. Our analysis shows that the coordinated packaging of eight vRNAs is influenced by (i) the charge state of the replacing amino acid and (ii) its location within the RNA-binding groove. Accordingly, we propose that lysine acetylation induces different charge states within the RNA-binding groove of NP, thereby supporting the activity of specific packaging signals during coordinated genome packaging. IMPORTANCE: Influenza A viruses (IAVs) have a segmented viral RNA (vRNA) genome encapsidated by multiple copies of the viral nucleoprotein (NP) and organized into eight distinct viral ribonucleoprotein complexes. Although genome segmentation contributes significantly to viral evolution and adaptation, it requires a highly sophisticated genome-packaging mechanism. How eight distinct genome complexes are incorporated into the virion is poorly understood, but previous research suggests an essential role for both vRNA packaging signals and highly conserved NP amino acids. By demonstrating that the packaging process is controlled by charge-dependent interactions of highly conserved lysine residues in NP and vRNA packaging signals, our study provides new insights into the sophisticated packaging mechanism of IAVs.


Assuntos
Vírus da Influenza A , Proteínas do Nucleocapsídeo , Empacotamento do Genoma Viral , Animais , Cães , Humanos , Substituição de Aminoácidos , Linhagem Celular , Genoma Viral , Vírus da Influenza A/química , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Lisina/genética , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Empacotamento do Genoma Viral/genética , Vírion/química , Vírion/genética , Vírion/metabolismo , Mutação , Eletricidade Estática
10.
Nature ; 627(8005): 905-914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448589

RESUMO

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Assuntos
Bacteriófagos , Capsídeo , DNA Viral , Genoma Viral , Vírion , Montagem de Vírus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Água/análise , Água/química , Água/metabolismo
11.
Curr Opin Struct Biol ; 86: 102787, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458088

RESUMO

X-ray crystallography and cryo-electron microscopy have enabled the determination of structures of numerous viruses at high resolution and have greatly advanced the field of structural virology. These structures represent only a subset of snapshot end-state conformations, without describing all conformational transitions that virus particles undergo. Allostery plays a critical role in relaying the effects of varied perturbations both on the surface through environmental changes and protein (receptor/antibody) interactions into the genomic core of the virus. Correspondingly, allostery carries implications for communicating changes in genome packaging to the overall stability of the virus particle. Amide hydrogen/deuterium exchange mass spectrometry (HDXMS) of whole viruses is a powerful probe for uncovering virus allostery. Here we critically discuss advancements in understanding virus dynamics by HDXMS with single particle cryo-EM and computational approaches.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , Vírion , Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Vírion/química , Vírion/metabolismo , Regulação Alostérica , Amidas/química , Vírus/química , Vírus/metabolismo , Microscopia Crioeletrônica/métodos , Espectrometria de Massas/métodos , Medição da Troca de Deutério
12.
J Virol ; 98(3): e0182723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305183

RESUMO

Most icosahedral DNA viruses package and condense their genomes into pre-formed, volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded (ss) DNA micro- and parvoviruses. Before packaging, ~120 copies of the øX174 DNA-binding protein J interact with double-stranded DNA. 60 J proteins enter the procapsid with the ssDNA genome, guiding it between 60 icosahedrally ordered DNA-binding pockets formed by the capsid proteins. Although J proteins are small, 28-37 residues in length, they have two domains. The basic, positively charged N-terminus guides the genome between binding pockets, whereas the C-terminus acts as an anchor to the capsid's inner surface. Three C-terminal aromatic residues, W30, Y31, and F37, interact most extensively with the coat protein. Their corresponding codons were mutated, and the resulting strains were biochemically and genetically characterized. Depending on the mutation, the substitutions produced unstable packaging complexes, unstable virions, infectious progeny, or particles packaged with smaller genomes, the latter being a novel phenomenon. The smaller genomes contained internal deletions. The juncture sequences suggest that the unessential A* (A star) protein mediates deletion formation.IMPORTANCEUnessential but strongly conserved gene products are understudied, especially when mutations do not confer discernable phenotypes or the protein's contribution to fitness is too small to reliably determine in laboratory-based assays. Consequently, their functions and evolutionary impact remain obscure. The data presented herein suggest that microvirus A* proteins, discovered over 40 years ago, may hasten the termination of non-productive packaging events. Thus, performing a salvage function by liberating the reusable components of the failed packaging complexes, such as DNA templates and replication enzymes.


