Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.607
Filtrar
1.
Nat Commun ; 15(1): 4888, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849332

RESUMO

Chloroxylenol is a worldwide commonly used disinfectant. The massive consumption and relatively high chemical stability of chloroxylenol have caused eco-toxicological threats in receiving waters. We noticed that chloroxylenol has a chemical structure similar to numerous halo-phenolic disinfection byproducts. Solar detoxification of some halo-phenolic disinfection byproducts intrigued us to select a rapidly degradable chloroxylenol alternative from them. In investigating antimicrobial activities of disinfection byproducts, we found that 2,6-dichlorobenzoquinone was 9.0-22 times more efficient than chloroxylenol in inactivating the tested bacteria, fungi and viruses. Also, the developmental toxicity of 2,6-dichlorobenzoquinone to marine polychaete embryos decreased rapidly due to its rapid degradation via hydrolysis in receiving seawater, even without sunlight. Our work shows that 2,6-dichlorobenzoquinone is a promising disinfectant that well addresses human biosecurity and environmental sustainability. More importantly, our work may enlighten scientists to exploit the slightly alkaline nature of seawater and develop other industrial products that can degrade rapidly via hydrolysis in seawater.


Assuntos
Desinfetantes , Desinfecção , Água do Mar , Desinfetantes/química , Desinfetantes/farmacologia , Desinfecção/métodos , Água do Mar/química , Animais , Hidrólise , Poliquetos/efeitos dos fármacos , Fungos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Clorofenóis/química , Vírus/efeitos dos fármacos , Humanos , Xilenos
2.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792094

RESUMO

Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.


Assuntos
Antivirais , Compostos Heterocíclicos , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Humanos , Replicação Viral/efeitos dos fármacos , Relação Estrutura-Atividade , Vírus/efeitos dos fármacos , Viroses/tratamento farmacológico , Animais
3.
Viruses ; 16(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38793616

RESUMO

Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.


Assuntos
Interferons , Proteínas de Membrana , Internalização do Vírus , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Interferons/imunologia , Interferons/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Evasão da Resposta Imune , Animais , Viroses/imunologia , Viroses/virologia , Vírus/imunologia , Vírus/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/imunologia
4.
Environ Res ; 255: 119156, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759773

RESUMO

Comprehensive data on bacterial and viral pathogens of diarrhea and studies applying culture-independent methods for examining antibiotic resistance in wastewater are lacking. This study aimed to simultaneously quantify antibiotic resistance genes (ARGs), class 1 integron-integrase (int1), bacterial and viral pathogens of diarrhea, 16S rRNA, and other indicators using a high-throughput quantitative PCR (HT-qPCR) system. Thirty-six grab wastewater samples from a wastewater treatment plant in Japan, collected three times a month between August 2022 and July 2023, were centrifuged, followed by nucleic acid extraction, reverse transcription, and HT-qPCR. Fourteen targets were included, and HT-qPCR was performed on the Biomark X9™ System (Standard BioTools). For all qPCR assays, R2 was ≥0.978 and the efficiencies ranged from 90.5% to 117.7%, exhibiting high performance. Of the 36 samples, 20 (56%) were positive for Norovirus genogroup II (NoV-GII), whereas Salmonella spp. and Campylobacter jejuni were detected in 24 (67%) and Campylobacter coli in 13 (36%) samples, with mean concentrations ranging from 3.2 ± 0.8 to 4.7 ± 0.3 log10 copies/L. NoV-GII detection ratios and concentrations were higher in winter and spring. None of the pathogens of diarrhea correlated with acute gastroenteritis cases, except for NoV-GII, suggesting the need for data on specific bacterial infections to validate bacterial wastewater-based epidemiology (WBE). All samples tested positive for sul1, int1, and blaCTX-M, irrespective of season. The less explored blaNDM-1 showed a wide prevalence (>83%) and consistent abundance ranging from 4.3 ± 1.0 to 4.9 ± 0.2 log10 copies/L in all seasons. sul1 was the predominant ARG, whereas absolute abundances of 16S rRNA, int1, and blaCTX-M varied seasonally. int1 was significantly correlated with blaCTX-M in autumn and spring, whereas it showed no correlation with blaNDM-1, questioning the applicability of int1 as a sole indicator of overall resistance determinants. This study exhibited that the HT-qPCR system is pivotal for WBE.


Assuntos
Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/virologia , Japão , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Vírus/genética , Vírus/efeitos dos fármacos , Vírus/isolamento & purificação , Microfluídica/métodos
6.
Int J Biol Macromol ; 269(Pt 2): 132200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723834

RESUMO

Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.


Assuntos
Antivirais , Viroses , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Viroses/tratamento farmacológico , Viroses/virologia , Vírus/efeitos dos fármacos , Animais , Interações Hospedeiro-Patógeno
7.
Cell Commun Signal ; 22(1): 239, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654309

RESUMO

Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.