Assuntos
Bacteriófago phi X 174 , Proteínas do Capsídeo , DNA de Cadeia Simples , DNA Viral , Proteínas de Ligação a DNA , Evolução Molecular , Empacotamento do Genoma Viral , Bacteriófago phi X 174/química , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/crescimento & desenvolvimento , Bacteriófago phi X 174/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Sequência Conservada , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Aptidão Genética , Mutação , Fenótipo , Moldes Genéticos , Vírion/química , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/metabolismo
13.
J Virol ; 98(3): e0153623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315014

RESUMO

African swine fever (ASF) is a highly contagious viral disease that affects domestic and wild pigs. The causative agent of ASF is African swine fever virus (ASFV), a large double-stranded DNA virus with a complex virion structure. Among the various proteins encoded by ASFV, A137R is a crucial structural protein associated with its virulence. However, the structure and molecular mechanisms underlying the functions of A137R remain largely unknown. In this study, we present the structure of A137R determined by cryogenic electron microscopy single-particle reconstruction, which reveals that A137R self-oligomerizes to form a dodecahedron-shaped cage composed of 60 polymers. The dodecahedron is literally equivalent to a T = 1 icosahedron where the icosahedral vertexes are located in the center of each dodecahedral facet. Within each facet, five A137R protomers are arranged in a head-to-tail orientation with a long N-terminal helix forming the edge through which adjacent facets stitch together to form the dodecahedral cage. Combining structural analysis and biochemical evidence, we demonstrate that the N-terminal domain of A137R is crucial and sufficient for mediating the assembly of the dodecahedron. These findings imply the role of A137R cage as a core component in the icosahedral ASFV virion and suggest a promising molecular scaffold for nanotechnology applications. IMPORTANCE: African swine fever (ASF) is a lethal viral disease of pigs caused by African swine fever virus (ASFV). No commercial vaccines and antiviral treatments are available for the prevention and control of the disease. A137R is a structural protein of ASFV that is associated with its virulence. The discovery of the dodecahedron-shaped cage structure of A137R in this study is of great importance in understanding ASFV pathogenicity. This finding sheds light on the molecular mechanisms underlying the functions of A137R. Furthermore, the dodecahedral cage formed by A137R shows promise as a molecular scaffold for nanoparticle vectors. Overall, this study provides valuable insights into the structure and function of A137R, contributing to our understanding of ASFV and potentially opening up new avenues for the development of vaccines or treatments for ASF.


Assuntos
Vírus da Febre Suína Africana , Suínos , Proteínas Estruturais Virais , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/ultraestrutura , Microscopia Crioeletrônica , Relação Estrutura-Atividade , Suínos/virologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura , Virulência
14.
Sci Adv ; 10(8): eadj1640, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394211

RESUMO

The compartmentalization of eukaryotic cells presents considerable challenges to the herpesvirus life cycle. The herpesvirus tegument, a bulky proteinaceous aggregate sandwiched between herpesviruses' capsid and envelope, is uniquely evolved to address these challenges, yet tegument structure and organization remain poorly characterized. We use deep-learning-enhanced cryogenic electron microscopy to investigate the tegument of human cytomegalovirus virions and noninfectious enveloped particles (NIEPs; a genome packaging-aborted state), revealing a portal-biased tegumentation scheme. We resolve atomic structures of portal vertex-associated tegument (PVAT) and identify multiple configurations of PVAT arising from layered reorganization of pUL77, pUL48 (large tegument protein), and pUL47 (inner tegument protein) assemblies. Analyses show that pUL77 seals the last-packaged viral genome end through electrostatic interactions, pUL77 and pUL48 harbor a head-linker-capsid-binding motif conducive to PVAT reconfiguration, and pUL47/48 dimers form 45-nm-long filaments extending from the portal vertex. These results provide a structural framework for understanding how herpesvirus tegument facilitates and evolves during processes spanning viral genome packaging to delivery.