Assuntos
Bactérias , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Bactérias/efeitos dos fármacos , Animais , Terapia Viral Oncolítica , Vírus/efeitos dos fármacos
8.
J Med Virol ; 96(5): e29622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682614

RESUMO

RNA capping is an essential trigger for protein translation in eukaryotic cells. Many viruses have evolved various strategies for initiating the translation of viral genes and generating progeny virions in infected cells via synthesizing cap structure or stealing the RNA cap from nascent host messenger ribonucleotide acid (mRNA). In addition to protein translation, a new understanding of the role of the RNA cap in antiviral innate immunity has advanced the field of mRNA synthesis in vitro and therapeutic applications. Recent studies on these viral RNA capping systems have revealed startlingly diverse ways and molecular machinery. A comprehensive understanding of how viruses accomplish the RNA capping in infected cells is pivotal for designing effective broad-spectrum antiviral therapies. Here we systematically review the contemporary insights into the RNA-capping mechanisms employed by viruses causing human and animal infectious diseases, while also highlighting its impact on host antiviral innate immune response. The therapeutic applications of targeting RNA capping against viral infections and the development of RNA-capping inhibitors are also summarized.


Assuntos
Antivirais , Capuzes de RNA , RNA Viral , Viroses , Animais , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , Imunidade Inata , Capuzes de RNA/metabolismo , RNA Viral/genética , Viroses/tratamento farmacológico , Viroses/imunologia , Replicação Viral/efeitos dos fármacos , Vírus/genética , Vírus/efeitos dos fármacos , Vírus/imunologia
9.
J Hazard Mater ; 471: 134365, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669926

RESUMO

The disinfection of fabrics is crucial in preventing the spread of infectious diseases caused by pathogenic microorganisms to maintain public health. A previous study proved that plasma-activated nebulized mist (PANM) could effectively inactivate microorganisms both in aerosol and attached to the surface. In this study, the PANM driven by different plasma gases were employed to inactivate microorganisms on diverse fabrics. The PANM could efficiently inactivate a variety of microorganisms, including bacteria, fungi, and viruses, contaminating different fabrics, and even across covering layers of different fabrics. The mites residing on the cotton fabrics both uncovered and covered with various types of fabrics were also effectively inactivated by the PANM. After 30 times repeated treatments of the PANM, notable changes were observed in the color of several fabrics while the structural integrity and mechanical strength of the fabrics were unaffected and maintained similarly to the untreated fabrics with slight changes in elemental composition. Additionally, only trace amounts of nitrate remained in the fabrics after the PANM treatment. Therefore, the PANM treatment supplied an efficient, broad-spectrum, and environmentally friendly strategy for industrial and household disinfection of fabrics.


Assuntos
Gases em Plasma , Têxteis , Gases em Plasma/farmacologia , Animais , Desinfecção/métodos , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Nebulizadores e Vaporizadores , Vírus/efeitos dos fármacos
10.
Virus Res ; 344: 199368, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588924

RESUMO

Several viruses are now known to code for deubiquitinating proteases in their genomes. Ubiquitination is an essential post-translational modification of cellular substrates involved in many processes in the cell, including in innate immune signalling. This post-translational modification is regulated by the ubiquitin conjugation machinery, as well as various host deubiquitinating enzymes. The conjugation of ubiquitin chains to several innate immune related factors is often needed to induce downstream signalling, shaping the antiviral response. Viral deubiquitinating proteins, besides often having a primary function in the viral replication cycle by cleaving the viral polyprotein, are also able to cleave ubiquitin chains from such host substrates, in that way exerting a function in innate immune evasion. The presence of viral deubiquitinating enzymes has been firmly established for numerous animal-infecting viruses, such as some well-researched and clinically important nidoviruses, and their presence has now been confirmed in several plant viruses as well. Viral proteases in general have long been highlighted as promising drug targets, with a current focus on small molecule inhibitors. In this review, we will discuss the range of viral deubiquitinating proteases known to date, summarise the various avenues explored to inhibit such proteases and discuss novel strategies and models intended to inhibit and study these specific viral enzymes.


Assuntos
Enzimas Desubiquitinantes , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/genética , Humanos , Proteases Virais/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinação , Animais , Replicação Viral , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Vírus/efeitos dos fármacos , Vírus/enzimologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Ubiquitina/metabolismo , Imunidade Inata
11.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520159

RESUMO

AIMS: Airborne transmission of diseases presents a serious threat to human health, so effective air disinfection technology to eliminate microorganisms in indoor air is very important. This study evaluated the effectiveness of a non-thermal plasma (NTP) air disinfector in both laboratory experiments and real environments. METHODS AND RESULTS: An experimental chamber was artificially polluted with a bioaerosol containing bacteria or viruses. Additionally, classroom environments with and without people present were used in field tests. Airborne microbial and particle concentrations were quantified. A 3.0 log10 reduction in the initial load was achieved when a virus-containing aerosol was disinfected for 60 min and a bacteria-containing aerosol was disinfected for 90 min. In the field test, when no people were present in the room, NTP disinfection decreased the airborne microbial and particle concentrations (P < 0.05). When people were present in the room, their constant activity continuously contaminated the indoor air, but all airborne indicators decreased (P < 0.05) except for planktonic bacteria (P = 0.094). CONCLUSIONS: NTP effectively inactivated microorganisms and particles in indoor air.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Bactérias , Desinfecção , Gases em Plasma , Desinfecção/métodos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Humanos , Gases em Plasma/farmacologia , Aerossóis , Desinfetantes/farmacologia , Vírus/efeitos dos fármacos , Vírus/isolamento & purificação
12.
Acta Trop ; 254: 107182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479469

RESUMO

Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.


Assuntos
Organoides , Viroses , Organoides/virologia , Humanos , Animais , Viroses/virologia , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Vírus/patogenicidade , Vírus/crescimento & desenvolvimento , Vírus/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas/métodos
13.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632670

RESUMO

New strategies to rapidly develop broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses. Host-targeting antivirals (HTAs) that target the universal host factors necessary for viral replication are the most promising approach, with broad-spectrum, foresighted function, and low resistance. We and others recently identified that host dihydroorotate dehydrogenase (DHODH) is one of the universal host factors essential for the replication of many acute-infectious viruses. DHODH is a rate-limiting enzyme catalyzing the fourth step in de novo pyrimidine synthesis. Therefore, it has also been developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancers, autoimmune diseases, and viral or bacterial infections. Significantly, the successful use of DHODH inhibitors (DHODHi) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection further supports the application prospects. This review focuses on the advantages of HTAs and the antiviral effects of DHODHi with clinical applications. The multiple functions of DHODHi in inhibiting viral replication, stimulating ISGs expression, and suppressing cytokine storms make DHODHi a potent strategy against viral infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Di-Hidro-Orotato Desidrogenase , Viroses , Vírus , Antivirais/farmacologia , Antivirais/uso terapêutico , Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Humanos , Pirimidinas , SARS-CoV-2/efeitos dos fármacos , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos
14.
Nucleic Acids Res ; 50(W1): W272-W275, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35610052

RESUMO

Viruses can cross species barriers and cause unpredictable outbreaks in man with substantial economic and public health burdens. Broad-spectrum antivirals, (BSAs, compounds inhibiting several human viruses), and BSA-containing drug combinations (BCCs) are deemed as immediate therapeutic options that fill the void between virus identification and vaccine development. Here, we present DrugVirus.info 2.0 (https://drugvirus.info), an integrative interactive portal for exploration and analysis of BSAs and BCCs, that greatly expands the database and functionality of DrugVirus.info 1.0 webserver. Through the data portal that now expands the spectrum of BSAs and provides information on BCCs, we developed two modules for (i) interactive analysis of users' own antiviral drug and combination screening data and their comparison with published datasets, and (ii) exploration of the structure-activity relationship between various BSAs. The updated portal provides an essential toolbox for antiviral drug development and repurposing applications aiming to identify existing and novel treatments of emerging and re-emerging viral threats.


Assuntos
Antivirais , Bases de Dados de Produtos Farmacêuticos , Vírus , Humanos , Antivirais/farmacologia , Combinação de Medicamentos , Desenvolvimento de Medicamentos , Vírus/efeitos dos fármacos , Software , Internet
15.
Viruses ; 14(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35215894

RESUMO

Viral diseases consistently pose a substantial economic and public health burden worldwide [...].


Assuntos
Antivirais/farmacologia , Viroses/tratamento farmacológico , Humanos , Viroses/virologia , Fenômenos Fisiológicos Virais , Vírus/classificação , Vírus/efeitos dos fármacos , Vírus/genética
16.
Viruses ; 14(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35215947

RESUMO

Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from Flaviviridae, Phenuiviridae, Rhabdoviridae, and Herpesviridae families. Diphyllin is not cytotoxic for Vero and BHK-21 cells up to 100 µM and exerts a sub-micromolar or low-micromolar antiviral activity against tick-borne encephalitis virus, West Nile virus, Zika virus, Rift Valley fever virus, rabies virus, and herpes-simplex virus type 1. Our study shows that diphyllin is a broad-spectrum host cell-targeting antiviral agent that blocks the replication of multiple phylogenetically unrelated enveloped RNA and DNA viruses. In support of this, we also demonstrate that diphyllin is more than just a vacuolar (H+)ATPase inhibitor but may employ other antiviral mechanisms of action to inhibit the replication cycles of those viruses that do not enter host cells by endocytosis followed by low pH-dependent membrane fusion.