Assuntos
Proteínas do Capsídeo , Citomegalovirus , Humanos , Citomegalovirus/química , Citomegalovirus/genética , Citomegalovirus/metabolismo , Microscopia Crioeletrônica , Proteínas do Capsídeo/química , Capsídeo/química , Vírion/química , Inteligência Artificial
15.
J Virol ; 98(3): e0182023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38329331

RESUMO

Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear. Using Flock House virus as a model system, we developed a next-generation sequencing approach ("XL-ClickSeq") to probe heterodimer site sequences. We identified an intermolecular base-pairing site which contributed to heterodimerization in both wild-type and defective virus particles. Mutagenic disruption of this heterodimer site exhibited significant deficiencies in genome packaging and encapsidation specificity to viral genomic RNAs. Furthermore, the disruption of this intermolecular interaction directly impacts the thermostability of the mature virions. These results demonstrate that the intermolecular RNA-RNA interactions within the encapsidated genome of an RNA virus have an important role on virus particle integrity and thus may impact its transmission to a new host.IMPORTANCEFlock House virus is a member of Nodaviridae family of viruses, which provides a well-studied model virus for non-enveloped RNA virus assembly, cell entry, and replication. The Flock House virus genome consists of two separate RNA molecules, which can form a heterodimer upon heating of virus particles. Although similar RNA dimerization is utilized by other viruses (such as retroviruses) as a packaging mechanism and is conserved among Nodaviruses, the role of heterodimerization in the Nodavirus replication cycle is unclear. In this research, we identified the RNA sequences contributing to Flock House virus genome heterodimerization and discovered that such RNA-RNA interaction plays an essential role in virus packaging efficiency and particle integrity. This provides significant insight into how the interaction of packaged viral RNA may have a broader impact on the structural and functional properties of virus particles.


Assuntos
Dimerização , Genoma Viral , Nodaviridae , RNA Viral , Termodinâmica , Empacotamento do Genoma Viral , Vírion , Animais , Pareamento de Bases/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Nodaviridae/química , Nodaviridae/genética , Nodaviridae/crescimento & desenvolvimento , Infecções por Vírus de RNA/transmissão , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral/genética , Vírion/química , Vírion/genética , Vírion/metabolismo
16.
J Virol ; 98(2): e0189923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294245

RESUMO

After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.


Assuntos
Citoplasma , Herpesvirus Humano 4 , Proteínas Serina-Treonina Quinases , Proteínas Virais , Vírion , Montagem de Vírus , Liberação de Vírus , Proteínas Ativadoras de ras GTPase , Humanos , Proteínas do Capsídeo/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Virais/metabolismo , Vírion/química , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Montagem de Vírus/fisiologia , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo
17.
Nucleic Acids Res ; 52(D1): D817-D821, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897348

RESUMO

ViralZone (http://viralzone.expasy.org) is a knowledge repository for viruses that links biological knowledge and databases. It contains data on virion structure, genome, proteome, replication cycle and host-virus interactions. The new update provides better access to the data through contextual popups and higher resolution images in Scalable Vector Graphics (SVG) format. These images are designed to be dynamic and interactive with human viruses to give users better access to the data. In addition, a new coronavirus-specific resource provides regularly updated data on variants and molecular biology of SARS-CoV-2. Other virus-specific resources have been added to the database, particularly for HIV, herpesviruses and poxviruses.