Assuntos
Antivirais/farmacologia , Lignanas/farmacologia , Vírus/efeitos dos fármacos , Animais , Antígenos Virais/metabolismo , Antivirais/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Lignanas/síntese química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Vírus/classificação , Vírus/metabolismo
17.
Viruses ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216019

RESUMO

In the current context of the COVID-19 pandemic, it appears that our scientific resources and the medical community are not sufficiently developed to combat rapid viral spread all over the world. A number of viruses causing epidemics have already disseminated across the world in the last few years, such as the dengue or chinkungunya virus, the Ebola virus, and other coronavirus families such as Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV). The outbreaks of these infectious diseases have demonstrated the difficulty of treating an epidemic before the creation of vaccine. Different antiviral drugs already exist. However, several of them cause side effects or have lost their efficiency because of virus mutations. It is essential to develop new antiviral strategies, but ones that rely on more natural compounds to decrease the secondary effects. Polysaccharides, which have come to be known in recent years for their medicinal properties, including antiviral activities, are an excellent alternative. They are essential for the metabolism of plants, microorganisms, and animals, and are directly extractible. Polysaccharides have attracted more and more attention due to their therapeutic properties, low toxicity, and availability, and seem to be attractive candidates as antiviral drugs of tomorrow.


Assuntos
Antivirais/química , Antivirais/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Vírus/efeitos dos fármacos , Animais , Surtos de Doenças/prevenção & controle , Ebolavirus/efeitos dos fármacos , Humanos , SARS-CoV-2/efeitos dos fármacos , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Vírus/classificação , Vírus/patogenicidade
18.
Chem Commun (Camb) ; 58(18): 2954-2966, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170594

RESUMO

A new supramolecular approach to broad spectrum antivirals utilizes host guest chemistry between molecular tweezers and lysine/arginine as well as choline. Basic amino acids in amyloid-forming SEVI peptides (semen-derived enhancers of viral infection) are included inside the tweezer cavity leading to disaggregation and neutralization of the fibrils, which lose their ability to enhance HIV-1/HIV-2 infection. Lipid head groups contain the trimethylammonium cation of choline; this is likewise bound by molecular tweezers, which dock onto viral membranes and thus greatly enhance their surface tension. Disruption of the envelope in turn leads to total loss of infectiosity (ZIKA, Ebola, Influenza). This complexation event also seems to be the structural basis for an effective inihibition of cell-to-cell spread in Herpes viruses. The article describes the discovery of novel molecular recognition motifs and the development of powerful antiviral agents based on these host guest systems. It explains the general underlying mechanisms of antiviral action and points to future optimization and application as therapeutic agents.


Assuntos
Antivirais/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Envelope Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos , Amiloidose/prevenção & controle , Antivirais/farmacologia , Humanos , Vírus/patogenicidade
19.
Carbohydr Res ; 513: 108517, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35152128

RESUMO

The synthesis of five series of 4'-truncated nucleoside phosphonic acid analogues is discussed in this review: (1) 4'-truncated furanose nucleoside phosphonic acid analogues; (2) 4'-truncated pyrrolidine nucleoside phosphonic acid analogues; (3) 4'-truncated carbocyclic nucleoside phosphonic acid analogues; (4) 4'-truncated isoxazole nucleoside phosphonic acid analogues; (5) 4'-truncated miscellaneous nucleoside phosphonic acid analogues. Five different ways are used to make the phosphonate moiety: (i) Michaelis-Arbuzov reaction of RX (X = Br, I, OTf) with trialkyl phosphate; (ii) Lewis acid catalyzed Michaelis-Arbuzov reaction of glycoside with trialkyl phosphite; (iii) nucleophilic addition of a dialkyl phosphite to a carbonyl group; (iv) direct coupling reaction with amino alkyl phosphonate; (v) de novo synthesis of phosphonated-isoxazole and 1,3-dioxolane heterocycles from phosphonated starting materials. Their biological activity results are briefly discussed.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Enzimas/metabolismo , Nucleosídeos/farmacologia , Ácidos Fosforosos/farmacologia , Vírus/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Configuração de Carboidratos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Testes de Sensibilidade Microbiana , Nucleosídeos/síntese química , Nucleosídeos/química , Ácidos Fosforosos/síntese química , Ácidos Fosforosos/química
20.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163084

RESUMO

International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.


Assuntos
Anti-Infecciosos/farmacologia , COVID-19/prevenção & controle , Materiais Revestidos Biocompatíveis/farmacologia , Metais/química , Tato , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , COVID-19/transmissão , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Humanos , Pandemias , Equipamento de Proteção Individual/microbiologia , Equipamento de Proteção Individual/virologia , SARS-CoV-2/efeitos dos fármacos , Propriedades de Superfície , Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...