Assuntos
Bases de Conhecimento , Vírus , Humanos , Vírion/química , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírus/química , Vírus/genética , Vírus/crescimento & desenvolvimento
18.
Soft Matter ; 19(44): 8649-8658, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921635

RESUMO

Understanding the principles governing protein arrangement in viral capsids and structurally similar protein shells can enable the development of new antiviral strategies and the design of artificial protein cages for various applications. We study these principles within the context of the close packing problem, by analyzing dozens of small spherical shells assembled from a single type of protein. First, we use icosahedral spherical close packings containing 60T identical disks, where T ≤ 4, to rationalize the protein arrangement in twenty real icosahedral shells both satisfying and violating the paradigmatic Caspar-Klug model. We uncover a striking correspondence between the protein mass centers in the considered shells and the centers of disks in the close packings. To generalize the packing model, we consider proteins with a weak shape anisotropy and propose an interaction energy, minimization of which allows us to obtain spherical dense packings of slightly anisotropic structural units. In the case of strong anisotropy, we model the proteins as sequences of overlapping discs of different sizes, with minimum energy configuration not only resulting in packings, accurately reproducing locations and orientations of individual proteins, but also revealing that icosahedral packings that display the handedness of real capsids are energetically more favorable. Finally, by introducing effective disc charges, we rationalize the formation of inter-protein bonds in protein shells.


Assuntos
Capsídeo , Proteínas , Capsídeo/química , Vírion/química
19.
Nature ; 623(7989): 1026-1033, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993716

RESUMO

Human immunodeficiency virus 1 (HIV-1) infection is initiated by binding of the viral envelope glycoprotein (Env) to the cell-surface receptor CD41-4. Although high-resolution structures of Env in a complex with the soluble domains of CD4 have been determined, the binding process is less understood in native membranes5-13. Here we used cryo-electron tomography to monitor Env-CD4 interactions at the membrane-membrane interfaces formed between HIV-1 and CD4-presenting virus-like particles. Env-CD4 complexes organized into clusters and rings, bringing the opposing membranes closer together. Env-CD4 clustering was dependent on capsid maturation. Subtomogram averaging and classification revealed that Env bound to one, two and finally three CD4 molecules, after which Env adopted an open state. Our data indicate that asymmetric HIV-1 Env trimers bound to one and two CD4 molecules are detectable intermediates during virus binding to host cell membranes, which probably has consequences for antibody-mediated immune responses and vaccine immunogen design.


Assuntos
Antígenos CD4 , Membrana Celular , Proteína gp120 do Envelope de HIV , HIV-1 , Multimerização Proteica , Humanos , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Antígenos CD4/química , Antígenos CD4/metabolismo , Antígenos CD4/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/ultraestrutura , Infecções por HIV/virologia , HIV-1/química , HIV-1/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura
20.
J Virol ; 97(11): e0081723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877717

RESUMO

IMPORTANCE: Understanding how bracoviruses (BVs) function in wasps is of broad interest in the study of virus evolution. This study characterizes most of the Microplitis demolitor bracovirus (MdBV) genes whose products are nucleocapsid components. Results indicate several genes unknown outside of nudiviruses and BVs are essential for normal capsid assembly. Results also indicate most MdBV tyrosine recombinase family members and the DNA binding protein p6.9-1 are required for DNA processing and packaging into nucleocapsids.


Assuntos
Proteínas do Capsídeo , Polydnaviridae , Vírion , Animais , Capsídeo/química , Capsídeo/metabolismo , Polydnaviridae/genética , Polydnaviridae/metabolismo , Vírion/química , Vírion/genética , Vírion/metabolismo , Vespas/virologia , Proteínas do Capsídeo/genética , Proteínas de Ligação a DNA/metabolismo , Empacotamento do Genoma Viral , DNA Viral/metabolismo , Recombinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...